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ADAPTIVE METHOD OF FORMING COMPLEX SIGNALS ENSEMBLES BASED
ON MULTI-LEVEL RECURRENT TIME-FREQUENCY SEGMENT MODELING

Introduction

A major challenge in cognitive telecommuni-
cation networks (CTN) is the efficient utilization of
the frequency spectrum, which is a limited resource
under modern conditions. To achieve maximum
throughput and minimize interference, cognitive
networks must dynamically adapt to variations in the
spectral environment. Another critical challenge is
ensuring reliable data transmission, as factors such as
interference, delays, and signal fluctuations neces-
sitate adaptive solutions to maintain a high quality of
service. The application of novel approaches to signal
ensemble formation facilitates the development of
advanced coding and modulation algorithms,
enhancing signal resilience to these factors.

This is especially important in scenarios involving
user mobility and fluctuating channel conditions.
Additionally, the rapid increase in data volumes
within CTNs necessitates efficient management of
network resources. The use of methods for forming
complex signal ensembles facilitates the development
of models to optimize resource allocation, including
transmitter power, frequency, and transmission time,
thereby reducing energy consumption and enhancing
network efficiency. This task becomes even more
critical given the continuous rise in the number of
connected devices.

Finally, data security remains a crucial aspect of
cognitive telecommunication networks. The use of
complex signal ensembles in increased volumes
facilitates the development of methods to protect
information from unauthorized access and attacks.
The flexible and adaptive properties of such signal
ensembles ensure effective information security
under conditions of uncertainty and changing
environmental parameters.
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Thus, the application of advanced methods and
models for forming complex signal ensembles
addresses a wide range of scientific and practical
challenges in wireless cognitive telecommunication
networks, including efficient spectrum utilization,
enhanced transmission reliability, optimized resource
management, and data security. This opens up new
opportunities for the development of cognitive
networks and improved efficiency amid modern
technological challenges.

Significant volumes of signals can be formed
using time-frequency decomposition methods to
create signal ensembles at various levels of frequency
and temporal detail, which increases system throughput
and improves data transmission reliability. The use of
data fusion methods from different sources and
processing based on artificial intelligence also allows
the creation of highly complex signal ensembles and
ensures stable communication in rapidly changing and
dynamic radio frequency environments [1-3].

The formation of large signal ensembles is also
achievable through the use of multichannel signal
aggregation, which enhances interference resistance
and improves communication quality. In this study,
the proposed method of multilevel recurrent time-
frequency segmentation utilizes adaptive filters and
signal processing algorithms that consider the
specific network parameters, enabling -effective
recognition and compensation of various types of
interference and noise. Additionally, the proposed
method involves continuous adjustment of the time
segment duration and the use of time segments of
varying lengths. [4-7].

Analysis of recent research and publications

Recent research efforts have aimed to enhance
signal processing and spectrum sensing in cognitive
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radio networks, yet several challenges remain
unresolved. [1] introduced multiscale adaptive signal
representations to enhance computational efficiency,
focusing on multi-scale frameworks that improve
coding accuracy. However, their approach does not
fully address the dynamic adaptability required for
cognitive radio applications, particularly under
rapidly changing spectral conditions. [2] explored
stochastic resonance in high-order degradation systems
for noise reduction and fault diagnosis, demonstrating
potential in specific applications, but their methods
do not extend to the real-time signal processing
complexities found in telecommunications.

[3] and [4] has contributed to the understanding
of spectrum sharing and quality parameter evaluation
in cognitive networks. These studies emphasize
resource allocation and performance metrics but fall
short in addressing adaptive filtering and segmentation
techniques critical for managing dynamic interference
and maintaining robust communication.

[5] explored deep learning-based signal analysis,
presenting methods that improved noise reduction in
wireless networks, while [6] investigated spectrum
analysis techniques that focus on minimizing
interference. However, neither study incorporates
adaptive multi-level time-frequency segmentation
crucial for real-time adaptability, which remains a
significant gap in their methodologies.

[7] examined the cross-correlation properties of
complex signal ensembles, emphasizing the
importance of frequency element permutations for
improved signal formation, while Haykin [8]
discussed cognitive radio concepts that support
dynamic spectrum management. Nevertheless, these
approaches do not integrate recursive segmentation
methods capable of dynamically adjusting to
changing signal conditions, limiting their practical
adaptability in cognitive environments.

Here is the revised text with improved style:

Furthermore, the studies by Indyk and Lysechko
[9-11] examined the formation of complex signal
ensembles through the filtering of pseudo-random
sequences and the adjustment of frequency bands,
providing valuable insights into the management of
signal properties. However, these studies do not
incorporate multilevel recurrent time-frequency
segmentation, which allows for dynamic adjustments
in segment duration and frequency—an approach
that is crucial for reducing interference and
enhancing signal quality in cognitive networks.

This analysis underscores that, while previous
research has made significant contributions, it lacks
the integration of real-time adaptability, dynamic
segmentation, and advanced filtering techniques, all
of which are essential for cognitive telecommuni-
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cation networks. This highlights the need for the
development and implementation of a multilevel
recurrent time-frequency segmentation method that
not only improves the accuracy of signal processing
but also enhances system robustness in highly
variable radio environments, effectively addressing
the limitations identified in earlier studies.

Problem Statement

Ensuring efficient signal processing in cognitive
telecommunication networks under dynamic radio
frequency environments and high levels of interference
is a complex task that traditional spectral analysis
methods fail to fully address. Static approaches to signal
processing do not account for rapid changes in spectral
characteristics and environmental parameters, leading to
significant interference between frequency components,
low signal analysis accuracy, and reduced communi-
cation quality [1].

Here is the revised text with improved style:

Unlike traditional methods, the proposed
multilevel recurrent time-frequency segmentation
method enables the dynamic adjustment of time
segment durations and the use of segments with
varying lengths, allowing for adaptive signal
processing based on the current characteristics of the
signals. Long time segments are optimal for
analyzing low-frequency components, while short
segments are effective for high-frequency ones,
significantly reducing frequency interference and
enhancing analysis accuracy [4, 7].

Moreover, the use of segments with different
durations enables optimal distribution of the signal's
energy spectrum, reducing inter-channel and inter-
symbol interference, which is critical for maintaining
stable communication in high-density and high-
activity network conditions [8]. Due to its
adaptability, the method also enhances the flexibility
of system parameter settings, allowing for rapid
response to environmental changes and optimization
of spectral resources.

Thus, the proposed method not only enhances
data transmission quality but also offers high
resistance to noise and interference, capabilities that
traditional signal processing methods cannot reliably
provide. This opens opportunities for the advancement
of cognitive telecommunication networks, enhancing
their efficiency in complex and variable radio
frequency environments [11, 12].

The purpose of the article

The purpose of the article is to test the algorithm
for the implementation of the method of forming
complex signal ensembles using multi-stage recurrent
time-frequency segmentation. It is presented in Fig. 1.
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Fig. 1. The algorithm of the improved multilevel recurrent method

Summary of the main material

Let’s examine in more detail the final stages of the
algorithm depicted in Fig. 1 to conduct an
experimental evaluation of the proposed algorithm's
performance. To reduce noise, inter-channel, and
inter-symbol interference before creating new
ensemble signal formations, adaptive filters should be
applied as they automatically adjust to changes in
cognitive radio conditions, effectively separating the
useful signal from noise and interference. It is
effective to use the LMS (Least Mean Squares)
adaptive filter [12, 14]:

y(n) = XS 0 (W) - x(n — k), (1
where y(n), x(n) — are output and input signals,
respectively; wy, (n) — weight coefficients of the filter
at timen; M — is the length of the filter.

The update of the weight coefficients is performed
using the formula [10, 14]:

K(n) =

P(n) = (P(n—1) = K()x" ()P(n — 1))

we(n+1) = we () +p-e(n) x(n -k, Q2)

where u is the learning rate; e(n) = d(n) — y(n) —
is the error between the desired signal d(n) and the
output signal y(n).

Applying Short-Time Fourier Transform (STFT)
or wavelet transform at the stage of generating
complex signal ensembles is justified as these
transforms allow precise analysis of frequency
components in each time segment before combining
them into an ensemble.

To optimize newly formed ensembles of complex
signals, adaptive filters can be employed to reduce the
impact of interference on useful signals, thus
enhancing the quality of signal transmission and
processing. Adaptive filters are capable of adjusting
their parameters according to changes in the radio
environment. One such filter is the Recursive Least
Squares (RLS) filter, calculated as follows [3, 11]:

P(n—1)x(n)
A+xT(n)P(n-1)x(n)

€)

wn)=whn—-1)+Kn)(dn) —xT(n)wh — 1))
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where K (n) — is the Kalman gain vector; x(n), w(n) —
are the input signal vector and weight coefficients,
respectively; P(n) — is the covariance matrix; A — is
the forgetting factor; d(n) — is the desired signal.

The Hilbert transform at this stage of the proposed
method helps detect amplitude modulations of the
signal, enhancing data transmission quality. This
transform also aids in better distinguishing useful
signals from noise, improving the accuracy of
analysis and processing of complex signals.

At the verification stage of the multi-level recurrent
time-frequency segmentation method, it is appropriate
to apply specific filters and transformations, particularly
the Richard Klein adaptive filter and independent
component methods. These techniques are essential for
refining the performance of the algorithm, ensuring that
it effectively handles the complex and dynamic nature
of cognitive radio environments by enhancing signal
stability and minimizing interference from noise and
other distortions.

The Richard Klein adaptive filter demonstrates
high efficiency under the dynamic conditions of
cognitive radio, enhancing both signal accuracy and
stability. It is calculated using the formula [6, 12, 15]:

e(n)x(n) ( 4)

Wpi1 = Wy + uxT(n)x(n),

where | — learning step.

The methods of independent components effectively
isolate useful signals from noise, disturbances and dis-
tortions, are calculated according to the formula [5]:

S=W-x(n), (5)
where W —matrix of weighting factors; S — independent
components

At the stage of the algorithm where the formed
ensembles of complex signals are integrated into real
systems and tested under empirical conditions to
evaluate their effectiveness, it is advisable to apply
specific adaptive optimization filters and transformations.

Spectral filtering using second-order wavelets
improves signal quality by accurately extracting useful
components from noise. This is calculated as [13]:

S =3 i), (6)
where S — is the filtered signal; ¢; — are the wavelet
transformation coefficients; ;(t) — are second-order
wavelets.

The adaptive filter based on fast gradient descent
achieves high signal accuracy and stability through
rapid adaptation to changing conditions. It is
calculated using the formula:

Wpy1 = Wy + pVj(w), (7)

where VJ(w) — is the gradient of the error function.
To substantiate the effectiveness of the aforemen-
tioned filters and transforms, a comparative evaluation
was conducted using software implementation in
Python. We consider that Ensemble 1 consists of 3 signals
with frequencies of 50 Hz — 300 Hz and amplitudes of
0,4 V=1V, which are accompanied by white noise with
an amplitude of 0.5 V, impulse noise with an amplitude
of 0,3 V and Gaussian noise with an amplitude of 0,2 V.

The results of the calculations are presented in the tab. 1.

Table 1
Calculations for Ensemble 1 before and after filtering and transformation
Metric Before After filtering After Transformation
LMS RLS STFT Wavelet Hilbert

MA, B 0,802 0,781 0,813 0,783 0,802 0,793
RMS,B 0,85 0,75 0,732 0,74 0,76 0,75
DC, % 0,12 0,08 0,07 0,08 0,06 0,07
PSNR, dB 26,00 30,00 31,00 29,50 32,00 31,52
SNR, dB 22,00 26,00 27,00 25,50 28,00 27,51
CCC 0,89 0,95 0,97 0,94 0,98 0,96
SC 0,70 0,80 0,82 0,78 0,84 0,83
NRC 0,45 0,50 0,52 0,49 0,54 0,53
ACF 0,88 0,902 0,911 0,893 0,922 0,913
MaxA, B 1,10 1,05 1,07 1,06 1,09 1,08
MedA,B 0,75 0,73 0,74 0,73 0,75 0,74
EE, % 78,02 80,00 82,03 79,04 84,08 83,07
MaxPCCF 0,015 0,012 0,010 0,011 0,008 0,009

The reduction in average amplitude after filtering

signal amplitude. All filtering and transformation

methods

is 2,53 %, indicating the effective performance of
filtering methods without significantly impacting
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approximately 11,82 %, demonstrating a decrease in
overall signal amplitude, as filtering effectively
reduces noise but may also weaken part of the signal.
The distortion coefficient decreased by 33,35 % after
filtering and up to 50,2 % after transformation,
showing a substantial reduction in signal ensemble
distortion levels and high transformation efficiency,
particularly with wavelet transforms. The SNR and
PSNR metrics increased by 22,7 % and 15,4 %,
respectively, proving effective noise reduction in the
signal ensemble. Wavelet and Hilbert transforms

exhibited the highest improvements in SNR and
PSNR, demonstrating their high efficiency in
enhancing signal quality. The CCC increased by
7,9 % after filtering and up to 10,1% after
transformation, indicating moderate levels that
prevent signal overlay. MaxPCCF decreased by
33,3 %, suggesting reduced peak noise correlation
after processing, with wavelet transformation being
the most effective in this regard.

Calculation of the metrics after filtering and
transformation for Ensemble 2 is presented in Tab. 2.

Table 2
Calculations for Ensemble 2 before and after filtering and transformation
Metric Before After filtering After Transformation
LMS RLS STFT Wavelet Hilbert
MA, B 0,78 0,75 0,77 0,76 0,78 0,77
RMS,B 0,83 0,72 0,70 0,71 0,73 0,72
DC, % 0,11 0,072 0,065 0,07 0,05 0,06
PSNR, dB 25,00 29,00 30,00 28,50 31,00 30,50
SNR, dB 21,00 25,00 26,00 24,50 27,00 26,50
CCC 0,87 0,94 0,96 0,93 0,97 0,95
SC 0,68 0,79 0,81 0,77 0,83 0,82
NRC 0,42 0,48 0,50 0,47 0,52 0,51
ACF 0,87 0,89 0,90 0,88 0,91 0,90
MaxA, B 1,05 1,00 1,02 1,01 1,04 1,03
MedA,B 0,73 0,70 0,72 0,71 0,72 0,73
EE, % 76,00 79,00 81,00 78,00 83,00 82,00
MaxPCCF 0,014 0,011 0,009 0,010 0,007 0,008

In fig. 2 presents the analysis of indicators before
and after filtering and transformations for Ensemble
1 and Ensemble 2.

The average amplitude (MaxA) Ensemble 2
decreased by 3,85 %, indicating noise amplitude
reduction. The root mean square (RMS) decreased by
13,25 %, reflecting increased signal stability. The
distortion coefficient (DC) decreased by 36,36 %,
confirming a reduction in distortion levels. Peak
signal-to-noise ratio (PSNR) increased by 16,33 %,
indicating improved signal quality, particularly at
high amplitudes. Overall signal-to-noise ratio (SNR)
increased by 19,05 %, showing enhanced noise
resistance.

The cross-correlation coefficient (CCC) Ensemble
2 increased by 8,05 %, indicating moderate growth in
mutual correlation between signals. The smoothing
coefficient (SC) increased by 16,18 %, showing
improved signal smoothing. The noise reduction
coefficient (NRC) increased by 14,29 %, demon-
strating effective noise reduction. Autocorrelation
function (ACF) increased by 2,30 %, preserving the
internal signal structure. Maximum amplitude
(MaxA) decreased by 4,76 %, indicating reduced
peak noise amplitude.

The comparative analysis of the calculations in
Tables 1 and 2 demonstrated that the application of
filtering and transformation methods at the generation
and optimization stages of complex signal ensembles
for Ensemble 2 yielded better results than the
calculated metrics obtained for Ensemble 1. This
improvement is attributed to the fact that the signals
in Ensemble 2 contained modulated components and
more complex spectral characteristics, which
complicate the process of distortion detection and
correction. Despite these challenges, the overall
enhancement of signal quality was achieved due to
the effective processing of amplitude-modulated
signals and the reduction of additive white Gaussian
noise (AWGN).

In fig. 2 shows that ensembles of complex signals,
which have a smaller number of modulated
components and simpler spectral characteristics, such
as experimental Ensemble 1 (blue line in the graphs),
are better amenable to filtering and transformation
processes. This is especially noticeable when
applying the wavelet transform for Ensemble 1,
which provides the greatest reduction in distortion
and noise, and the RLS filter for Ensemble 2 (orange
line), which effectively reduces signal dispersion.
This is because Ensemble 1 has a more uniform signal
structure, which facilitates the processing process and
improves the filtering results.
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Fig. 2. Analysis of indicators after filtering and transformations
Conclusions provides high precision and adaptability in signal

The proposed adaptive method for analyzing and
processing complex signal ensembles, based on
specific transformations and optimized filters applied
at various stages of multistage recursive time-
frequency segmentation, has demonstrated high
efficiency in the experimental calculations presented
in this study. The analysis of different types of
transformations — such as Fourier, Short-Time
Fourier Transform (STFT), wavelet, cosine, and
Hilbert — reveals that their application at various
stages of multilevel time-frequency segmentation
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processing. This approach enables more accurate
identification of key signal elements, including
amplitude peaks and frequency variations, which are
essential for maintaining signal stability and quality.

At the stages of the algorithm—formation,
optimization, verification, and implementation of
signal ensembles — the adaptive method incorporating
specific transformations and filters demonstrated
high effectiveness in reducing noise levels by
21,7-29,6 % and improving signal quality by
14,3-24,5 %. The use of adaptive filters, such as LMS
and RLS, as well transformations like STFT, wavelet,
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and Hilbert, significantly enhanced signal interference
resistance and energy efficiency by 9,8—18,9 %.

The experimental results thus confirm that the
proposed method ensures consistently high-quality
processing of complex signal ensembles, even in the
dynamic environment of cognitive radio. Future
research will aim to further enhance the adaptive
capabilities of the proposed method, particularly
under more complex and rapidly changing signal
conditions, to improve robustness and adaptability
across diverse telecommunication applications.
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AJATITUBHUA METOJ] ®OPMYBAHHS AHCAMBJIIB CKJIAJTHUX CUTHAJIIB
HA OCHOBI BAI'ATOPIBHEBOI'O PEKYPEHTHOI'O YACOBO-YACTOTHOI'O

CEI'MEHTHOI'O MOJAEJIIOBAHHAA

YV cmammi Oocnidsxceno enposadiicenHs adanmuHoeo Memooy (DOPMYSAHHS AHCAMONIE CKIAOHUX CUSHATIS,
30CHOBAHO20 HA 6A2aMOPIBHEBOMY PEKYPEHMHOMY UYaACO80-YACMOMHOMY Ce2MeHmy8anHi. Pozenanymo ocHOGHI
npobnemu 8 KOSHIMUGHUX OE3NPOBOOOGUX MEPENCAX 8 YMOBAX OUHAMIYHUX PAdioYaACmMOMHUX CepedosUAx 3 BUCOKUM
pisnem inmepgepenyii, wo nompedye weuokoi adanmayii 00 3MIH Y CHEKMPATbHUX XAPAKMEPUCMUKAX CUSHALLS.
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Ob61pyHmMOoBaHO HeoOXIOHICMb GUKOPUCMANHA A0anmMueHux Qitbmpie ma cneyu@iunux nepemeopets 0Jisi NOKPAUjeHHs
aKkocmi 00poOKU CUSHANIG, 30KpeMma Yy cepedosunyax 3 6UCOKOIO 6apiamuGHICMIO YACMOMHUX XAPAKMEPUCIUK |
HAAGHICIIO NOMYICHUX 3A840.

3anpononosanuii  memoo 6a2amopisne8o20 PeKypeHmHO20 HACOBO-YACOMHO20 CE2MEHMYBANHA  00360JI4€
3MIHIO8AMU MPUBANICIMb YACOBUX Ce2MEHMIB | BUKOPUCOBYBAMU Ce2Menmiy HeOOHAK080i O06ICUHU, WO 3abe3neuyc
2HyuKicmb Yy npoyeci 00pobku cucHanie ma ix adanmayilo 0o nomounux ymos. Taxa adanmugHicmv 0038014€
ONMUMATLHO HANAUWIMOBYBAMU 0OPOOKY ONlsl KONCHO20 OKPeMo20 GUNAOKy, 6PAX08VIOUU KOPOMKOUACHI IMUYIbCU,
00820MPUEATT KOTUBAHHA, A MAKONIC PISHOMAHIMHI MUnu 3a6a0 ma cnomeopeny. Lle 3abe3neuye epexmughe po3oinenHs
YACMOMHUX KOMNOHEHMIG i SHUNCEHHS PiGHs iHmep@epenyii Midc HUMU, WO € 0COONUBO 8ANCTUBUM O 3abe3neyeHHs
BUCOKOI AKOCMI CUSHANY ma cmabilbHOCMI 36 A3KY 6 KOCHIMUBHUX MEPeICax.

Hoseoeno, wo sacmocyeanns adanmusnux @inompis, maxux ax LMS ma RLS, a maxosc wsuokozo nepemsopens
STFT ®yp'e, setisnem i [ inbbepma na pisHux emanax 6a2amopieHesoi 4aco80-4acmomHoi cezmeHmayii 3HauHo niodguwye
3a68a00CMItIKICMb Ma eHepeemuyHy egekmugnicms 0o6pooKu cuenanis. Ilposedenuti NOPIBHATbHUL AHANI3 NOKA3HUKIE 0O
ma nicas Qinempayii ma nepemeopers 0eMOHCMPYE 30inbuents axocmi cuenanie na 14,3—-24,5 % ma 3nudicenns pisHs
wymy na 21,7-29,6 %. Ocobauso egpekmusHum UABUNOCS GUKOPUCTANHS 8eliGNem-NepemBOpeHHsl, sKe 0036015€ MOYHO
BUOLIAMU KOPUCHI 4ACMOMHI KOMHOHEHMU 3 WIYMOBO20 (DOHY, NOKPAWYIOUU NAPAMEMPU CUSHATY 34 PAXYHOK
OUHAMIYHO20 HALAWMYBAHHS NI0 KOHKPEeMHI YMO8U padiocepedosuiya.

Excnepumenmanshi pesynomamu niomeepodicyioms eqQeKmusHicmes 3anponoHo8aH020 Memoody, Nokazyiouu tozo
30amuicme 3abe3neyumu CmabilbHO BUCOKY SKICMb 00POOKU AHCAMONIE CKIAOHUX CUSHANIE HABIMb Y OUHAMIYHOMY
KOSHIMUueHoMy padiocepedosuiyi.

KnioyoBi cnoBa: aHcambni cknagHuWx curHanie, KOrHiTMBHE pagiocepedoBuLUe, YacOBO-4aCTOTHE CerMeHTYBaHHS,
GaraTopiBHEBUI PEKYPEHTHWIA MeTOod, MiXKaHanbHa Ta MiKCMMBOMbHA iHTepdepeHUisi, MiaBULLEHHS 3aBafoCTiKOCTI,
DiNbTPU, NEPETBOPEHHS.

Bershov V., Zhuchenko O.
ADAPTIVE METHOD OF FORMING COMPLEX SIGNALS ENSEMBLES BASED
ON MULTI-LEVEL RECURRENT TIME-FREQUENCY SEGMENT MODELING

The article investigates the implementation of an adaptive method for forming ensembles of complex signals based on
multilevel recurrent time-frequency segmentation. It addresses the key challenges faced by cognitive wireless networks
operating in dynamic radio frequency environments with high levels of interference, necessitating rapid adaptation to
changes in the spectral characteristics of signals. The study substantiates the need for adaptive filters and specific
transformations to enhance signal processing quality, particularly in environments with high variability in frequency
characteristics and significant noise interference.

The proposed method of multilevel recurrent time-frequency segmentation allows for the modification of time segment
durations and the use of segments of varying lengths, providing flexibility in signal processing and adaptation to current
conditions. This adaptability enables optimal signal processing for each individual case, taking into account short-term
impulses, long-term fluctuations, and various types of noise and distortions. This approach effectively separates frequency
components and reduces interference between them, which is crucial for maintaining high signal quality and
communication stability in cognitive networks.

It has been proven that the use of adaptive filters such as LMS (Least Mean Squares) and RLS (Recursive Least
Squares), as well as fast Fourier Transform (STFT), wavelet, and Hilbert transforms at different stages of multilevel time-
frequency segmentation, significantly enhances signal interference resistance and energy efficiency. Comparative
analysis of signal metrics before and after filtering and transformation shows an increase in signal quality by 14,3-24,5%
and a reduction in noise levels by 21,7-29,6%. The wavelet transform, in particular, proved to be highly effective,
allowing for precise extraction of useful frequency components from the noise background and improving signal
parameters through dynamic adjustment to specific radio environment conditions.

Experimental results confirm the effectiveness of the proposed method, demonstrating its ability to ensure consistently
high-quality processing of complex signal ensembles even in dynamic cognitive radio environments.

Keywords: complex signal ensembles, cognitive radio environment, time-frequency segmentation, multilevel recurrent
method, inter-channel and inter-symbol interference, interference resistance enhancement, filters, transformations.

Crarrs Haaiiuwia 1o penakuii 05.08.2024 p.
IpuitnasaTo no apyky 11.09.2024 p.

© V. Bershov, O. Zhuchenko, 2024



