Authentication method of information systems user by their handwriting with multi-stage correction of primary data

Authors

  • Олександр Григорович Корченко National Aviation University
  • Анатолій Миколайович Давиденко Pukhov Institute for Modelling in Energy Engineering
  • Олена Олександрівна Висоцька National Aviation University

DOI:

https://doi.org/10.18372/2410-7840.21.13546

Keywords:

authentication, recognition, biometrics, handwriting, information systems

Abstract

The article is devoted to the biometric authentication of users, namely authentication by handwriting. In this paper, the relevance of creating a biometric authentication system of information systems users by their handwriting was argued. After that, there were determined a lot of characteristics of handwriting for their further use for authentication. Based on the analysis of the selected characteristics, there was determined their suitability for further use during user recognition. The method of authentication of information systems users by their handwriting and the method of the necessary primary processing of handwriting samples of information systems users were developed. Primary processing need is caused by the specific use, for the dynamic transfer of images to a computer, a graphic tablet (or other touch screen device). This processing is to remove erroneous data and correction of data to be used for recognition. There are five types of errors and three types of data correction in the work. To improve the recognition process, the image of the written key phrase, for further use, is divided into images of individual characters. Accordingly, the user is forced by the condition that the characters of the key phrase entered should be written separately from each other. During the recognition, the parameters of not all points of the image, but only the most significant, control points are analyzed. There are three types of control points in the work and the reasoned significance of using the most optimal algorithm for this. One of the types of neural networks, namely the probabilistic neural network, was chosen as the recognition mechanism. On the basis of the proposed methods, the software was developed, using which, first, a database of training samples handwriting of information systems was formed.  Then, a series of experiments was conducted to determine the effectiveness of the application of the developed methods and to identify the most significant, for proper recognition, user authentication system settings. In the end, it was concluded that, despite the fact that the methods proposed in this paper allow to achieve a sufficiently high probability of correct recognition of users of information systems, the search for more efficient recognition mechanisms and other parameters that significantly affect the probability of correct recognition remains very actual objective.

Author Biographies

Олександр Григорович Корченко, National Aviation University

Dr Eng (Information security), professor, laureate of the State Prize of Ukraine in Science and Technology, Head of IT-Security Academic Department, National Aviation University, Visit-Professor at The University of Bielsko-Biala (Akademia Techniczno-Humanistyczna, Bielsko-Biała, Poland), Leading Researcher of the National Academy of SS of Ukraine

Анатолій Миколайович Давиденко, Pukhov Institute for Modelling in Energy Engineering

Candidate of Technical Sciences, Senior Researcher, Leading Researcher of Department of Modelling Theory, Pukhov Institute for Modelling in Energy Engineering of NAS of Ukraine

Олена Олександрівна Висоцька, National Aviation University

teacher of the department of computerized information security systems of the National Aviation University

References

Н. Кошева, Н. Мазниченко, "Ідентифікація ко-ристувачів інформаційно-комп’ютерних систем: аналіз і прогнозування підходів", Системи обробки інформації, № 6(113), С. 215-223, 2013.

O. Vysotska, A. Davydenko, "Keystroke Pattern Authentication of Computer Systems Users as One of the Steps of Multifactor Authentication", In: Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Computer Science for Engineering and Education II. IC-CSEEA 2019. Advances in Intelligent Systems and Com-puting, vol. 938, pp. 356-368, Springer, Cham. DOI: https://doi.org/ 10.1007/978-3-030-16621-2_33.

S. Kazmirchuk, A. Ilyenko, S. Ilyenko, "Digital Sig-nature Authentication Scheme with Message Recov-ery Based on the Use of Elliptic Curves", In: Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Comput-er Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol. 938, pp. 279-288, Springer, Cham. DOI: https://doi.org/ 10.1007/978-3-030-16621-2_26.

А. Ільєнко, С. Ільєнко, "Програмний модуль з використанням процедури формування та ве-рифікації електронного цифрового підпису", Наукоємні технології, Т. 39, № 3, С. 345-354, 2018.

О. Висоцька, "Моніторинг роботи користувачів комп’ютерних систем за допомогою технологій розпізнавання за клавіатурним почерком", Моде-лювання та інформаційні технології. Збірник наукових праць інституту проблем моделювання в енергетиці ім. Г.Є. Пухова НАН Украіни, вип. 84, С. 119-125, 2018.

O. Vysotska, A. Davydenko, "Authentication of information systems users, based on the analysis of their handwriting", Scientific and Practical Cyber Security Journal (SPCSJ), №2(4). pp. 51-63, 2018.

O. Vysotska, A. Davydenko, "The usage of hand-writing recognition systems of information systems users for their authentication", La science et la technolo-gie à l'ère de la société de l'information: coll. de papiers scien-tifiques «ΛΌГOΣ» avec des matériaux de la conf. scientifique et pratique internationale, Bordeaux, 3 mars, 2019. Bor-deaux : OP «Plateforme scientifique européenne», vol. 9, pp. 48-51, 2019.

T. Furukawa, "The New Method of Identification of Handwriting Using Volumes of Indentations", 2012 International Conference on Frontiers in Handwriting Recognition, pp. 163-168. DOI: 10.1109/ICFHR. 2012.281.

A. Gattal, Y. Chibani, "Segmentation and Recogni-tion Strategy of Handwritten Connected Digits Based on the Oriented Sliding Window", 2012 In-ternational Conference on Frontiers in Handwriting Recogni-tion, pp. 297-301. DOI: 10.1109/ICFHR.2012.265.

Р. Каллан, Основные концепции нейронных сетей, Пер. с англ., М.: Издательский дом “Вильямс”, 2001, 290 с.

Published

2019-03-28

Issue

Section

Articles