The method of english text's computerized formation in accordance with the propagandist's psycholinguistic portrait

Authors

  • Ярослав Володимирович Тарасенко Cherkassy state technological university

DOI:

https://doi.org/10.18372/2410-7840.22.14702

Keywords:

text generation, computerized text composition, counter propaganda, categories of semantic particle, psycholinguistic portrait of propagandist, semantic particle in English-language text, categorical levels, quantum states of lexical-semantic particle

Abstract

The current situation in the country and in the world requires the development of reliable methods for detecting and neutralizing cyber threats, one of which is information propaganda in media sources. To counter such a threat, it is necessary to carry out the reverse influence on the propagandist, which can be realized on the basis of a computer-generated meaningful text based on the propagandist's psycholinguistic portrait. The vast majority of modern methods for computerized text generation are based on machine learning technologies, which limits the ability of effectively building a psycholinguistic profile due to the need for a large amount of input information, and this leads to the risk of detecting the propaganda counteraction. Other methods do not take into account the categorical and quantum nature of perception, they are too demanding on the input information amount to build the contextual connections, or do not take into account the propaganda discourse. It was developed the method of English text's computerized formation in accordance with the propagandist's psycholinguistic portrait based on multilevel templates and improved methods of natural language data forest, by using the methods of quantum semantics and Montague semantics, which allows to increase the effectiveness of counteracting the negative impact of English-language propaganda, due to the taking into account propagandist's individual subjective semantic line and the probable quantum states of lexical-semantic units, based on the semantic particle's classification. The method allows generating the English-language text in accordance with the propagandist's psycholinguistic portrait for further implementing in it the means of reverse target influence on the propagandist. The method's use is important in studying the problem of shifting the text's semantic line in the direction of the propagandist's subjective semantic line.

Author Biography

Ярослав Володимирович Тарасенко, Cherkassy state technological university

candidate of engineering science, assistant lecturer of the department of information technology of designing, Cherkassy state technological university

References

A. Krishnan, «Military Neuroscience and the Coming Age of Neurowarfare», London: Routledge, 2017, 270 p.

D. Owolabi1, C. I. Nnaji, «The English language and the mass media as tools forsustainable development in multilingual nations», International Journal of Language and Linguistics, Vol. 1, Issue 4, P. 124-130, 2013.

E. Krahmer, M. Theune, «Empirical Methods in Natural Language Generation: Data-oriented Methods and Empirical Evaluation», Berlin, Heidelberg: Springer Science & Business Media, 2010, 353 p.

J. Feist, «Semantic Structure in English», Amsterdam, Philadelphia: John Benjamins Publishing Company, 2016, 452 p.

N. Chomsky, Á. J. Gallego, D. Ott, «Generative Grammar and the Faculty of Language: Insights, Questions, and Challenges», Catalan Journal of Linguistics, Special Issue: Generative Syntax. Questions, Crossroads, and Challenges, P. 229-261, 2019.

N. Fitzpatrick, «Media Manipulation 2.0: The Impact of Social Media on News, Competition, and Accuracy», Athens Journal of Mass Media and Communications, Vol. 4, Issue 1, P. 45-62, 2018.

R. Ye, W. Shi, H. Zhou, Z. Wei, L. Li, «Variational Template Machine for Data-to-Text Generation», Proceedings of International Conference on Learning Representations, Addis Ababa, Ethiopia, April 30, 2020. [Електронний ресурс] – Режим доступу: https://openreview.net/pdf?id=HkejNgBtPB

S. Chen, J. Wang, X. Feng, F. Jiang, B. Qin, C.-Y. Lin, «Enhancing Neural Data-To-Text Generation Modelswith External Background Knowledge», Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, November 3–7, P. 3022–3032, 2019.

S. Welleck, K. Brantley, H. Daume III, K. Cho, «Non-Monotonic Sequential Text Generation», Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, June 10-15, 2019. [Електронний ресурс] – Режим доступу: http://proceedings.mlr.press/v97/welleck19a/welleck19a.pdf

T. C. Ferreira, C. van der Lee, E. van Miltenburg, E. Krahmer, «Neural data-to-text generation: A comparison between pipeline and end-to-end architectures», Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, November 3–7, P. 552–562, 2019.

T. Lichte, L. Kallmeyer, «Tree-Adjoining Grammar: A Tree-Based ConstructionistGrammar Framework for Natural Language Understanding», 2017 AAAI Spring Symposium Series, Stanford, USA, March 27-29, Technical Report SS-17-02, P. 205-212, 2017.

Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, E. P. Xing, «Toward Controlled Generation of Text», eprint arXiv:1703.00955v4, 2018. [Електронний ресурс] – Режим доступу: https://arxiv.org/abs/1703.00955

А. Л. Дмитровский, «Виды композиций в журналистском тексте», Ученые записки ОГУ. Серия: Гуманитарные и социальные науки, № 1, С. 189-197, 2009.

Д. В. Личаргин, «Методы генерации предложений естественного языка на основе леса данных естественного языка», Сибирский журнал науки и технологий, № 3 (43), С. 51-56, 2012.

Д. В. Личаргин, Е. Б. Чубарева, Н. В. Николаева, «Решение проблемы вариативности при генерации фраз естественного языкана основе двухуровневых шаблонов», Филологические науки. Вопросы теории и практики, № 11 (29), Ч. I, C. 110-112, 2013.

И. А. Герасимова, «Формальная граматика и интенсиональная логика», М.: ИФ РАН, 2000, 156 с.

О. С. Волковский, Е. Р. Ковылин, "Компьютерная система интеллектуального семантического поиска с использованием генерации текстов", Вестник Херсонского национального технического университета, № 3-1 (66), С. 238-244, 2018.

Про рішення Ради національної безпеки і оборони України від 27 січня 2016 року «Про Стратегію кібербезпеки України». [Електронний ресурс] – Режим доступу: https://zakon.rada.gov.ua/laws/show/96/2016

Я. В. Тарасенко, «Використання принципів квантової лінгвістики в інформаційному протиборстві», Безпека інформації, Том 25, № 2, С. 96-103, 2019.

Я. В. Тарасенко, «Метод квантово-семантичного психолінгвістичного аналізу англомовного тексту пропагандного дискурсу», Сучасні інформаційні системи,. Том 3, № 4, С. 62-68, 2019.

Я. В. Тарасенко, «Метод контент-аналізу семантичної частки в текстах з ознаками психолінгвістичного впливу», Системи управління, навігації та зв’язку, Том 6, № 58, С. 92-96, 2019.

Published

2020-07-01

Issue

Section

Articles