УДК 538.956:544.25:537.622.6(045)

ДІЕЛЕКТРИЧНІ ВЛАСТИВОСТІ ПЛАНАРНО ОРІЄНТОВАНОГО НЕМАТИЧНОГО РІДКОГО КРИСТАЛА З МАГНІТНИМИ НАНОЧАСТИНКАМИ

Ковальчук О. В., Горницька О. П.

Національний авіаційний університет

akoval@iop.kiev.ua

У діапазоні частот 10^{-1} — 10^{6} Гц та температур 292—345 К досліджено вплив Fe₃O₄ наночастинок ваговою концентрацією 10^{-4} % на діелектричні властивості планарно орієнтованого рідкого кристалу 6СНВТ. Найбільші зміни питомого опору при введенні наночастинок (у 2—3 рази) спостерігаються при температурі фазового переходу нематик — ізотроп. Показано, що приелектродний релаксаційний процес можна апроксимувати рівнянням Дебая.

Studied within the frequency range 10^{-1} — 10^{6} Hz and temperature interval 292—345 K was the influence of Fe_3O_4 nanoparticles with 10^{-4} % gravimetric concentration on dielectric properties of planar oriented 6CHBT liquid crystal. When introducing nanoparticles the most changes in the specific resistance (2—3 times) were observed at the temperature of the nematic-isotropic phase transition.. It was shown that near-electrode relaxation process can be approximated by the Debay equation.

Постановка проблеми

Широке впровадження у виробництво та побут різного типу електронних пристроїв потребує розроблення індикаторів, чутливих до дії електричних, магнітних та електромагнітних полів, на основі яких можна оцінювати вплив таких полів на організм людини.

У кількості існуючих нині індикаторів як робочі елементи використовують монокристали або полікристалічні плівки неорганічних твердих тіл. Оскільки взаємодія різного типу полів з рідкими органічними та твердими неорганічними тілами істотно відрізняється, то для екологічного моніторингу найбільш придатними є саме пристрої на основі рідких органічних сполук.

Для таких пристроїв підійшли б біологічні структури, але поки ще не розроблено технологій отримання недорогих та стабільних у часі біологічних матеріалів. Отже, як речовини для індикації впливу електричних, магнітних та електромагнітних полів можна використати рідкі кристали (РК).Вплив електричного поля на РК досліджено досить детально. Основним практичним результатом таких досліджень є широке впровадження у побуті рідкокристалічних дисплеїв.

Магнітооптичні ефекти у РК також виявлені порівняно давно. Проте їх практичне використання стримується тим, що анізотропія магнітної проникності РК набагато менша ніж анізотропія діелектричної проникності.

Тому для переорієнтації молекул РК необхідно використовувати значні за величиною індукції магнітні поля (одиниці, десятки Тл).

Наразі такі магніти реалізовані тільки у лабо-© О.В. Ковальчук, О.П. Горницька, 2009 раторних умовах і

для практичних цілей не підходять.

Аналіз досліджень та публікацій

Збільшення магнітної анізотропії РК можливе за рахунок введення магнітних домішок (переважно окислів заліза).

У таких розчинах або сумішах (феронематиках), як було показано у працях [1; 2], електрооптичні ефекти відбуваються при менших магнітних полях. Для того щоб не погіршити оптичні характеристики РК, магнітні на домішки (MД) не повинні впливати орієнтацію молекул як у всьому об'ємі, так і місцях їх локалізації. Тому МД повинні мати відповідні характеристики: малі (порівняно з довжиною хвилі світла) та контрольовані розміри, хімічно не взаємодіяти з молекулами РК та порівняно слабо взаємодіяти між собою. Цим вимогам значною мірою задовольняють МД. Здебільшого досліджувався вплив МД на перехід Фредерікса під дією магнітного поля [1; 2], або переорієнтацію молекул при одночасній дії електричного та магнітного полів [3; 4]. При цьому не враховували вплив наночастинок на параметри приелектродних шарів.

Приелектродні шари можуть суттєво впливати на переорієнтацію молекул під дією електричного, або магнітного поля.

Мета

Як було подано у праці [5], одним із ефективних методів дослідження параметрів приелектродних ділянок рідин є діелектрична спектроскопія. Отже, метою роботи є дослідження діелектричних спектрів РК з МД у постійному магнітному полі. Для того щоб дослідити початкову стадію повороту молекул, експерименти проводили при електричних та магнітних полях, які були значно меншими за напругою та індукцією магнітного поля, необхідної для повної переорієнтації молекул (ефекта Фредерікса).

Для з'ясування специфіки впливу орієнтовної дії нематичної фази дослідження проводились при різних температурах. Як показує аналіз публікацій за властивостямі феронематиків такі експериментальні дослідження раніше не проводились.

Матеріали та методи досліджень

Для досліджень використовували рідкий кристал 6СНВТ та Fe₃O₄ наночастинки. Форма наночастинок була близькою до сферичної з середнім (за масивом) діаметром 5 нм.

Концентрація МД у РК становила $c = 10^{-4}$ масову частку, %. Для зменшення агрегації МД перед введенням у РК наночастинки покривали олеїновою кислотою.

Чистий РК або РК з МН (РК + МД) заповнювали у комірку сандвіч структури, створеної за допомогою двох скляних пластинок покритих провідним шаром окислів металів.

Планарна орієнтація молекул РК забезпечувалась нанесенням на провідні шари поліаміду, з подальшим натиранням його в певному напрямі. Спостереження в поляризаційному мікроскопі показали, що чистий РК і РК + МН мали гомогенну орієнтацію молекул. Товщина комірок становила 20 мкм.

Зразки для досліджень були виготовлені у Інституті експериментальної фізики Словацької академії наук (м. Кошіце).

Частотну залежність опору R та ємності C вимірювали осцилоскопічним методом [6] за умови, що еквівалентною схемою зразка є паралельно з'єднані опір та ємність. Вимірювальний сигнал мав трикутну форму. Амплітуда дорівнювала 0,25 В. Частота вимірювального сигналу змінювалась у діапазоні 5·10⁻²—10⁶ Гц.

За відомими величинами R та C визначали компоненти комплексної діелектричної проникності є' та є". Постійне магнітне поле створювали за допомогою двох, або чотирьох SaCo магнітів, які розміщувались по одному або по два з кожної з обмежувальних рідкий кристал скляних підкладинок. У такому разі магнітне поле було направлене в напрямі дії електричного поля.

Відстань між магнітами дорівнювала товщині вимірювальної комірки, а площа магнітів майже на порядок перевищувала площу електродів. Це дає підстави вважати магнітне поле у зразку однорідним. Для вимірювання індукції магнітного поля використовували проградуйований датчик Холла.

Вимірювання діелектричних властивостей зразків були проведені за температур 291—340 К. Стабілізація температури з похибкою не більше 0,2 К здійснювалась за допомогою спеціально розробленого термостату з низьким рівнем електромагнітних збурень.

Експериментальні результати

1. Загальні закономірності впливу магнітних наночастинок на діелектричні спектри

Частотні залежності компонент комплексної діелектричної проникності $\varepsilon'(1,2)$ та $\varepsilon''(3,4)$ планарно орієнтованого чистого РК (криві 1, 3) та

РК + МД (криві 2, 4) при температурі 292 К показано на рис. 1.

Рис. 1. Частотні залежності є' (1,2) та є "(3,4) планарно орієнтованого 6СНВТ (криві 1, 3) та 6СНВТ+10⁻⁴ масової частик, % Fe₃O₄ наночастинок (криві 2, 4) при температурі 292 К. Товщина зразків 20 мкм

На підставі аналізу отриманих даних є очевидним розділити весь діелектричний спектр на ділянку **A** (частота f < 10 Гц) та ділянку **B** (f > 10 Гц).

На ділянці діелектричного спектра A спостерігається досить сильна зміна ε' та ε'' при зменшенні частоти. Навпаки на ділянці діелектричного спектра B ε' від частоти не залежить, а ε'' лінійно зменшується зі зростанням f (опір зразка від частоти не залежить).

Як було показано у праці [5] ділянка **В** відповідає тим частотам, при яких електричне поле у зразку є однорідним.

Визначені для цих частот параметри зразків характеризують об'ємні властивості: є' діелектричну проникність об'єму ε_V , а ε'' — провідність σ . Величину σ визначали за співвідношенням

$$\sigma = 2\pi\varepsilon_0 \varepsilon'' f , \qquad (1)$$

де ε_0 – діелектрична стала.

Порівняння отриманих даних з результатами раніше проведених досліджень дає підстави стверджувати, що ділянка діелектричного спектра **А** зумовлена впливом приелектродних процесів.

Як було показано у праці [7], для планарно орієнтованого РК з додатною анізотропією діелектричної проникності (такі властивості має досліджуваний РК 6СНВТ) характерним є релаксаційний процес зумовлений дипольною поляризацією у приелектродній ділянці зразка.

До приелектродної ділянки зразка, товщина якої дорівнює дебаєвській товщині екранування прикладена майже вся зовнішня напруга. Тому змінний струм у такій ділянці зразка може бути повністю забезпеченим за рахунок повороту диполів молекул у межах кутів, які відповідають флуктуаціям параметра порядку.

Наші дослідження показали, що для всіх фаз рідкого кристала, крім хіральної смектичної фази, релаксаційний процес, зумовлений дипольною поляризацією в приелектродній області, описується рівнянням Дебая

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i2\pi f \tau}, \qquad (2)$$

де ε^* — комплексна діелектрична проникність; ε_s та ε_{∞} — діелектричні проникності для частот f = 0 та $f = \infty$ відповідно; τ — час діелектричної релаксації.

Особливістю релаксаційних процесів, зумовлених дипольною поляризацією в приелектродній ділянці зразка, є досить великі величини є' та є". Як видно з рис. 2 для частот $f = 10^{-1}$ Гц величини є' та є'' перевищують 10^3 .

Fe₃O₄ наночастинок (крива 2). Товщина зразків 20 мкм. Вертикальною стрілкою відмічена температура фазового переходу нематик-ізотроп

У праці [5] було зазначено, що причиною великих значень компонентів комплексної діелектричної проникності при малих частотах є неоднорідний розподіл електричного поля у зразку. Якщо припустити, що параметри приелектродних ділянок біля кожного з електродів однакові і діелектрична проникність приелектродної ділянки дорівнює ε_V , то можна оцінити товщину приелектродної ділянки за співвідношенням

$$l_s = \frac{d}{2} \frac{\varepsilon_v}{\varepsilon_s}.$$
 (3)

Проаналізуємо на основі наведених вище співвідношень влив МД на параметри РК. Спочатку такий аналіз проведемо для температури 292 К. Параметри, отримані на основі аналізу діелектричних спектрів за допомогою співвідношень (1)—(3) наведені у таблиці.

desertion in bracenbeen pickere konceany eender. Fobulana spaskib 26 mkm							
Зразок	<i>В</i> , Тл	σ , $\Omega M^{-1} M^{-1}$	ε ₀	<i>l</i> s, нм	τ,	$E_{\sigma N},$	E _{σI} , eB
6CHBT	0	1,9·10 ⁻⁸	5,5	18	1,0	0,82±0,05	0,21±0,05
6CHBT	0,45	$1,8 \cdot 10^{-8}$	5.8	21	1,5		
6CHBT	0,60	$1,9.10^{-8}$	5.8	21	1,4		
6CHBT+MH	0	$1,9 \cdot 10^{-8}$	6,1	21	1,6	0,60±0,05	0,29±0,05
6CHBT+MH	0,45	$1,9.10^{-8}$	6,6	25	1,8		
6CHBT+MH	0.60	$2.1 \cdot 10^{-8}$	6.6	24	1.8		

Вплив Fe₃O₄ наночастинок та постійного магнітного поля на діелектричні властивості рідкого кристалу 6СНВТ. Товщина зразків 20 мкм

Із аналізу випливає, що МД не впливають на величину σ і збільшують величину ε_{v} . Незмінність величини σ при введенні магнітних наночастинок давала підстави стверджувати, що такі домішки були достатньо «чистими» (тобто не мали додаткових включень). Проте, як буде показано далі, наявність МН у РК впливає на величину провідності

Збільшення діелектричної проникності при введенні МН можна пояснити двома факторами:

досить великою величиною діелектричної проникності наночастинок та зміною кута нахилу молекул РК відносно площини електрода при введенні домішок [8].

Враховуючи, що концентрація МН була досить малою (10^{-4} масова частка, %,), зміну величини ε_V за рахунок введених домішок можна знайти за допомогою співвідношення [8]

$$\Delta \varepsilon = 3c\varepsilon_{\nu} \frac{\varepsilon_M - \varepsilon_{\nu}}{\varepsilon_M + 3\varepsilon_{\nu}}, \qquad (4)$$

де ε_M – діелектрична проникність магнітних наночастинок.

За даними наведеними у таблиці, зміна діелектричної проникності при введенні магнітних частинок становить $\Delta \varepsilon = 0,6$. Із співвідношення (4) випливає, що така зміна може бути зумовлена частинками тільки з від'ємною величиною діелектричної проникності. Тому одним з найбільш імовірних пояснень зміни величини ε_V при введенні МД може бути зміна кута нахилу молекул РК відносно площини електрода.

Аналіз діелектричних спектрів РК та РК + МД на ділянці А показав, що їх з похибкою, яка не перевищує 5 %, можна описати на основі співвідношення (2). Параметри такого релаксаційного процесу (час релаксації т та товщина приелектродної ділянки l_s) наведені в таблиці. Із аналізу отриманих даних можна зробити висновок, що зміна параметрів приелектродних процесів при введенні у РК наночастинок значно більша ніж об'ємних. Так, наприклад, якщо при введенні МД величина ε_V збільшується на 10 %, то величина τ на 60 %. Такий ефект певною мірою може бути зумовлений нерівномірним розподілом МД по товщині зразка внаслідок їх часткової адсорбції на поверхні електродів. Саме за рахунок адсорбції наночастинок може змінюватися кут нахилу молекул до площини електродів і таким чином зростати величина діелектричної проникності.

2. Вплив магнітних наночастинок на температурну залежність провідності

На рис. 2 подано температурну залежність провідності σ РК (1) та РК + МД (2). Видно, що в межах похибки вимірювання в кожній з фаз РК температурні залежності σ можна описати співвідношенням

$$\sigma = \sigma_0 \exp(-\frac{E_\sigma}{kT}), \qquad (5)$$

де σ_0 — параметр; E_{σ} — енергія активації σ ; k – стала Больцмана; T — абсолютна температура.

Як випливає з аналізу отриманих даних для всього дослідженого діапазону температур, наявність МД призводить до зменшення величини провідності. Причому максимальні зміни (у 2—3 рази) спостерігаються саме в ізотропній фазі РК.

Розглянемо можливі механізми цього ефекту. Оскільки концентрація магнітних наночастинок була досить малою, то навряд чи вони змогли б вплинути на рухливість іонів у РК. Більш імовірним є зміна концентрації носіїв заряду при введенні наночастинок. У більшості випадків введення домішок приводить до збільшення провідності рідини. Це зумовлено процесами дисоціації нейтральних іонів під дією розчинника. Для досліджених нами зразків зменшення провідності за наявності наночастинок процесами дисоціації пояснити не можна, тому що наночастинки не створюють додаткові іони, а навпаки — зменшують їх кількість.

Як видно з рис. 2 та таблиці наявність у РК наночастинок призводить також до зміни енергій активації для температурної залежності провідності як у нематичній, так і ізотропній фазах.

Одним з можливих механізмів зменшення величини провідності РК при введенні МД є адсорбція іонів на поверхні наночастинки. Такий ефект проявляється при температурах більших за кімнатну, тому що найбільш «активні» щодо захвату іонів магнітні наночастинки після заповнення комірки рідким кристалом адсорбуються на поверхні електродів (саме таке припущення було зроблено при аналізі впливу МД на величину ε_v). При нагріванні зразка відбувається десорбція наночастинок в об'єм зразка, де вони стають центрами захвату іонів, зменшуючи таким чином провідність.

Можна також припустити, що десорбовані з поверхні електродів МД можуть мати електричний заряд, який є протилежним до заряду іонів у РК. Тоді при захваті іонів магнітними наночастинками будуть виникати електрично нейтральні частинки. У випадку, коли десорбовані з електродів МД і не будуть мати електричний заряд, то ефективність перенесення заряду частинкою нейтральна МД-іон буде досить малою внаслідок великої ефективної маси і в силу цього дуже малої рухливості.

3. Вплив магнітного поля на діелектричні властивості рідкого кристалу без/з магнітними наночастинками

У таблиці наведено параметри об'ємної та приелекродної ділянок при температурі 292 К також у разі дії постійного магнітного поля як для чистого РК, так і для РК + МД. Із аналізу досліджуваного випадку випливає, що магнітне поле призводить до збільшення величини ε_V у РК. Сама ж зміна ε_V для двох значень індукції магнітного поля *B*, у межах похибки експерименту, не залежить від величини *B*. Такого ж типу результати отримуємо під час аналізу впливу магнітного поля на величину ε_V для РК + МД. Тобто при зміні величини *B* (від 0,45 до 0,6 Тл) у межах похибки експерименту не спостерігається зміни величини ε_V як у РК, так і РК + МД.

Що стосується величини провідності, то вона, як випливає з таблиці, залежить від індукції магнітного поля. Причому для випадку РК + МД відносні зміни більші ніж для чистого РК.

Аналіз параметрів приелектродного релаксаційного процесу показує, що як і у випадку чистого РК, так і РК з магнітними наночастинками дія магнітного поля приводить до збільшення часу релаксації та товщини приелектродного шару (див. таблицю). При цьому важливо відзначити, що величина l_s також залежить від величини *B*.

Висновки

Навіть невелика кількість (масова частка 10^{-4} %) введених у пленарно орієнтований рідкий кристал (6СНВТ) магнітних наночастинок (Fe₃O₄) призводить до помітної експериментальної зміни параметрів діелектричного спектру.

Діелектричний спектр у діапазоні частот $10^{-1} - 10^6$ Гц можна розбити на дві ділянки. Для частот f > 10 Гц величина є' від частоти не залежить, а є" лінійно зменшується зі збільшенням частоти. Отримані на цій ділянці параметри характеризують об'ємні характеристики рідкого кристалу. При введенні магнітних наночастинок провідність зразків (для температур близьких до кімнатної) не змінюється, а діелектрична проникність зростає на величину порядку 10 %.

Збільшення діелектричної проникності РК при введенні наночастинок не можна пояснити за рахунок великої діелектричної проникності домішок. Найбільш імовірно вона зростає за рахунок збільшення кута нахилу молекул РК відносно площини електродів внаслідок адсорбції МН на їх поверхні.

Аналіз температурної залежності σ показує, що наявність МН у цілому призводить до зменшення величини провідності. Найбільші зміни (2—3) рази спостерігаються поблизу температури фазового переходу. Зменшення провідності у зразках з магнітними наночастинками можна пояснити захватом іонів на де сорбовані з поверхні електродів магнітні наночастинки.

Для частот $f > 10 \Gamma$ ц у діелектричних спектрах досліджених зразків спостерігається досить різке збільшення величин є' та є" зі зменшенням частоти. Такі зміни зумовлені дипольною поляризацією молекул РК у приелектродній області і їх можна апроксимувати рівнянням Дебая.

Оцінено час релаксації (порядка секунд) і товщину приелектродної ділянки (десятки нанометрів).

Показано, що при введенні магнітних наночастинок у РК час релаксації та товщина приелектродної ділянки збільшуються. Причому зміни параметрів приелектродних процесів більші ніж зміни об'ємних параметрів зразка.

Для РК з магнітними наночастинками магнітне поле індукцією 0 — 0,6 Т більш суттєво впливає на діелектричні спектри РК+МН ніж у випадку РК без домішок. Причому саме магнітне поле більше впливає на параметри приелектродної ділянки ніж на об'ємні властивості зразків.

ЛІТЕРАТУРА

1. *Kopcansky P.* Study of Magnetic Fredericksz Transition in Ferronematics. Liquid Crystals Doped with Fine Magnetic Particles / P. Kopcansky, M. Koneracka, V. Zavisova // J. Phys. IV (Paris), 1997. — Vol. 7. — P. C. 565— 566.

2. *Buluy O.* Magnetically induced alignment of FNS / O. Buluy, E. Ouskova, Yu. Reznikov // J. Magn. Magn. Mater. 2002. — Vol. 252. — P. 159—161.

3. *Kopcansky P.* Structural changes in the 6CHBT liquid crystal doped with spherical, rodlike, and chainlike magnetic particles / P. Kopcansky, N. Tomasovicova, M. Koneracka // Phys. Rev E., 2008. — Vol. 78. — P. 011702.

4. *Kopcansky P*. The structural transition in ferronematics in combined electric and magnetic fields / P. Kopcansky, I. Potocova, M. Timko // J. Magn. Magn. Mater. 2004. — Vol. 272—276. — P. 2355— 2356.

5. *Koval'chuk A.V.* Relaxation processes and charge transport across liquid crystal-electrode interface / A.V. Koval'chuk // J. Phys.: Condens. Matter. 2001. — Vol. 13. — № 24. — P. 10333—10345.

6. *Warowski A.J.* Depletion layer in organic films: Low frequency measurements in polycrystalline tetrasene / A.J. Warowski, P. Kopcansky, I. Potocova, M. Timko // J. Chem.Phys. 1979. — Vol. 20. — № 5. — P. 2255— 2261.

7. *Yaroshchuk O*. The Interfacial Dipole-to Dipole Interaction as a Factor of Polar Anchoring in the Cells with Planar Liquid Crystal Aligment / O. Yaroshchuk, A. Kovalchuk, R. Kravchuk // Mol. Cryst. Liq. Crist. 2005. — Vol. 434. — P. 195—204.

8. *Gavrilko T*. Orientational behaviour of a nematic liquid crystal filled with inorganic oxide nanoparticles / T. Gavrilko, A. Kovalchuk, V. Nazarenko // Ukr. J. Phys. 2004. — Vol. 49. — № 12. — P. 1167—1173.

Стаття надійшла до редакції 06.10.09.