Pseudo-random cryptological security sequences and the halving of a point of a wisted Edwards curve over prime and extended fields
DOI:
https://doi.org/10.18372/2410-7840.20.13101Keywords:
elliptic curve, Edwards curve, curve order, points order, Legendre symbol, square, non-square, twisted curvesAbstract
Estimates of the complexity of the point division operation into two for twisted Edwards curve are obtained in comparison with the doubling of the point. One of the applications of the divisibility properties of a point into two is considered to determine the order of a point in a cryptosystem. The cryptological security of the pseudo-random sequence generator proposed by the author is shown on the basis of a curve in the form of Edwards. A new generation scheme and a new one-sided function of a pseudo-random cryptological security sequence based on these curves are proposed. The degree of embedding of these curves into a finite field for pairing on friendly elliptic curves of prime order or almost prime order is investigated. Pairingfriendly curves of prime or near-prime order are absolutely essential in certain pairing-based schemes like short signatures with longer useful life. For this goal we construct friendly curves on base of family of twisted Edwards curves. The possibility of constructing a twisted Edwards order curve, that is, one that has a minimal cofactor 4, has been found. A solution for the inverse doubling problem is obtained for quasi-elliptic curves that represented in the twisted Edwards form. Also its application to the proving of cryptographic pseudo-random sequence generator. It makes it possible to prove the cryptological security of the pseudo-random sequence we developed.References
Bernstein Daniel J., Birkner Peter, Joye Marc, Lange Tanja, Peters Christiane, Twisted Edwards Curves. IST Programme under Contract IST-2002-507932 ECRYPT, and in part by the National Science Foundation under grant ITR-0716498, pp. 1-17, 2008.
Р. Скуратовський, "Побудова еліптичних кривих з нульовим слідом ендоморфізма Фробеніуса", Захист інформації, т. 20, №1, С. 32-45, 2018.
Р. Скуратовський, "Суперсингулярність еліптичних кривих і кривих Едвардса над Fpn", Research in mathematics and mechanics, т. 31, №1, С. 17-26, 2018.
А. Бессалов, Д. Третьяков, "Удвоение точки и обратная задача для кривой Эдвардса над простым полем", Сучасний захист інформації, № 3, С. 16-27, 2013.
D. Bernstein, "Lange Tanja. Faster addition and doubling on elliptic curves", IST Programme Contract 2002-507932 ECRYPT, pp. 1-20, 2007.
A. Menezes, T. Okamoto, S. Vanstone, "Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field", IEEE Transactions On Information Theory, vol. 39, no. 5, pp. 1603-1646, 1993.
N. Koblitz, "Eliptic Curve Cryptosystems", Mathematics of Computation, vol. 48, no. 177, pp. 203-209, 1987.
Yu. Drozd, Vstup do alhebrayichnoyi heometriyi, 2004, 251 p.
S. Paulo, M. Barreto, M. Naehrig, "Pairing-Friendly Elliptic Curves of Prime Order", International Workshop on Selected Areas in Cryptography SAC, pp. 319-331, 2005.
P. Deepthi, P. Sathidevi, "New stream ciphers based on elliptic curve point multiplication", Computer Communications, no. 32, pp. 25-33, 2009.
B. Kaliski, "Elliptic Curves and Cryptography: A Pseudorandom Bit Generator and Other Tools", PhD thesis, MIT, Cambridge, MA, USA, 1988, 121 p.
А. Бессалов, О. Цыганкова, "Производительность групповых операций на скрученной кривой Эдвардса", Радиотехника, вып. 181, С. 58-63, 2015.
А. Белецкий, "Симметричный блочный криптоалгоритм", Захист інформації, № 2, С. 42-51, 2006.
Р. Скуратовский, Е. Осадчий, Д. Квашук, Деление точки скрученной кривой Эдвардса на два и ее применение в криптографии.
Н. Глазунов, Ф. Карпинский, В. Корняк, "Решение некоторых задач алгебры, анализа и математической физики с помощью систем аналитических вычислений на ЭВМ", Кибернетика и системный анализ, № 2, С. 23, 1990.
R. Skuratovskii, U. Skruncovich,. "Twisted Edwards curve and its group of points over finite field Fp", Akademgorodok, Novosibirsk, Russia. Conference. Graphs and Groups, Spectra and Symmetries. [Electronic resource]. Online: http:// math. nsc. ru/ conference/ g2/ g2s2/ exptext/SkruncovichSkuratovskii-abstract-G2S2.pdf.
А. Болотов, С. Гашков, А. Фролов, А. Часовских, "Элементарное введение в эллиптическую криптографию", М.: КомКника, 2006, 328 с.
S. Paulo, M. Barreto, M. Naehrig, "Pairing-Friendly Elliptic Curves of Prime Order", SAC 2015: Selected Areas in Cryptography, pp. 319-331. [Electronic resource]. Online: https://link.springer.com/chapter/10.1007/ 11693383_22.
О. Коссак, Я. Холявка, "ОТ-протокол з використанням еліптичної кривої Едварса", Вісник Львівського університету. Серія прикладна математика та інформатика, вип. 23, С. 82-88, 2015.
А. Бессалов, Эллиптические кривые в форме Эдвардса и криптография: монография, 2017, 272 с.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).