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Green’s function of the convective wave equation for an infinite straight rigid pipe of rectangular cross-section 
is found. This function is written in terms of series of the pipe acoustic modes. Each term of the series is a sum of 
the direct and back waves propagating in the corresponding mode downstream and upstream, respectively, of 
the unit point impulse acoustic source. In the found Green’s function, the uniform mean flow effects are reflected 
in the direct form. In obtaining this function, the combinations of appropriate mathematical operations are 
found, which allow one to reduce the one-dimensional convective Klein-Gordon equation to its classical one-
dimensional counterpart, and, on the basis of the known solution of the later equation, obtain the solution of the 
former one. 
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Побудовано функцію Гріна конвективного хвильового рівняння для нескінченної прямої жорсткої труби 
прямокутного поперечного перерізу. Ця функція записується у вигляді ряду по акустичних модах труби. 
Кожен член ряду є сумою прямої та зворотної хвиль, які поширюються на відповідній моді вниз та вгору 
за течією від одиничного точкового імпульсного акустичного джерела. У знайденій функції Гріна в 
явному вигляді відображені ефекти рівномірної середньої течії. При її побудові знайдено комбінації 
відповідних математичних операцій, котрі дозволяють зводити одновимірне конвективне рівняння 
Кляйна-Гордона до його класичного одновимірного аналогу, і, на основі відомого розв’язку останнього 
рівняння, знаходити розв’язок першого. 

 
Ключові слова: конвективне хвильове рівняння; функція Гріна; жорстка прямокутна труба. 

Introduction 
 

Problems of finding and studying acoustic fields 
in pipes of different geometries and sizes are of a 
great concern in car- and aircraft-building industry, 
gas and oil industry, municipal economy, 
architecture, medicine, etc. [1–4]. Independently of 
the pipe type and the acoustic sources in pipes, all of 
these problems can be, in principle, solved by the 
Green’s function technique. However, the 
application of this technique is only reasonable when 
the principal possibility of finding the Green’s 
function of interest exists. 

Apart from the professional qualification and 
skill of the investigator, this possibility depends on 
many factors. These include the geometry of the 
pipe under investigation and the shape of its cross-
section, the physical properties of the pipe wall and 
the type of its support, the physical properties of the 
internal and external media, the acoustical 
conditions at the pipe ends, presence or absence of 
internal flow in the pipe, etc. 

As analysis of the scientific literature shows, 
among the cases, which are specified by various 

combinations of the noted factors, the most 
investigated are the cases of an infinite straight rigid 
pipe of circular and rectangular cross-section [5–8]. 
For these cases, the corresponding Green’s functions 
of the wave and Helmholtz equations have been 
found, and, based on the Green’s function technique, 
expressions for the various characteristics of the 
acoustic fields generated by sources of interest in the 
noted pipes have been obtained. However, usually 
all of these results are restricted to the case of flow 
absence in the pipe. When the inner flow in pipe is 
taken into consideration, its effects in the 
corresponding Green’s functions and/or the final 
results are only reflected in the indirect form1 [1, 5–8]. 

This disadvantage is partially corrected in the 
present paper. Here the Green’s function of the 
three-dimensional wave equation for an infinite 
straight immovable rigid pipe of rectangular cross-
                                                 
1 In the direct form (i.e., in the form of direct 
mathematical dependencies of the investigated acoustic 
field characteristics on the flow parameters), these effects 
are only reflected in the appropriate scaling laws and/or 
various quantitative estimates. 
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section with inner uniform mean flow is found. The 
found function has the direct dependence on the 
flow parameters, and, in the case of flow absence, 
coincides with the corresponding Green’s function 
for the investigated pipe, which is available in the 
scientific literature. 

 
Formulation of the problem 
 

An infinite straight immovable rigid-walled pipe 
of rectangular cross-section of dimensions xl  and yl  
is considered, in which a fluid2 flows uniformly with 
the mean axial velocity U . In this pipe, the acoustic 
sources of any nature are given, which are 
distributed in the arbitrary manner and generate 
sound. The generated sound field is governed by the 
specific type of the three-dimensional wave 
equation, which is often called the three-dimensional 
convective wave equation3 [7, 8], viz. 

2
2

2 2
0

1 a
a

d p p
c dt

− ∇ = γ                    (1) 

(here ap  is the acoustic pressure; с0 the sound speed 
in the undisturbed fluid; t  the time, and γ  the 
function describing the total distribution of the noted 
sources). It is necessary to find the Green’s function 
of equation (1) for the pipe under consideration. 

 
Green’s function 
 

The Green’s function, 0 0G( , ; , )t tr r , to be found 
satisfies the following equation 

( ) ( )
2

2
0 02 2

0

1 d G G r r t t
c dt

− ∇ = δ − δ −          (2) 

(in which ( )0д −r r  and ( )0д t t−  are the spatial 
three-dimensional and temporal one-dimensional 

                                                 
2 Neither the fluid viscosity nor its mass density is 
considered in this study. It is explained by the fact that, in 
the problem formulated in such a manner, the first fluid 
characteristic will play no role at all (because the 
generated sound is considered to propagate in the inviscid 
compressible fluid [1, 5–8]), whereas the second one will 
be only reflected in the final result in the indirect form 
(i.e., via the given sound speed in the undisturbed 
medium, 0c ). 
3 The presence of the term “convective” in the name of 
this equation is due to that it has the total temporal 
derivative, ∇⋅+∂∂= Utt /d/d , which has the non-zero 
convective derivative, ∇⋅U , caused by the uniform 
mean flow in the pipe (here U  is the mean flow velocity 
vector, ∇  the gradient, and the dot between these vectors 
indicates their scalar product) [7, 8]. In the case of the 
flow absence (i.e., 0=U ) the convective derivative in 
equation (1) vanishes, and it coincides with its classical 
three-dimensional counterpart. 

Dirac delta-functions, respectively), and describes 
the acoustic pressure at the field point r  at the time 
t , which is generated in the pipe at the moment 0t  
by a point impulse acoustic source of the unit 
amplitude located at the point 0r . 

In the rectangular Cartesian coordinate system, 
( , , )x y z , which is employed for solving the 
formulated problem, equation (2) has the following 
form 

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2 2
0

0 0 0 0

1

.

d G G G G
c dt x y z
x x y y z z t t

∂ ∂ ∂− − − =
∂ ∂ ∂

= δ − δ − δ − δ −
     (3) 

Here the second total temporal derivative is written 
in the following way 

22

2

2 2 2 2
2

2 22 ;

d
tdt

U U U
t z t zt z

∂⎛ ⎞= + ⋅∇ =⎜ ⎟∂⎝ ⎠

∂ ∂ ∂ ∂ ∂⎛ ⎞= + = + +⎜ ⎟∂ ∂ ∂ ∂∂ ∂⎝ ⎠

U
    (4) 

the mean flow velocity vector, U , and the nabla-
operator, ∇ , look as 

x x y y z z zU U U U= + + =U e e e e ;

x y zx y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂

e e e ; 

the dot between the vectors U  and ∇  indicates their 
scalar product; xe , ye  and ze  are the unit directivity 
vectors of the axes x , y  and z , respectively; the 
axis z  is directed along the flow; the beginning of 
the coordinate system ( , , )x y z  is taken at arbitrary 
position of any pipe rib; and the variables in 
equation (3) vary in the following ranges: 

00 , xx x l≤ ≤ ;   00 , yy y l≤ ≤ ;   z < ∞ ;   0z < ∞ ; 

t < ∞ ;   0t < ∞ . 
The boundary conditions for the function G  are 

that its normal derivative is equal to zero on the 
immovable rigid pipe wall, viz. 

0,

G 0
xx lx =

∂ =
∂

, 
0,

G 0
yy ly =

∂ =
∂

,      (5) 

and that all waves are outgoing at infinity. Apart 
from these, G  should also satisfy the causality 
condition [5–8], viz. 

0
G 0t t< = .                            (6) 

The first of them indicates that the normal 
components of the acoustic velocity vanish on the 
wall, the second one that there is no sound reflection 
at the pipe ends (at infinity), whereas the third one 
means that there is no acoustic field in the pipe 
before the beginning of sound generation by the 
source. 
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The solution to the problem (3)–(6) is sought in 
the form of expansion of the function G  into an 
infinite series of the pipe acoustic modes, 
Ш ( , ) cos( )cos( )nm xn ymx y k x k y= , viz. 

0 0 0 0

0 0 0 0
0 0

G( , , , ; , , , )

G ( , ; , , , )Ψ ( , ),nm nm
n m

x y z t x y z t

z t x y z t x y
∞ ∞

= =

=

= ∑ ∑
    (7) 

where /xn xk n l= π  and /ym yk m l= π  are the modal 
wavenumbers in the x - and y - directions, 
respectively. This representation of the Green’s 
function satisfies condition (5) identically. 

In series (7), the unknown are the coefficients 
Gnm . In order to find them, expression (7) is 
substituted into equation (3) (rewritten with the use 
of (4)), after that the obtained relationship is multiplied 
scalarly by the functions Ψnm , and the orthogonality 
property of Ψnm  is taken account of, viz. 

0 0

2

Ψ ( , )Ψ ( , )

Ψ ; ( , ) ( , );

0;( , ) ( , );

yx ll

nm sq

nm

x y x y dxdy

s q n m

s q n m

=

⎧ =
⎪

= ⎨
⎪ ≠⎩

∫ ∫

 

2

; 0, 0;
/ 2; 0, 1;

Ψ
/ 2; 1, 0;
/ 4; 1, 1.

x y

x y
nm

x y

x y

l l n m
l l n m
l l n m
l l n m

= =⎧
⎪ = ≥⎪= ⎨ ≥ =⎪
⎪ ≥ ≥⎩

                 (8) 

This results in the equation for Gnm , viz. 

( )
( ) ( ) ( )

2 2

2 2
00

2
2 2

2

0 0
0 02

G G1 2

G1 G

Ψ ,
,

Ψ

nm nm

nm
nm nm

nm

nm

M
c t zc t

M k
z

x y
z z t t

∂ ∂+ −
∂ ∂∂

∂− − + =
∂

= δ − δ −

       (9) 

in which 0/M U c=  is the uniform mean flow Mach 
number in the pipe, 2 2 2

nm xn ymk k k= +  the modal 
wavenumbers in the plane xy , the magnitudes 

2Ψnm  are given in (8), and the variation ranges of 
the variables 0x , 0y , z , 0z , t  and 0t  are presented 
before (5). 

The analysis of equation (9) shows that, except 
for the terms containing the number M , it coincides 
with the classical one-dimensional Klein-Gordon 

equation4, whose solution for an infinite domain is 
well known [6, 7]. In order to get rid of these terms 
and, hence, proceed from (9) to the noted equation, 
let us introduce the following non-dimensional 
variables 

zZ
l

= λ , 0
0

zZ
l

= λ ,  1 0c t zT M
l l

−= λ + λ , 

1 0 0 0
0

c t zT M
l l

−= λ + λ ,  
2

1

1 M
λ =

−
      (10) 

in which the length scale, l , can be chosen in the 
arbitrary manner (the corresponding arguments are 
given after relationship (13) (see there footnote 5)). 

In the variables (10), the convective terms4 in the 
left part of equation (9) vanish, and it becomes the 
above-noted Klein-Gordon equation [6, 7], viz. 

( )

2 2
2 2

2 2

0 02
02

0 0
0

G G G

Ψ ,
( )

Ψ

( ( ))

nm nm
nm nm

nm

nm

k l
T Z

x y ll Z Z

l T T M Z Z
c

∂ ∂
− + =

∂ ∂
⎛ ⎞= δ − δ×⎜ ⎟λ⎝ ⎠

⎛ ⎞λ× − − −⎜ ⎟
⎝ ⎠

           (11) 

in the domain Z < ∞ , 0Z < ∞ , T < ∞ , 0T < ∞ . 
The solution to equation (11) in the indicated 

domain is a superposition of the direct and back 
waves propagating to the right and to the left, 
respectively, from the impulse source located at the 
point 0Z Z=  [6, 7], viz. 

( ) ( )

( )
( ) ( )

0 00
02

0 0

0 0 0

,
2

( )

nm
nm

nm

x ycG H Z Z

H T T Z Z

H Z Z H T T Z Z

Ψ
⎡= − ×⎣Ψ

− + − +

⎤+ − − − − ×⎦

 

( )2 2
0 0 0J ( ) ( )nmk l T T Z Z× − − − .      (12) 

Here 
0, 0

( ) ( )d
1, 0

x x
H x

x−∞

<⎧
= δ η η = ⎨ ≥⎩
∫  

is the Heaviside unit-step function [6–8], and the 
radiation-at-infinity condition for the function G  (see 
immediately after (5)) has been taken account of. 

Taking account of transformation (10) in formula 
(12) yields the final expressions for the functional 
coefficients Gnm  in series (7), viz.5 
                                                 
4 Since the noted terms appear in (9) due to the 
convective derivative, /U z∂ ∂ , in equation (3), they can 
be called the convective ones, and equation (9) – the one-
dimensional convective Klein-Gordon equation. 
5 One can see that actually none of the functions in 
relationship (13) depends on the length scale l  (because 
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( )0 00
2

0
0 0 0

,
2

( ) ( ) ( 1) ( )

nm
nm

nm

x ycG

cH z z H t t M z z
l l l

Ψ
= ×

Ψ

⎡ λ λ⎛ ⎞⎛ ⎞× − − + + − +⎜ ⎟ ⎜ ⎟⎢ λ⎝ ⎠ ⎝ ⎠⎣

0
0 0 0( ) ( ) ( 1) ( )cH z z H t t M z z

l l l
⎤λ λ⎛ ⎞⎛ ⎞+ − − + − − ×⎜ ⎟ ⎜ ⎟⎥λ⎝ ⎠ ⎝ ⎠⎦

(
2

20 0
0 0 02 2 2

2
2 2

0 02

( ) 2 ( )

( ) ( 1) ( ) ,

nm
c c MJ k l t t t t

l l

z z M z z
l

× − + − ×
λ

⎞λ ⎟× − + − −
⎟
⎠

   (13) 

where 0J  is the cylindrical Bessel function of zeroth 
order. 

Then substituting magnitudes (13) into 
relationship (7) allows one to find the expression for 
the required Green’s function of equation (1) for the 
pipe under consideration, viz. 

0 0 0 0

0 0 0 0
0 0

G( , , , ; , , , )

G ( , ; , , , )Ψ ( , )nm nm
n m

x y z t x y z t

z t x y z t x y
∞ ∞

= =

=

= =∑ ∑
 

0 0
0 0 0

0

( ) ( ) ( 1) ( )
2

( )

c cH z z H t t M z z
l l l

H z z
l

⎡ ⎛λ λ⎛ ⎞ ⎞= − − + + − +⎢ ⎜⎜ ⎟ ⎟λ⎝ ⎠ ⎠⎝⎣
λ⎛ ⎞+ − ×⎜ ⎟

⎝ ⎠

( ) ( )

0
0 0

0 0
2

0 0

( ) ( 1) ( )

,
,nm

nm
n m nm

cH t t M z z
l l

x y
x y

∞ ∞

= =

⎤λ⎛ ⎞× − + − − ×⎜ ⎟⎥λ⎝ ⎠⎦
Ψ

× Ψ ×
Ψ

∑ ∑
 

2
20 0

0 0 0 02 2 2

2
2 2

02

( ) 2 ( )( )

( 1) ( ) ,

nm
c c MJ k l t t t t z z

l l

M z z
l

⎛
⎜× − + − −
⎜ λ⎝

⎞λ ⎟+ − −
⎟
⎠

 (14) 

in which the variation ranges of all the arguments of 
the function G  are given before (5). 

One can see that the obtained Green’s function 
(14) is written in terms of series of the pipe acoustic 
modes, Ψnm . Each term of the series is a sum of the 
direct and back waves propagating in the 
                                                                               
the functions Ψnm  and 0J  are independent of l  at all, 
whereas the scale 0l >  does not influence the signs of the 
arguments of the Heaviside functions). This indicates that 
l  can be chosen in the arbitrary manner in transformation 
(10). For example, it can be equal to either xl  or yl  or 

( ) ( )22/ 2 / 2x yl l+ , etc.). 

corresponding mode downstream and upstream, 
respectively, of the unit point impulse acoustic 
source located in the pipe cross-section 0z z= . 
Apart from this, as it should be, the function G  
satisfies the causality condition (6), as well as 
conditions (5) and the radiation-at-infinity condition 
(see above). 

Further analysis of relationship (14) shows that in 
the found Green’s function, the mean flow effects 
are reflected in the direct form (via the numbers M  
and ( )Mλ = λ ). The effects become more 
significant as the flow Mach number, M , increases, 
causing, in particular, the appearance and further 
growth of the function asymmetry about the plane 

0z z=  in which the noted source is located. And 
vice versa, the decrease of the Mach number results 
in the decrease of the effects and, in particular, the 
decrease of the indicated asymmetry. In the case of 
mean flow absence (i.e., 0M = , 1λ = ) the function 
(14) becomes symmetric about the plane 0z z=  and 
coincides with the Green’s function of the classical 
three-dimensional wave equation for the investigated 
pipe, which is available in the scientific literature [1, 
6, 7], viz. 

0 0
0 0 00

0
0 0 0

1 1( ) ( ) ( )
2

1 1( ) ( ) ( )

M

c cG H z z H t t z z
l l l

cH z z H t t z z
l l l

=

⎡ ⎛ ⎞⎛ ⎞= − − + − +⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞+ − − − − ×⎜ ⎟ ⎜ ⎟⎥⎝ ⎠ ⎝ ⎠⎦

( ) ( )0 0
2

0 0

Ψ ,
Ψ ,

Ψ
nm

nm
n m nm

x y
x y

∞ ∞

= =
× ×∑ ∑  

( )2 2 2
0 0 0 0( ) ( )nmJ k c t t z z− − − . 

 
Conclusion 

 

1. The Green’s function of the three-dimensional 
wave equation for an infinite straight immovable 
rigid pipe of rectangular cross-section with uniform 
mean flow has been obtained in terms of the pipe 
acoustic modes. 

2.  In this function, each term of the series is a 
sum of the direct and back waves propagating in the 
corresponding pipe acoustic mode downstream and 
upstream, respectively, of the unit point impulse 
acoustic source. 

3. In the found Green’s function, the mean flow 
effects are reflected in the direct form. The effects 
become more significant as the flow Mach number 
increases, causing, in particular, the appearance and 
further growth of the functions asymmetry about the 
pipe cross-section 0z z=  in which the above-noted 
acoustic source is located. And vice versa, the 
decrease of the Mach number results in the decrease 
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of the effects and, in particular, the decrease of the 
indicated asymmetry. 

4. In the case of uniform mean flow absence the 
obtained Green’s function is symmetric about the 
section 0z z=  and coincides with the corresponding 
Green’s function for the investigated pipe, which is 
available in the scientific literature. 

5. In obtaining the Green’s function, the 
combinations of appropriate mathematical operations 
have been found, which allow one to reduce the one-
dimensional convective Klein-Gordon equation (9) to 
its classical one-dimensional counterpart (11), and, on 
the basis of the known solution of the later equation, 
obtain the solution of the former one. 
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