Methodology of processing multi-digit numbers in asymmetric cryptosystems
DOI:
https://doi.org/10.18372/2410-7840.21.13764Keywords:
asymmetric cryptosystems, multi-digit numbers, modular multiplication, modular exponentiation, vector-modular method, system of residual classes, methodology of processing multi-digit numbersAbstract
To date, an increase in the key length inevitably leads to an increase in computational volumes to protect information flows using asymmetric cryptosystems, where the most common operations there is the modular multiplication and modular exponentiation. Existing methods and algorithms for performing above-mention operations are based on positional numerical systems that are characterized by considerable time complexity due to the limited possibilities of parallelizing the computation process, which leads to a decrease in their performance. Using of new approaches, in particular, the vector-modular method of modular multiplication and exponential, as well as the system of residual classes, will allow expanding the functionality of computing systems to encrypt / decrypt information. To this goal, a methodology which allows to increase the speed of asymmetric cryptosystems is proposed, and the basic mechanism of which is grounded on the eight stages: the formation of a plurality of open-ended blocks, the formation of requirements for cryptosystem parameters and information security, the choice of an asymmetric cryptosystem, the formation of a set of basic operations, the choice of the method of operations execution , the choice of the form of the system of residual classes, the choice of methods for constructing perfect and modified perfect forms of the system of residual classes, the implementation of basic asymmetries cryptosystems based on these approaches. The proposed methodology can reduce the temporal complexity, increase the speed of algorithms, specialized software and hardware during the processing of multi-digit numbers in asymmetric cryptosystems.References
М. Касянчук, "Теорія та математичні закономірності досконалої форми системи залишкових класів", Праці Міжнародного симпозіуму "Питання оптимізації обчислень (ПОО–ХХХV)", Т. 1. Київ–Кацивелі, С. 306-310, 2009.
М. Касянчук, І. Якименко, О. Волинський, І. Пітух, "Теорія алгоритмів RSA та Ель–Гамаля в розмежованій системі числення Радемахера–Крестенсона", Вісник Хмельницького національного університету. Технічні науки, №3, С. 265-273, 2011.
Я. Николайчук, М. Касянчук, І. Якименко, С. Івасьєв, "Ефективний метод модулярного множення
в теоретико-числовому базисі Радемахера–Крестенсона", Вісник Національного університету «Львівська політехніка». Комп’ютерні системи та мережі,
№ 806, С. 195-199, 2014.
V. Adki, S. Hatkar, "A Survey on Cryptography Techniques", International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 6, No. 6,
pp. 469-475, 2016.
P. Ananda Mohan, Residue Number Systems: Theory and
Applications, Birkhäuser, 2016, 351 p.
M. Deryabin, N. Chervyakov, A. Tchernykh, M. Babenko, M. Shabalina, "High Performance Parallel
Computing in Residue Number System", International
Journal of Combinatorial Optimization Problems and
Informatics, Vol. 9, No 1, pp. 62-67, 2018.
M. Kasianchuk, Ya. Nykolaychuk, I. Yakymenko,
"Theory and Methods of Constructing of Modules
System of the Perfect Modified Form of the System
of Residual Classes", Journal of Automation and Information Sciences, Vol. 48, No 8, pp. 56-63, 2016.
D. Kozaczko, S. Ivasiev, I. Yakymenko, M. Kasianchuk, "Vector Module Exponential in the Remaining
Classes System", Proceedings of the 2015 IEEE 8th
International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications
(IDAACS–2015), Warsaw (Poland), V. 1, pp. 161-
, 2015.
A. Okeyinka, "Computational Speeds Analysis of
RSA and ElGamal Algorithms", Proceedings of the World
Congress on Engineering and Computer Science (WCECS
, San Francisco (USA), V. I, pp. 237-242, 2015.
W. Stallings, Cryptography and Network Security: Principles
and Practice, 5th Prentice Hall Press Upper Saddle
River, NJ, USA, 2010, 719 p.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).