Technique for automated target object search in video stream from UAV in post-processing mode

Authors

  • Пилип Олександрович Приставка National Aviation University
  • Дмитро Ігорович Гісь National Aviation University
  • Артем Валерійович Чирков National Aviation University

DOI:

https://doi.org/10.18372/2410-7840.21.13767

Keywords:

reconnaissance UAV, target objects, object search, data availability, reconnaissance data processing

Abstract

Data obtaining tasks for correct and relevant management decision making pusposes are important. Particularly, in military and rescue areas such data is videodata from an unmanned aircraft vehicle (UAV) camera obtained during its flight over a territory-of-interest. In this case large size of obtained data means a significant problem because of complicating of its manual processing by operator (expert). In addition, data availability must be provided. In practice, the mentioned task is usually solved by recording target videodata onboard during the UAV flight followed by recorded videodata processing after the UAV landing e.g. on the groung control station, i.e. in offline mode. It is obviously to see that using this technique doesn’t solve the problem of complicated target data processing due to manual approach. As for automation of target data processing, as practice shows, every object detection method can potentially decrease processing time, but cannot increase processing quality in comparison with manual processing by operator (expert). Thus, task of ensuring an appropriate balance between availability of target data (videodata from UAV), automation and quality of its processing is relevant. This article i) proposes the technique for automated target object search in videodata from reconnaissance UAVs in post-processing mode by using an adaptive suspicious object search method as an automatic part, ii) describes the corresponding program implementation on C++ for detection method, C# for the user interface part and [standard] platform invoke technique for using the first code (C++) inside the last (C#), iii) shows quantitative characteristics calculated on the set of test videodata. The proposed technique is considered as an appropriate way to solve the specified task.

Author Biographies

Пилип Олександрович Приставка, National Aviation University

Doctor of Engineering Science, Professor, head of applied mathematics department of the National Aviation University

Дмитро Ігорович Гісь, National Aviation University

student of applied mathematics department of the National Aviation University

Артем Валерійович Чирков, National Aviation University

junior researcher of Research Department of the National Aviation University

References

А. Чирков, П. Приставка, "Методологія безпеч-ної передачі цільових відеоданих з літального апарата в умовах обмеженого часу сеансу зв'яз-ку", Безпека інформації (Ukrainian Scientific Journal of Information Security), 24(1), С. 13-16, 2018. doi:10.18372/2225-5036.24.12608.

ComBat Vision. [Електронний ресурс]. Режим доступу: https://combat.vision/.

Warmate. WB Electronics. [Електронний ресурс]. Режим доступу: http://wb.com.pl/warmate-en/ ?lang=en.

Warmate (БПЛА). Вікіпедія. [Електронний ре-сурс]. Режим доступу: https://uk.wikipedia.org/ wiki/ War mate_(%D0%91%D0%9F%D0%9B% D0%90).

Defence Software. Command and Control. In-teroperability. [Електронний ресурс]. Режим дос-тупу: https://systematic.com/defence/.

Warfighter Information Network-Tactical (WIN-T) - General Dynamics Mission Systems. [Електрон-ний ресурс]. Режим доступу: https://gdmissionsystems.com/c4isr/warfighter-information-network-tactical-win-t/.

Force XXI Battle Command Brigade and Below (FBCB2). [Електронний ресурс]. Режим доступу: https://pdfs.semanticscholar.org/ cb40/ aeb3ca16 cec 0a0008c21409ebb9ff008084c.pdf.

Matrix UAV. [Електронний ресурс]. Режим дос-тупу: http://muav.com.ua/.

D. Lowe, "Object recognition from local scale-invariant features", In: Proc. of the 7th IEEE Interna-tional Conference on Computer Vision, Greece, September 1999. https://dx.doi.org/10.1109%2FICCV.1999. 790410.

H. Bay, T. Tuytelaars, L. Gool, "SURF: Speeded Up Robust Features", Computer Vision – ECCV 2006. Lecture Notes in Computer Science, vol. 3951, 2006. https://doi.org/10.1007/11744023_32.

F. Alsaade, "Fast and Accurate Template Matching Algorithm Based on Image Pyramid and Sum of Absolute Difference Similarity Measure", Research Journal of Information Technology, vol. 4, issue 4, pp. 204-211, 2012. http:// dx.doi.org/ 10.3923/rjit. 2012.204.211.

P. Viola, M. Jones, "Rapid object detection using a boosted cascade of simple features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. CVPR 2001, USA, 2001. doi:10.1109/CVPR.2001.990517.

N. Otsu, "A Threshold Selection Method from Gray-Level Histograms", IEEE Transactions on Sys-tems, Man and Cybernetics, vol. 9, iss. 1, pp. 62-66, 1979.

J. Canny, "A Computational Approach to Edge Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, volume PAMI-8, iss. 6, pp. 679-698. https://doi.org/10.1109/TPAMI.1986.4767851.

S. Lloyd, "Least squares quantization in PCM", IEEE Transactions on Information Theory, vol. 28, iss. 2, pp. 129-137. https:// doi.org/ 10.1109/TIT. 1982.1056489.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolu-tion, and Fully Connected CRFs". https:// arxiv.org/abs/ 1606.00915.

G. Papandreou, L. Chen, K. Murphy, A. Yuille, "Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation". https://arxiv. org/abs/1502.02734.

T. Cootes, C. Taylor, D. Cooper, J. Graham, "Ac-tive Shape Models – Their Training and Applica-tion", Computer Vision and Image Understanding, vol. 61, iss. 1, pp. 38-59. https:// doi.org/ 10.1006/ cviu.1995.1004.

А. Горелик, В. Скрипкин, Методы распознавания: Учеб. пособие. 2-е изд. М.: Высш. шк., 1984.

S. Gotovac, V. Papić, Ž. Marušić, "Analysis of sali-ency object detection algorithms for search and rescue operations", 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, September 2016. https:// doi.org/ 10.1109/SOFTCOM.2016. 7772118.

П. Приставка, В. Сорокопуд, А. Чирков, "Екс-периментальний зразок автоматизованої систе-ми пошуку підозрілих об’єктів на відео з безпі-лотного повітряного судна", Системи озброєння і військова техніка, 50(2), С. 26-32, 2017.

А. Чирков, П. Приставка, "Метод пошуку підоз-рілих об’єктів на відео з камери літального апа-рата на основі гістограмних оцінок", Наукоємні технології, 38(2), С. 210-219, 2018. doi:10.18372/ 2310-5461.38.12827.

Published

2019-06-27

Issue

Section

Articles