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Green’s function of the convective wave equation for an infinite straight rigid pipe of rectangular cross-section
is found. This function is written in terms of series of the pipe acoustic modes. Each term of the series is a sum of
the direct and back waves propagating in the corresponding mode downstream and upstream, respectively, of
the unit point impulse acoustic source. In the found Green’s function, the uniform mean flow effects are reflected
in the direct form. In obtaining this function, the combinations of appropriate mathematical operations are
found, which allow one to reduce the one-dimensional convective Klein-Gordon equation to its classical one-
dimensional counterpart, and, on the basis of the known solution of the later equation, obtain the solution of the
former one.

Keywords: convective wave equation; Green’s function; rigid rectangular pipe.

THobyoosano @ynxyiro I pina KOHBEKMUBHO20 XEUNLOBO2O PIGHSHHSL OISl HECKIHUEHHOI NPIMOL dcopemKoi mpyou
NPAMOKYMHO20 nonepeunozo nepepizy. La dynxyis 3anucyemocs y 6uensnoi psaoy no akycmuyHux Mooax mpyou.
Koorcen unen psidy € cymoro npsamoi ma 360pomHoi X6uv, KL NOWUPIOIOMbCS HA GIONOBIOHIN MOOI 6HU3 MA 820PY
3a meuiero 6i0 OOUHUYHO2O MOYKOB020 IMNYIbCHO2O AKYCMUYHO20 Odicepena. Y 3uatideniti ¢ymxyii I'pina 6
A6HOMY 6u2iIsdi 8i000padiceni egpekmu pigHOMIpHOI cepeonvoi meuii. Ilpu it no6yodosi 3uatioeHo KomoOiHayil
BIONOBIOHUX MAMEMAMUYHUX Onepayiu, KOmpi 003601A10Mb 3600UMU OOHOBUMIDHE KOHBEKMUBHE DI6HAHHS
Knsiina-I'opoona 0o 11020 K1acuuH020 0OHOBUMIPHO20 AHANOR2Y, I, HA OCHOBI 8I0OMO20 PO38 3Ky OCMAHHLO2O

DIBHAHHSA, 3HAXOOUMU PO36 30K NEPULO2O.

KntoyoBi cnoBa: KOHBEKTMBHE XBUNbOBE PIBHAHHS; hyHKUiA piHa; )XOpCTKa NpsiMOKyTHa Tpy6a.

I ntroduction

Problems of finding and studying acoustic fields
in pipes of different geometries and sizes are of a
great concern in car- and aircraft-building industry,
gas and oil industry, municipal economy,
architecture, medicine, etc. [1-4]. Independently of
the pipe type and the acoustic sources in pipes, all of
these problems can be, in principle, solved by the
Green’s function technique. However, the
application of this technique is only reasonable when
the principal possibility of finding the Green’s
function of interest exists.

Apart from the professional qualification and
skill of the investigator, this possibility depends on
many factors. These include the geometry of the
pipe under investigation and the shape of its cross-
section, the physical properties of the pipe wall and
the type of its support, the physical properties of the
internal  and external media, the acoustical
conditions at the pipe ends, presence or absence of
internal flow in the pipe, etc.

As analysis of the scientific literature shows,
among the cases, which are specified by various
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combinations of the noted factors, the most
investigated are the cases of an infinite straight rigid
pipe of circular and rectangular cross-section [5-8].
For these cases, the corresponding Green’s functions
of the wave and Helmholtz equations have been
found, and, based on the Green’s function technique,
expressions for the various characteristics of the
acoustic fields generated by sources of interest in the
noted pipes have been obtained. However, usually
all of these results are restricted to the case of flow
absence in the pipe. When the inner flow in pipe is
taken into consideration, its effects in the
corresponding Green’s functions and/or the final
results are only reflected in the indirect form' [1, 5-8].
This disadvantage is partially corrected in the
present paper. Here the Green’s function of the
three-dimensional wave equation for an infinite
straight immovable rigid pipe of rectangular cross-

" In the direct form (i.e., in the form of direct

mathematical dependencies of the investigated acoustic
field characteristics on the flow parameters), these effects
are only reflected in the appropriate scaling laws and/or
various quantitative estimates.
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section with inner uniform mean flow is found. The
found function has the direct dependence on the
flow parameters, and, in the case of flow absence,
coincides with the corresponding Green’s function
for the investigated pipe, which is available in the
scientific literature.

Formulation of the problem

An infinite straight immovable rigid-walled pipe
of rectangular cross-section of dimensions /, and /,

is considered, in which a fluid® flows uniformly with
the mean axial velocity U . In this pipe, the acoustic
sources of any nature are given, which are
distributed in the arbitrary manner and generate
sound. The generated sound field is governed by the
specific type of the three-dimensional wave
equation, which is often called the three-dimensional
convective wave equation’ [7, 8], viz.

1 dzp 2
— a_Vv = 1
e P.=Y (1)

(here p, is the acoustic pressure; ¢, the sound speed

in the undisturbed fluid; ¢ the time, and 7y the

function describing the total distribution of the noted
sources). It is necessary to find the Green’s function
of equation (1) for the pipe under consideration.

Green'sfunction

The Green’s function, G(r,#r,,%,), to be found
satisfies the following equation

1 d°G

& dr

(in which x(r-r,) and x(¢—t,) are the spatial

~V*G=8(r-r1,)d(t-1t,) (2)

three-dimensional and temporal one-dimensional

? Neither the fluid viscosity nor its mass density is
considered in this study. It is explained by the fact that, in
the problem formulated in such a manner, the first fluid
characteristic will play no role at all (because the
generated sound is considered to propagate in the inviscid
compressible fluid [1, 5-8]), whereas the second one will
be only reflected in the final result in the indirect form
(i.e., via the given sound speed in the undisturbed
medium, ¢, ).

? The presence of the term “convective” in the name of
this equation is due to that it has the total temporal
derivative, d/df =0d/0d¢+ U -V , which has the non-zero
convective derivative, U-V | caused by the uniform
mean flow in the pipe (here U is the mean flow velocity
vector, V the gradient, and the dot between these vectors
indicates their scalar product) [7, 8]. In the case of the
flow absence (i.e., U =0) the convective derivative in
equation (1) vanishes, and it coincides with its classical
three-dimensional counterpart.

Dirac delta-functions, respectively), and describes
the acoustic pressure at the field point r at the time
t, which is generated in the pipe at the moment ¢,
by a point impulse acoustic source of the unit
amplitude located at the point r.

In the rectangular Cartesian coordinate system,
(x,y,z), which is employed for solving the
formulated problem, equation (2) has the following
form

1d°G 9°G _9°G _9°G _
& di* ox* 9’ 9 (3)
=8(x—xy)8(y=,)8(z—2)8(t—1,).
Here the second total temporal derivative is written
in the following way

2 2
d_zz(i+UVj =
dt ot

2 2 2
:(E+U1) =a—+2U J —
ot oz or? otoz 9z*
the mean flow velocity vector, U, and the nabla-
operator, V , look as
U=Ue +Ue +U.e =Ue,;
V:i +ie +ie ;
ox * 9y 7 0z °

the dot between the vectors U and V indicates their
scalar product; e, e, and €, are the unit directivity

e @
+U ;

vectors of the axes x, y and z, respectively; the
axis z is directed along the flow; the beginning of
the coordinate system (x,y,z) is taken at arbitrary
position of any pipe rib; and the variables in
equation (3) vary in the following ranges:
0<x,x,<[; OSy,yOSly; |z|<o<>; |ZO|<°°;
|| <o Jty] <o
The boundary conditions for the function G are
that its normal derivative is equal to zero on the
immovable rigid pipe wall, viz.
%G %G
ox dy
and that all waves are outgoing at infinity. Apart
from these, G should also satisfy the causality
condition [5-8], viz.
G|_ =0. (6)

1<ty

=0,

x=0,1,

I
(e

)

y:O,ly

The first of them indicates that the normal
components of the acoustic velocity vanish on the
wall, the second one that there is no sound reflection
at the pipe ends (at infinity), whereas the third one
means that there is no acoustic field in the pipe
before the beginning of sound generation by the
source.
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The solution to the problem (3)—(6) is sought in
the form of expansion of the function G into an
infinite series of the pipe acoustic modes,

1, (x, ) = cos(k,,x)cos(k,,,») , viz.
G(xayszat;xoﬂ’mzo’to) =

= Z Z Gnm(z’t;XO’yO’ZO’tO)\an (X,y),

n=0 m=0

(7

where k,, =nn/l and k,

in the x-

=mm/ ly are the modal

wavenumbers and y- directions,
respectively. This representation of the Green’s
function satisfies condition (5) identically.

In series (7), the unknown are the coefficients

G,,. In order to find them, expression (7) is

substituted into equation (3) (rewritten with the use
of (4)), after that the obtained relationship is multiplied
scalarly by the functions W, and the orthogonality

nm?
property of W is taken account of, viz.

y)¥,, (x, y)dxdy =

S —_
~

[, (x
0

2
[V,

(s.q) = (n,m);

0;(s,q) # (n,m);
[ 1,;n=0,m=0;
) lxly/Z,nzo,mZI; g
L,/ 2n21m =0 (®)

LI /4nz2l,m=21.

" nm

This results in the equation for G, , viz.

1 9°G,,
———"+2
¢y Ot C
)BG
2

v (on’o)
=" "2 8(z—2z,)0(t—t,),
|\P 2 ( 0) ( 0)

in which M =U /¢, is the uniform mean flow Mach
o =+ K

wavenumbers in the plane xy, the magnitudes

nm >

M 0°G,, B
dtoz

~(1-M*)—~+k.,G,, = ©9)

nm

number in the pipe, the modal

||‘{’nm||2 are given in (8), and the variation ranges of

the variables x,, y,, z, z,, t and ¢, are presented

before (5).

The analysis of equation (9) shows that, except
for the terms containing the number M , it coincides
with the classical one-dimensional Klein-Gordon

equation’, whose solution for an infinite domain is
well known [6, 7]. In order to get rid of these terms
and, hence, proceed from (9) to the noted equation,
let us introduce the following non-dimensional
variables
Z=x5,

1 Gl

ZO:XZ—O, T=\ Mk—

1

Vi-M?

in which the length scale, /, can be chosen in the
arbitrary manner (the corresponding arguments are
given after relationship (13) (see there footnote 5)).
In the variables (10), the convective terms” in the
left part of equation (9) vanish, and it becomes the
above-noted Klein-Gordon equation [6, 7], viz.

9°G 9°G

T, =A% e = (10)
!

aT;lm _ a ;Lm +k2 l G
Y
=1 ’]r(x(’ o) 5 &(Z-ZO)}SX (11)

)

x[—(r—To —M(Z—Zo»j

in the domain |Z|<<><>, <oo,

The solution to equation (11) in the indicated
domain is a superposition of the direct and back
waves propagating to the right and to the left,
respectively, from the impulse source located at the
point Z =2, [6, 7], viz.

nm :c_O\Ilnm (xo’yo [H Z Z)
2 |\Pn

H(T-T,+Z-Z,)+
+H(Z~Z))H(T =T, ~(Z = Zy)) ]

xJ, (knml\/(T ~T,) —(Z-2,) ) .

(12)

Here

0,x<0

H() = | 8mdn ={1’x> .

is the Heaviside unit-step function [6—8], and the
radiation-at-infinity condition for the function G (see
immediately after (5)) has been taken account of.

Taking account of transformation (10) in formula
(12) yields the final expressions for the functional
coefficients G, = in series (7), viz.”

nm

* Since the noted terms appear in (9) due to the
convective derivative, Ud/dz, in equation (3), they can
be called the convective ones, and equation (9) — the one-
dimensional convective Klein-Gordon equation.

> One can see that actually none of the functions in
relationship (13) depends on the length scale / (because
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=c_0lenm (xO’yO)X
nm 2 W 2

nm

A S A z—z
X{H(T(zo _Z)jH(ﬁ(t 1h)+ (M +1) / ( o))"‘

A A
+H(7(z—zo)jH£%(t—zo)+(M —1)7(z—zo)ﬂx

xJ, (knml\/xz

)\’2
X\/(Z_Zo)"'(]\/[2 _1)1_2(2_20)2

) X

] (13)

where J,, is the cylindrical Bessel function of zeroth

order.

Then substituting magnitudes (13) into
relationship (7) allows one to find the expression for
the required Green’s function of equation (1) for the
pipe under consideration, viz.

G(X,y,Z,t;xoayo,Zo,fo) =

=Y Y G, (2,5;X0, Y925 1)) ¥y (X, ¥) =

n=0m=0
A A
H[%(Z_Zo)jx
H(C_O(t_t)+(M—1)&(Z—Z )] X
VA ! ’

o~ anm X ’y
53 %\mwx

n=0m=0

2
[k l\/k“(t t,)" +2-5— 0 (t—t,)z—z2,)

\/+(M2 l) (z ZO)J

in which the variation ranges of all the arguments of
the function G are given before (5).

One can see that the obtained Green’s function
(14) is written in terms of series of the pipe acoustic
modes, ¥V . Each term of the series is a sum of the

(14)

direct and back waves propagating in the

the functions V¥,

whereas the scale / >0 does not influence the signs of the
arguments of the Heaviside functions). This indicates that
[ can be chosen in the arbitrary manner in transformation
(10). For example, it can be equal to either /, or [, or

\/(zx 12y +(1,/2)" , ete).

and J,, are independent of / at all,

corresponding mode downstream and upstream,
respectively, of the unit point impulse acoustic
source located in the pipe cross-section z=z,.

Apart from this, as it should be, the function G
satisfies the causality condition (6), as well as
conditions (5) and the radiation-at-infinity condition
(see above).

Further analysis of relationship (14) shows that in
the found Green’s function, the mean flow effects
are reflected in the direct form (via the numbers M
and A=A(M)). The effects become more

significant as the flow Mach number, M , increases,
causing, in particular, the appearance and further
growth of the function asymmetry about the plane
z=1z, in which the noted source is located. And

vice versa, the decrease of the Mach number results
in the decrease of the effects and, in particular, the
decrease of the indicated asymmetry. In the case of
mean flow absence (i.e., M =0, A=1) the function
(14) becomes symmetric about the plane z =z, and

coincides with the Green’s function of the classical
three-dimensional wave equation for the investigated
pipe, which is available in the scientific literature [1,
6, 7], viz.

Gl :C?O[HG(ZO —Z)jH(CTO([—IO)+%(Z—ZO)j+
1 |
H(;(z—zO)jH(CTO(t—IO)—E(z—zO)HX

S < \an (‘XO yO )
X z z \ynm ()C, y) X
1%

knm\/co (t_tO) _(Z_ZO)2 ) .

Conclusion

1. The Green’s function of the three-dimensional
wave equation for an infinite straight immovable
rigid pipe of rectangular cross-section with uniform
mean flow has been obtained in terms of the pipe
acoustic modes.

2. In this function, each term of the series is a
sum of the direct and back waves propagating in the
corresponding pipe acoustic mode downstream and
upstream, respectively, of the unit point impulse
acoustic source.

3. In the found Green’s function, the mean flow
effects are reflected in the direct form. The effects
become more significant as the flow Mach number
increases, causing, in particular, the appearance and
further growth of the functions asymmetry about the
pipe cross-section z =z, in which the above-noted

acoustic source is located. And vice versa, the
decrease of the Mach number results in the decrease
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of the effects and, in particular, the decrease of the
indicated asymmetry.

4. In the case of uniform mean flow absence the
obtained Green’s function is symmetric about the
section z =z, and coincides with the corresponding

Green’s function for the investigated pipe, which is
available in the scientific literature.

5. In obtaining the Green’s function, the
combinations of appropriate mathematical operations
have been found, which allow one to reduce the one-
dimensional convective Klein-Gordon equation (9) to
its classical one-dimensional counterpart (11), and, on
the basis of the known solution of the later equation,
obtain the solution of the former one.
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