Optimal Wales and suspense-based bases disurity transformation of Fourier

Authors

  • Анатолій Якович Білецький National Aviation University

DOI:

https://doi.org/10.18372/2410-7840.20.12863

Keywords:

Walsh function systems, sequential Walsh-like functions, linear coupling of the frequency scales of the DFT processor, a basis for Walsh-Cooley functions, a basis for Walsh-Tukey functions

Abstract

In the theory and practice of noise-immune encoding and compression of audio and video data, cryptographic information protection, in cellular communication channels and in other fields of science and technology, functionally complete Walsh systems that are a particular case of systems of alternating piecewise constant sequential functions are widely used. As for the problems of spectral analysis of discrete signals of binary-power order (sample size), those Walsh systems used as the bases of the discrete Fourier transform (DFT), which deliver linear coupling to the frequency scales of the DFT processors (and therefore are optimal) are of greatest interest, under which mean the scale of the normalized frequencies of the input signal and the output scale of the frequency channels of the processor. The frequency scales of the DFT processor are considered to be linearly related if the processor responses with the maximum modules and fixed phases (positive or negative but identical for all responses) are located on the bisector of the orthogonal coordinate system formed by the frequency scales. None of the known classical Walsh bases ordered by Hadamard, Kaczmarz or Paley, the required connectivity to the DFT processor scales does not provide. In this study, unique DFT bases have been developed, namely, the Walsh-Coolie basis ( basis) and the alternative Walsh-Tukey basis           ( basis), which are the only one of the many Walsh function systems and sequential function systems, which just cause linear coupling to the frequency scales of the DFT processors. Both bases have the same amplitude-frequency but opposite phase-frequency characteristics in the sense that if the response phase in the Walsh-Cooley base is equal  in some output channel of the point-wise FFT processor, then in the Walsh-Tukey basis . For practical applications, the Walsh-Cooley basis is more preferable compared to the Walsh-Tukey basis, since - the basis is calculated much simpler than  the basis.

Author Biography

Анатолій Якович Білецький, National Aviation University

Doctor of Science, Professor, Honored Scientist of Ukraine, Laureate of the State Prize of Ukraine in Science and Technology, Professor of Department Electronics of National Aviation University

References

М. Карповский, Э. Москалев, Спектральные методы анализа и синтеза дискретных устройств, Ленинград: Энергия, 1973, 142 с.

А. Трахтман, В. Трахтман, Основы теории дискрет-ных сигналов на конечных интервалах, М.: Сов. Радио, 1975, 208 с.

Р. Блейхут, Теория и практика кодов, контролирующих ошибки: Пер. с англ, М.: Мир, 1986, 576 с.

А. Белецкий, "Криптографические приложения индикаторных матриц систем функций Уолша", Захист інформації, Том 18, № 1, С. 5-20, 2016.

Г. Никитин, Применение функций Уолша в сотовых системах связи с кодовым разделением каналов, Санкт-Петербург: СПбГУАП, 2003, 86 с.

Л. Залманзон, Преобразования Фурье, Уолша, Хаара и их применение в управлении, связи и других областях, М.: Наука, 1989, 496 с.

В. Логинов, "Функции Фурье и области их при-менения", Зарубежная Радиоэлектроника, № 4, С. 73-101, 1973.

Х. Хармут, Теория секвентного анализа: основы и при-менения: Пер. с англ. М. Мир, 1986, 576 с.

М. Артемьев, Г. Гаев, Т. Кренкель, А. Скотников, "Алгоритм формирования симметричных систем функций Уолша", Радиотехника и электроника, № 7, С. 1432-1440, 1978.

M. Hadamard, Buii. Sci. Math, P. 240-246, 1983.

H. Andrews, J. Kane, "Kroneker matrices. Computer implementation and generalized spectra", J. of the ACM, v. 17, no. 2, pp. 260, 1970.

И. Исмагилов, "Один подход к упорядочению систем дискретных функций Уолша", Радиоэлект-роника, № 1, С. 65-72, 2006.

J. Cooley., J. Tukey, "An algorithm for the machine calculation of the complex Fourier series", Mathemat-ics Computation, April 1965, v. 19, pp. 297-301.

J. Walsh, "A closed set of normal orthogonal func-tions", Amer. J. Math., v. 45, pp. 5-24, 1923.

A. Шнейдер, "О рядах по функциям Валыпа с монотонными коэффициентами", Изв. АН СССР. Сер. мат., Т. 12, С. 179-192, 1948.

Paley, "R. E. А. С. A Remarkable Series of Orthogo-nal Functionsю. I, II", Proc. Lond. Math. Soc., v. 34, pp. 241-279, 1932.

А. Белецкий, Комбинаторика кодов Грея, Изд-во «КВІЦ», 2003, 504 с.

А. Белецкий, "Дискретные ортогональные базисы Виленкина-Крестенсона функций", Palmarium Ac-ademic Publishing, Germany, 2015, 232 с.

М. Артемьев, П. Гаев, Т. Кренкель, А. Скотников, "Алгоритм формирования симметричных функ-ций Уолша", Радиотехника и электроника, № 7, С. 1432-1440, 1978.

А. Белецкий, Д. Навроцкий, "Синтез дискретных систем Уолше-подобных секвентных функций восьмого порядка", Безпека інформації, Т. 22, № 2, С. 163-174, 2016.

C. Yen, "Walsh function and Gray code", IEEE Trans, EMC-13, no. 1, P. 68-73, 1971.

A. Beletskiy, "Syntesis and analysis of system of Walsh-Cooly basis functions", NIKON-2000: XIII International Conference, Wroclaw, 2000.

А. Белецкий, Обобщённые коды Грея. Научная моног-рафия, Palmarium Academic Publishing, Germany, 2014, 208 с.

А. Білецький, О. Білецький, О. Кучер, "Синтез симетричних матриць Уолша за методом спрямо-ваної перестановки базисних функцій", Вісник НАУ. № 3, С. 68-75, 2001.

Published

2018-06-25

Issue

Section

Articles