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A particular case of the theory of noise generation by a limited region of turbulence in an infinite straight rigid
pipe of a circular cross-section, which has been developed in work [6], is considered. In this case, the situation
is studied in which the generated acoustic field is dominated by the contribution made by surface dipoles. Those
flows and shapes of the pipe local narrowings are of concern, which result in occupation of a turbulent flow
region by uniformly-distributed large or small eddies. For these cases the corresponding simplified expressions
for the generated acoustic power are obtained, and their estimates are carried out for the characteristic scales
in the turbulent flow region.
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Posensnymo uwacmunnuii 6unadok pospobnenoi 6 npayi [6] meopii eenepayii wiymy obmedscenor odracmio
mypOyIeHmHOCMI 8 HEeCKIHYeHHIll APAMIU  HCOPCMKOCMIHHIL mMpYOi Kpy208020 HONEPEYHO20 nepepizy.
Jlocnidoiceno cumyayiro, Koy y 32eHepoO8aHoOMy AKyCMUYHOMY NOIL OOMIHYE 8HECOK nogepxHegux ounouis. Ilpu
YbOoMY IHmMEpec CMAHOGIAMb MAKI NOMOKU | (POPMU IOKANLHUX 38VIHCEHb MPYD, NPU SKUX Pe2ioH mypOyni308aHOT
36YHCEHHAM meyii 3atMaloms PiGHOMIPHO pO3n00dineHi 8euKki abo mani suxopu. s yux eunaoxis 00epiicano
8I0NOBIOHI CNpoweHi Upazu 0 32eHePOBAHOI aKyCMUYHOI enepeii i npoeedeno ix oyiHKu 015 XapaKmepHux

Macwmabie 6 oonacmi mypOyieHmHOCMI.

Knio4oBi cnoBa: wym, TypbyneHTHiCTb, Tpyba, gunoni.

Introduction

Study of flows in pipes is an actual problem in
car- and aircraft-building industry, gas- and oil-
industry, architecture, municipal economy, medici-
ne, etc. Here a significant interest is related to flow
turbulization and the acoustic effects appearance due
to local pipe narrowings, such as wall deposits,
welding joints, stenosis, etc. It is explained by the
fact that the generated acoustic field holds
information about the pipe and flow parameters in
the noise-producing region, and, hence, there is the
principal possibility of developing non-invasive
acoustic diagnostic techniques capable of finding
such region and finally the irregularity from an
analysis of the indicated field [1-5].

The non-invasive acoustic diagnostic techniques
can be developed under the availability of theories
describing adequately the fluid rheology and
dynamics, as well as the flow acoustics near the
narrowing, and, hence, relating quantitatively the
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generated acoustic field characteristics to the
narrowing, pipe and flow parameters.

In reference [6], a theory of noise generation by a
limited region of turbulence in an infinite straight
rigid-walled pipe of circular cross-section has been
developed, and the corresponding quantitative
relationships between the generated noise field
characteristics and the pipe and flow parameters
have been obtained.

A turbulence region was modeled by the
distributed quadrupole and dipole noise sources
(whose characteristics were assumed to be known),
and the cases of uniform and non-uniform source
distribution (i. e., homogeneous and non-homo-
geneous turbulence) were considered. In the next
work [7] the case of dominant contribution of
guadrupoles in the turbulence-generated noise in a
pipe has been investigated, and the corresponding
simplified expressions for the noise characteristics
have been established.
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In this paper another particular case of that theory
is considered. Here a situation is studied when the
above-noted noise field is dominated by the
contribution made by surface dipoles. Those flows
and shapes of the pipe local narrowing’s are of
interest, that result in large or small eddies
distributed uniformly in the turbulence region
immediately behind the narrowing.

The paper consists of two sections, conclusions
and a list of references. In its first section, a problem
is formulated, the appropriate equations and
boundary conditions are written, as well as a general
solution to the problem, which has been obtained in
work [6], is presented and briefly analyzed. In the
second section, the above-noted particular case of
the solution is considered, and the corresponding
estimates of the acoustic power are carried out.
Finally, the conclusions of the investigation are
formulated, and a list of references used in this paper
is given.

1. Formulation of the problem

and its general solution

Before proceeding to the above-noted particular
case of the theory of noise generation by a compact
region of turbulence in a pipe, which has been
developed in reference [6], let us remind the
physical and  corresponding mathematical
formulation of the problem, as well as present and
briefly analyze its general solution. So, an infinite
straight immovable rigid-walled pipe of circular
cross-section of radius a is considered. In this pipe,
a fluid, of mass density p, sound speed c, and
kinematic viscosity v, flows with the mean axial
velocity U . The flow is characterized by the small
Mach number, M =U/c,<<1. A finite fluid
volume, V,, is in the turbulent state, and produces
noise in the pipe. It is necessary to find this noise
field and establish the quantitative relationships
between its characteristics and the pipe and flow
parameters.

The noise field of interest is governed by the
Lighthill’s equation, in which the right part contains
both quadrupole, 8°T; /dy,dy;, and dipole, &F,/dy;,
sources due to the pipe wall [6-8], viz.

2 o°T; :
0 Pa _ 2V2pa T + 00 aF, (1)
oyioy; oy
O<r<a, 0<¢<2m,
The boundary conditions are that the radial

component of the acoustic velocity vanishes on the
pipe wall, viz.

|7 < 0.

p
Pal 9 2
or @)

r=a

and that all acoustic waves are outgoing at infinity
(i. e., there is no sound reflection at the pipe ends).
In relationships (1) and (2), p, and p, are the

acoustic  density and pressure  fluctuations,
respectively, which are related as [6-8]

Pa = CoPa’

T; ~puu; and F=n;(t; +pd;) the Lighthill’s
stresses and the i -th force component acting on the
pipe wall (T; and F; vanish outside the volume V,
and the restricting surface S,,
T; = (2/3)pey d; —2pe;  the
g; =(@/2)(0u;/ 0y; +0u;/dy;) the strain rates; n;
the j-th component of the outward normal to the
pipe wall; u; the i-th component of the fluid
velocity; p and p=pv the fluid pressure and
dynamic  viscosity;  r,¢,z  the cylindrical
coordinates; y,,Y,,Y; the other their notations; and
3; the Kronecker delta. In addition, hereinafter the
summation on repeated indices is assumed.

The boundary problem (1), (2) is solved by the
Green’s function technique [6, 8, 9], with
subsequent application of the normal mode method.
After performing the required mathematical

operations, a general expression for the acoustic
power P(®) generated at the frequency o by the

quadrupole and dipole sources, distributed non-
uniformly in the volume V, and on the surrounding

surface S, , respectively, has the following form [6]
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P@)=3 3 3PD(e)=

g=1 n=0 m=1

>

M~

RS

n=0 m

(PO () + P () + P (o) |;

Il
UN
JUN

q
1

P@T () =
(0) = T

[T dVq (o)

KomPo® Vo

4SlTJkI(rO!r(;’(D) (q)
IvjoI 0,0y ,0y,0y, (o ¢o)

><LIJ((l)(r() ,¢0)e75|gn(z 20)iknm (2~ Zo)dV (ro)

1 []dS, (rga) x

KnmPo® So

(Q)F( ) —
e

J‘J‘ ZS:E;;Oaa;/rOa'@)\P(Q)(a ¢0) ™
So K

. . /
% \Pm (a, d){))e_S'gn(Z_ZO)Ik"m(ZO_ZO)dSO(réa) :



ISSN 2075-0781. Science-Based Technologies, 2013. Ne 2 (18)

125

1
POTF (¢ :TZRe(ﬂjdVo(ro) X
4”‘1’ amPo®

v
nm 0

3aTF /
0°Sjj (1o, rOa'(D)

] W (1 00) %
S %Oy o
XIIJ(Q)(a (I)O)e-Slgn(Z 20)iknm (2~ Zo)dS (rOa) ( )
Here r=(r,$,z) is the field-point vector;

r,=(r,00.2,) €V, and ry=(r],d0,2,)€V, the
position vectors of quadrupoles in the region V,;
y=(y;)Y, and y' =(y/)?, the other notations of r,
:(a,¢0,ZO)ESO

L= (a,95,25) € S, the position vectors

and ry, respectively; r,

a = r0|r0:a
and ry, = ré‘ )

o
of dipoles on the surface S;; dV,(r,) = r,dr,dd,dz,

and dS,(r,,) =ad¢,dz, the volume and area
elements, respectively;

O =3 (a,,r)cos(ng),
Wi = Jn (0mnsin(ng)
the pipe acoustic modes whose squared norms,

, are written as

na’J%(oy,a),n =0,

J, cylindrical Bessel functions of n-th order;
o =Cm/a the radial wavenumbers; £ =~ the
tabular roots of equation

I(&m)=0, m=12,..;

2 2 : . —
Ko = VK¢ —02, the axial wavenumbers; k, =o/c,

the acoustic wavenumber; and
sign(z-z,) = {

the sign-function.
In addition, in relationship (3) SIJkI and S} are
the cross-spectra of the Fourier images of,

respectively, the Lighthill’s stresses T;, viz.

lz>2z,
-1,z<z,

S (1. 13, 0)8(0 — ') =<T; (15, )T,y (13,0) >,
and the forces F,, viz.
Sk (s Foas @)8(0 — ) =< F (I, 0) R (17, 0) >
SEE is the cross-spectrum of the Fourier images of
the stresses T and the forces F, , viz.

Shk (5, Tz, @)8(0 — ') =< T (15, ©) K (1, 0') >
8(...) the Dirac delta-function, Re(...) denotes a real

part of the complex quantity indicated in the
parenthesis, and the location of frequency o relative
to the pipe cut-off frequencies

(Dnm = COO('nm (4)
specifies (via the wavenumbers k., in the exponent
exp (=Sign(z — z,)ikm(zg —2,))  the cases  of
propagating (homogeneous), viz.

020,

and non-propagating (evanescent), viz.
O<o<o,,

waves.

When the quadrupole and dipole noise sources
are distributed uniformly in their domains, formula
(3) is simplified due to simplification of expressions

for the spectra S.,m, Si, and S,Jk , Which, in that

case, become the functions of the source separation
distance and the frequency only, viz.

Si (10, 10,0) =Sj(6,0),  E=15—1g;
Slllz< (r0a7 rOa’(D) S (E:aa' (D) gaa r(ga —Toas (5)
S.|I;'k: (ro’ rOa'(n) Suk (ia'(’)) ga = r(;a - r0 '

The analysis of expression (3) shows that the
acoustic power P is a sum of powers P{? of the

pipe acoustic modes, ¥, the individual mode

nm !

power, P!

nm

consisting of the three parts. The first
part, P{T s the acoustic power generated by the
quadrupoles °T; /dy,dy; in the mode ¥, the

nm !
second one, P{YF | results from the dipoles oF, /dy,,

and the third one, P{Y™ is due to interaction of the

quadrupoles and dipoles in the same duct mode.
Further analysis of formula (3) shows that the
relative contribution of each part to the mode power
P (and, hence, to the acoustic power P) is
different for the different Mach number values. In
fact, when the Mach number M is such that the
noise field is dominated by the contribution from

volume quadrupoles, only the first part, P®T,
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remains in the expression for Pﬁﬂ},

relationship (3) takes the following form

P)=3 3 5 L [aVy(r)

1 n=0 m=1
nmpoa) Vo

and then

MI\J

q

,”j 48-llikl(rO’rO’ )
Vo OYi0Y 0%y,

\P(Q)(ro’q)o)e—Slgn(Z 20)iknm (2~ 20)gy/ (ro) (6)
When the Mach number falls in a range where
surface dipoles dominate, the second part, P{9F, do-

P (o)

minates in P{% , and one has instead of expression (6)

nm ?

P(0)=3 > 3 S, (o)
a1 n=0 nmpom So
XJ‘J‘ 2S:I:(( oa’ oa’(’))l{](q)(a d)o)x

So ayié‘yk
% \PS]?T? (a, ¢6)e—5igﬂ(l—lo)iknm(Zé—zo)dso(réa) _ (7)

2. Dominant contribution of dipoles

Let us consider the situation when the acoustic
field in a pipe is dominated by the contribution of
surface dipoles. The dipoles are assumed to be
distributed uniformly over the surface S,
surrounding the turbulence region V,. The first of
these conditions can be realized in practice when the
Reynolds number Re in the turbulent flow region
V, behind a local pipe narrowing is either close to
the critical value Re, (i.e., Re~Re,) or slightly
higher than Re, (i.e., Re>Re,, M <<l). The
second condition (as in the case of uniform
distribution of quadrupoles [7]) can be ensured when

— the basic flow upstream of the local pipe

narrowing is characterized by axial
symmetry and has a parabolic velocity
profile;

— the pipe narrowing has an axisymmetric and

smooth geometry.

Under these conditions, relationship (3) is
reduced to formula (7), which, due to simplification
of expressions for the functions S!, (see formulas
(5)), is simplified to the form

P@)=3 3 iMf T by (n0,)dd, =

g=1 n=0 nmpom 0 Zp

2109 Zge~20 828': S
wdy | )
ik

%0  20i~20

Xefsign(zfzo)iknmiz dExdeJz (8)

by (N(9o +84)) %

(here b, (Nd) = cos(nd,) , b, (Ndy) =sin(ndy) ,
oS, 10, =0).
The double integral over &, and &, in

relationship (8) depends on ¢, and z,. Therefore, it

is evident that in general the expression for the

spectrum P cannot be simplified significantly.
However, such simplification becomes possible

when the turbulence region V, is occupied primarily

by large-scale or small-scale vortex structures (the
situations, when it is possible in practice, are
described in [7]).

Let us consider these cases.

2.1. Large eddies

Let us consider the case when the region V, is

occupied primarilly by so large vortex structures that
surface dipoles are completely correlated around the

circle r,=a
In such a situation, the cross-spectra S}, will not
depend on the azimuthal coordinate &, , viz.
oSk
%,

and relationship (8) is reduced to the following
expression

=0, Sk =S (§,,0),

-5 L _25G0),
128Ky P o OE;
« e—sngn(z—zo)lk()mézd};Z , (9)
where [S,| is the area of the surface S, .

One can see that only the axial dipoles oF, /0dz,
contribute to the acoustic field in the pipe when the
region V, is occupied primarily by large eddies. The
main part of that contribution is made by the first
acoustic mode of the pipe, ¥& =1.

It is corresponded to by a plane acoustic wave
propagating in the axial direction at the speed c, .

The total acoustic power,

M= | Po)do,

generated by the axial dipoles OF,/0z, has the
following form (here only the contribution of the
mode ¥, has been allowed for)

a2l TKE (&, 0, | (10)

28pCy
where K’ (¢,,7) is the correlation of the forces F,,
viz.

Kzz(&z"c)_ IS (éza@)e_'mdw
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and t=¢,/c, the time needed for the acoustic wave
to pass the axial distance &, between the dipole
sources.

Introducing in the domain V, the length scale,
viz.

L, =aa (11)
and the frequency scale, viz.
U
ft =B— (12)
a

(where o and [ are the respective scale
coefficients), as well as the ratio of the characteristic
turbulent flow velocity, u,, to the undisturbed basic

flow velocity, U , viz.

U
Tt U (13)

allows one to obtain an estimate for the energy (10),
viz

S
H~%pOU3M3OLyf, a~1. (14)

One has the classical cubic dependence of the
intensity of acoustic radiation of dipoles on the
Mach number [8, 10].

2.2. Small eddies

Now let the turbulence region V, be occupied

primarilly by vortex structures being small
compared to the pipe radius, a. In such a situation,
the correlation lengths in the radial, A, , azimuthal,

Ay s and axial, A,, directions, as well as the length
scale L, in the region V, will be small compared to
a,viz.

Ae~hy~h,~L =oa<<a, o <<1.

Then the integration ranges over &, and &, in
formula (8) can be extended from —« to =, viz.

a’)%(a,a
por s B LXUBLCS
‘ nmpo(D 0 i
o ™ aZSF , ,
% J' j ik (E.nj) E.'z )
o w0808,
Xefsign(Z*Zo)iknmizdg)‘bdiz ) (15)
Let us consider the cases of low and high
frequencies in the obtained relationship.
2.2.1. Low frequencies

The low frequencies are assumed to be those
satisfying the condition

2 el 0 2n Ip
Pl@=2 X Zl

=1 n=0

o

bq (n(¢, + aq))) x

(n,m)=(0,)).

Under this condition the contribution to the noise
field in the pipe will only be made by its first

O<o<o,,,

acoustic mode, P§), and relationship (15) becomes
as follows

1S, ?7828%%4) 80)
08,08

4makyPo® o -

Xe—mgn(z—zo)lkoﬁzdad)déz ' (16)

An analysis of this expression shows that all the

dipoles contribute to the low-frequency domain of

the spectrum P when the turbulence region V, is

occupied primarily with small eddies. Herewith the

generated acoustic power propagates in the axial
direction in the form of a plane wave at a speed c, .

Application of the integral-mean-theorem [7],
viz.

P(0) =P{ (0) = — 2 —

2 F
_U S.ggfgéaz’m) —5|gn(z ZO)IkO"ZdE_, di
k

2cF
_ 2k Ia Six (818, @) g SO To)ikotz g
O; 08
(where &,. is the point of the segment [0,2, |, and
X, o< Ly ) to relationship (16), viz.

MaTyﬁm@@|
2makoPe® = 05;08,

Xe—sign(z—zo)ikoézdé::>Z ,

P(w) ~
‘g¢=g¢*
a<<l
allows making its comparative analysis with
expression (9). One can see that the acoustic power
generated by the dipoles at low frequencies in the
case of occupying the region V, primarily with
small eddies is a small value of the order a/=
(o <<1) compared to the acoustic power produced
by the dipoles in the same frequency range when the
domain V, is occupied primarily with large eddies.
Accordingly, an expression for the total acoustic
power, P, will only differ from expression (10)
practically by the additional factor o/m, and the
estimate for P will actually have the form (14)
multiplied by a/ =, viz.

S
H~|2—°|pou3|v|3a2y;‘, a<<1. (17)
T

One has again the classical cubic dependence of
the acoustic power generated by dipoles on the
Mach number.

2.2.2. High frequencies
Let us proceed to the frequencies higher than all
the pipe cut-off frequencies, viz.
o>0,,, n=0, mx1.
In this case all the acoustic modes ¥ will be
propagating and take part in forming the acoustic
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far-field in the pipe. Consequently, they must be
taken into account when making further analysis of
relationship (15).

Rewriting the cosine and the sine of the sum of
two arguments in that relationship and taking
account of the orthogonality properties of the
resultant  trigonometric  functions yields the
following expression for the spectrum

Lo e Bl S Ee)
RPN I 175,

n=0 m=1 4na8nknmp00~) -0 —0
XCOS(n?;d))e_Sign(Z_ZO)ik”mézdid)dﬁz ’

(18)
where
1,n=0

2
S e P L n>1’
2 ana) |

An analysis of formula (18) shows that all the
dipoles contribute to the high-frequency domain of
the spectrum P when the turbulence region V, is

occupied primarily by small eddies. In this case all
the pipe acoustic modes take part in forming the
acoustic filed in the pipe.

Substituting relationship (18) into the integral for
the total acoustic power P, viz.

M= [ Po)do,

and introducing the turbulence scales (11)—(13) into
the resultant expression allows one to obtain the
estimate for P, viz.
S
H~|2—°|p0u3|v|3a3gy;‘, o <<1. (19)
T
One can see that in the case of small eddies and
high frequencies the acoustic power generated by
dipoles is also determined by the third power of the
Mach number. However, it is a small value of the
order o3 (o <<1) compared to the power produced

by dipoles in the case of small eddies and low
frequencies, which has been described in subsection
2.2.1 (compare estimates (19) and (17)).

Conclusion

In this paper, a particular case of the theory of
noise generation by a limited region of turbulence in
an infinite straight immovable rigid-walled pipe of
circular cross-section, which has been developed in
reference [6], has been considered.

In that case the situation is studied when the
generated noise field is dominated by the
contribution made by surface dipoles. Those flows
and shapes of the local pipe narrowing have been of
interest, that result in large or small eddies
distributed uniformly in the turbulence region
behind the narrowing.

The corresponding simplified expressions for the
generated acoustic power have been obtained in the
considered cases, and their estimates have been
carried out for the characteristic scales in the
turbulence region.
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