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COMPUTER DIAGNOSTICS OF THE CONDITION OF SHIP ROLLING
BEARINGS DURING THEIR OPERATION

Introduction

The primary purpose of shipboard vehicle
diagnostics is to promptly detect deviations of
monitored parameters from the standard values, identify
and localise detected defects, develop operating modes
and strategies, and forecast resources.

The practical focus of such work is to change the
overhaul cycle for diagnostics by switching from
working according to the schedule to working
according to the actual condition of the equipment.
This optimisation of the monitoring process helps
improve the equipment's reliability and uptime. This
provides an additional economic effect, as in addition
to reducing the labour intensity of diagnostic work, it
eliminates the need to shut down equipment.
Intelligent support for monitoring the technical
operation of shipboard equipment is based on
assessing the transformation of material structure
deformation into a fixed signal of various origins. A
combination of statistical, dynamic, deterministic and
stochastic models with discrete and continuous time
is used to increase monitoring efficiency. This makes
it possible to replace analytical representations with
digitalisation with fixed loads exceeding the
normative ones.

The functional purpose of rolling bearings is to
ensure shaft rotation with a minimum friction
coefficient. Technical diagnostics by regulatory
documents is the determination of the technical
condition of an object. This is a higher assessment of
the remaining service life than non-destructive testing
and flaw detection methods. Technical diagnostics

refers to the range of values used to determine the
technical condition of an object. Non-destructive
testing methods and the analysis and establishment of
pattern changes in performance characteristics
regulate it. Its tasks include finding the places and
causes of faults and predicting the current state.
Monitoring involves observing and checking the
quality of equipment with mandatory notification.
Residual life is the total operating time of an object
from the moment of monitoring its technical
condition to the limit state. In this case, the limit state
of the equipment is understood as a condition in
which further operation of the equipment is
impractical. Assessment of the residual life in the
absence of peak information and extreme loads on the
equipment during overhaul cycles is subject to several
limitations and inaccuracies caused by dynamic
environmental changes, i.e., a risk situation.

Problem statement

Regular operation of ship power plants depends on
the proper functioning of their main components:
cylinder-piston group, fuel equipment, gas turbine
chargers, bearings, etc. Among the failures of ship
power plant components, the most common are
rolling bearing failures. Ship rolling bearings are
located in the propeller shaft support bearing, the
main engine frame bearings, and the thrusters.
Damage to ship rolling bearings is detected by
measuring vibrations. Wear causes changes in the
centre of mass displacement trajectory and the
appearance of shock impulses. The spectrum of
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vibration signals contains the necessary information
about the occurrence and development of bearing
defects during their operation. The variety of
statistical characteristics of vibration signals and the
ambiguity of their trends complicate their practical
use. The use of the principal component method is
promising for this purpose.

Objective of the work is the search for and
practical use of new information and diagnostic
parameters for monitoring vibration signals in ship
rolling bearings based on their computer
mathematical processing. Based on this, an important
issue in the operation and maintenance of vehicles is
the creation of models, methods and diagnostic
techniques.

Analysis of the latest research and
publications

The information parameters for predicting the
residual life can be significant damages manifested in
the form of corrosion, wear, and deformation creep
and parameters of related processes, such as vibration
levels, leakage rates, the temperature of friction units,
and product consumption relative to average values.
The continued interest in the problem of the residual
life of equipment is manifested in the availability of
publications and reviews on various industry topics
[1-3]. Based on the results of numerical methods of
fracture mechanics, a method for predicting the
residual life of bearings of rotating mechanisms is
proposed in [4]. The method is based on noise
reduction of wavelet packets and combining
information in the form of complex characteristics of
bearing life. The further development of methods for
estimating the residual life based on the results of
numerical methods of fracture mechanics was
initiated in [5], where the problem of fatigue failure
of hydraulic turbine parts after a long service life was
considered. A failure intensity model was developed
based on the stress-strength interaction. Paper [6]
presents the results of developing methods for
estimating strain fields, stresses, and residual life
using experiments and numerical methods of fracture
mechanics. In [7], it is shown that machinery and
equipment failures are caused mainly by the
intersection of critical states defined by the limit
values of stresses and strains. The development of
methods for non-destructive testing and technical
diagnostics of the condition of equipment operating
under pressure is described in [8]. In [9], an acoustic-
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emission method is proposed for predicting the
degree of degradation of mechanical properties and
residual life of metal structures under complex
deformation stresses. A method for determining the
residual life based on a polynomial approximation of
the results of acoustic measurements and the
construction of boundary curves separating the
serviceability region from the fracture region is
proposed. The experience of using non-destructive
testing to assess the residual life of petrochemical
transport equipment is described in [10]. Among the
methods of non-destructive testing of the residual life
and their practical applications, it is interesting to note
[11], which formulates an approach to determining
the kinetics of crack growth. Paper [12] shows that,
based on the frequency of maintenance, an increase in
the reliability of determining the residual life of the
equipment is achieved by dynamically adjusting the
time interval between diagnostic processes. Paper
[13] analyses data on the operation of reactor
equipment and their compliance with existing
standards and regulatory frameworks. The authors
established the need to develop uniform rules for
selecting physical parameters that characterise the
state of equipment, considering its degradation. To
solve the problem of modelling the maintenance of
complex electromechanical equipment, a model for
predicting the residual life is proposed in [14]. The
level of sensitivity of these methods does not allow us
to detect the condition of objects and identify areas of
future destruction. A reliable method of monitoring
long-life equipment during its operation can be
obtained by combining subjective expert and
objective elements of technical diagnostics with
methods of processing available information using
mathematical modelling and probabilistic dynamics.
The main diagnostics directions, including the
information materials analysis, are shown.

Summary of the main material

The rules for the operation of ship power plants
stipulate that after the bearings have been installed,
they must be adjusted and lapped by running the
engine. The condition of rolling bearings is
monitored during maintenance or overhaul. As the
objects of study, we used marine rolling bearings of
the turbocharger VTR304P11/021 of the main
engine MAN B&WL32/40 Fig. 1.
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Fig. 1. Design features of the ship's turbocharger rolling bearing VTR304P11/021

Technological arrangement: 12 balls of 4 mm in
two rows on the compressor side and 12 rollers of 14
mm in one row on the turbine side. The statistical
characteristics of vibration signals during operation
of these bearings were used as research materials. The
principal component method was used as research
methods, which consists in combining statistical features
of different dimensions and obtaining new patterns.

The fundamental phenomena and concepts that
can be used in the model of monitoring the state of
rolling bearings can be represented either in a model
with one degree of freedom, or in a model with
several degrees of freedom, or in the model of an
inelastic string. The fundamental phenomena of the
concept of spectral statistical processing of vibration
signals in their meaningful interpretation can be
considered in the form of a propagating output signal,
depending on both time and frequency, and their

Fourier images
(o) = [u@e' dt; u(t)=—[u(we “do,
2

where u(f) time offset function; u(w) — frequency
offset function

The discrete structure of nanoscale objects is
characterised by proximity [15,16]. The equation of
motion of microparticles has the form

mii(n,t) + Z(D(n,n Nu(n',t)=q(n,t),

n

1

where n, n” — numbers of interacting particles, ®(n, n") —
power constants, u(n, t) — displacement.

At a high sampling rate in such a model,
oscillatory signals can be filtered out and the most
informative ones selected.

The invariance of energy with respect to
translation makes it possible to replace the motions of

atoms with the motion of the centre of mass in
material objects of finite dimensions. The nodes of
such a cell can contain domains, fullerenes, molecular
clusters, etc. [17-19]. The kinematic variables of such
a model are not only the longitudinal and transverse
displacements of masses, but also the angle of
rotation in the same plane. This state with these
variables is close to rotational.

Having learnt through g(n) and p(n) generalised
forces, we obtain the equation of motion of the whole
cell

mii(n)+ Y 0% (n—nu(n') + Y 0 (n—n'm(n") = g(n),

n n

i)+ Y 0 (n—nu(n)+ Y ! (n—nm(n') = u(n),
nl n'

here u(n) — centre of mass movement, M(n) —

displacement of particles in the middle of the cell.

~ m&(n,1)+myErn(n,2)
n(n) = 7 ,

u(n)= i[mloa(n,l) +myo(n,2)],
m
where I — moment of inertia of the cell,  and &, —
coordinates of particles relative to the centre of mass,
m=m, +m,, I=m1§12 +m2§§

Solving these equations allows us to find the
equation of the energy spectrum of a continuous
medium.

Another type of theories of diagnostic signals
during the operation of rolling bearings belongs to the
molecular theory of rolling, which is based on the
energy interaction of contacting surfaces. Moving to
larger scales of interacting bodies during rolling, it
should be noted that the rolling friction force itself
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depends on the area of physical contact, being a
function of pressure, sliding speed, temperature and
other factors. Vibration diagnostics of rolling bearings
in the process of dynamic and static loads occurring on
operating equipment is carried out by direct spectrum
analysis methods, envelope spectrum methods, peak-
factor methods and shock pulse methods. Vibration
diagnostics of rolling bearings of power plants is carried
out by analyzing a large number of diagnostic
parameters. A malfunction leads to a vibration of the
turbocharger shaft torque with a characteristic frequency
determined by the formula

Dy, COS@J

f=05Np -fr[l— o

where Dj, — ball diameter, D. — diameter of the circle
drawn through the centres of the balls, 6 — ball contact

angle, f. — bearing rotation speed, N — number of
balls in the bearing.

The configuration of a ball bearing with a
developing defect is shown in Fig. 2, and the bearing
parameters are given in Table 1.

Fig. 2. Ball bearing with a defect in the outer ring

Table 1
Parameters of the VITR304P11/021 turbocharger rolling bearing and characteristic
vibration frequency of the outer ring point defect
Dy, mm D., mm Np 0, rad f, Hz 1, Hz
14 90,9 12 0 485 2461,9

The diversity of causes and statistical features of
vibration signals leads to the need for their complex
integration and appropriate mathematical processing
of experimental information. A promising method for
solving this type of problem is the principal
component method, which allows for the extraction
of useful signals when their amplitude is lower than
the noise level.

The principal component method is one of the
main methods of reducing the dimensionality of data
with the least loss of quantitative information. The
calculation of the principal components is reduced to
the calculation of the singular value decomposition of
the data matrix or to the calculation of the eigenvectors
of the covariance matrix. In the case of vibration
diagnostics, the formalisation of the principal component
method is the construction of an orthogonal transformation
of the coordinates of a given multidimensional random
variable, which makes the correlation between individual
coordinates zero. Principal component analysis is the
calculation of the principal components to change the
structure of the input data using several basic iterations.
In practice, the method begins with solving the
problem of approximating a finite set of points by
lines and planes.

Technologically for a set of vectors xi, x2, ... ,
Xm € R" linear varieties take the following values
Sk € R", in which the sum of squares of deviations x;
from S; 1s maximal, i.e.

m
Zdist2 (x;,8;) — min
i=1
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where k=0, 1, 2, ..., n— 1 linear diversity in R", dist
(xi, Sk) euclidean distance

The calculation of the principal components is
reduced to a singular value decomposition of the
eigenvectors of the covariance matrix of the original
data. The formalisation of the principal components
method is the construction of an orthogonal
coordinate transformation, which will make the
correlations between hotel coordinates turn to zero.

Technically, at each 24-1 step, the projections on
the previous principal component are subtracted. The
found vectors are orthonormalised as a result of
solving the optimisation problem. The found vectors
are orthonormalised as a result of solving the
optimisation problem.

The mathematical content of the principal component
method is reduced to the spectral decomposition of the
covariance matrix. The implementation of the
methodology is associated with continuous periodic
registration of control parameters and comparison of the
results with the reference values.

Linear varieties are defined by a set of principal
components, vectors {ai...ar1} and the vector a,
which is defined by minimising So:

L R 2
a, = arg (Zdzstz(xi,So)j=argm1n£2|xl- — ay|
aoeR" i=1 aoeRn i=1

The variational definition of the mean as the point
that minimises the sum of squares is

1,
A __in
m -
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The projection onto these axes retains the most
information. The first principal component maximises
the sample variance of the data projection. The task is
to find an orthogonal transformation to a new
coordinate system that maximises the sample
variance of the data along the first coordinate.

The second principal component, provided that the
first coordinate is orthogonal, maximises the sample
variance of the data along the second coordinate.

K-th principal component under the condition of
orthogonality k-1 coordinates maximises the sample
variance of the data along the values k-1 coordinates.
Solving the problem of the best approximation yields
the same set of principal components as the search for
orthogonal projections with the greatest scatter. The
task of determining the principal components is
reduced in its methodological plan to the task of
diagonalising a sample of the covariance matrix.

The operations of the methodology of using the
principal components method and finding specific
components are

— centre the data by subtracting the average
x; :=xi—X;, where symbol :=
definition;

— calculating the first principal component by
solving the problem

m
a, = argmin[2|xi —-a (al,xi)|2j ;

=1 \i=1

means equality by

— subtracting the projection to the first principal
component from the data
X =x —a(ax,);
— finding the second principal component as a
solution to the problem
L 2
a, = argmin Z|xi —az(az,xi)| ;
jaal=1 \i=1
— subtracting the projection on the (k—1)
principal component
x; =X = apy (@ x);

— finding the k-th principal component

m
. 2
a, = argm1n(2|xl. -a, (ak,xi)| j

larl=1 \i=1
The resulting vectors are {ai,..., a1} orthonor-
malised. Thus, the methodology for finding the
principal components is to subtract the projection to

the previous principal component at each preparatory
step (2k—1).

Experiment

The measurements are carried out on the ship's
bearing housing, namely in the lower part of the
bearing assembly, because this is where the loads on
the assembly are at their highest. The signals from the
sensors can be digitised and recorded for trend
analysis. An accelerometer is used to record vibration
levels. A vibration signal of 6 s duration was received
daily for 10 consecutive days. A bearing malfunction
occurred, which led to its failure.

A visualisation of the vibration signals in the time
domain is shown in Fig. 3. The colour indication is
used to clearly distinguish the vibration signals
obtained in each individual dimension. The vibration
signals in the time domain show a tendency to
increase the signal impulsivity.

0.8

amplitude, p.u.

1 2 3 4 5 6 7 8 9 10
measurement number (day)
Fig. 3. Visualisation of vibration signals in the time

domain for successive measurements on a bearing with
a gradual increase in its misalignment

Results

of statistical characteristics of
vibration signals in the time domain, such as standard
deviation (Std), skewness (Skewness), kurtosis
(Kurtosis), full range of oscillations (Peak2Peak),
Root Mean Square (RMS), CrestFactor, ShapeFactor,

ImpulseFactor, MarginFactor, Energy, showed an

Calculations

increase in their values during the accumulation of
damage. This indicates that they can be potential
indicators of bearing degradation (Fig. 4, Table 2).
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Fig. 4. Evolution of the dimensionless statistical characteristics of vibration signals during
the operation of a sliding bearing
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Table 2

Statistical characteristics of vibration signals of a ship bearing in the presence of a developing point
defect in the outer ring

E -
£ < 5 g g
g g z S = 3 Z & 3
.- < 2 £ e Z g g 2 2 5
g5 | 3 & g S 12| 5| & | £ | 3 &
1 0,0572 -0,0089 1,8192 0,1999 | 0,0572 | 1,7476 | 1,155 2,019 40,777 9,816
2 0,0578 0,0061 1,7982 0,2165 | 0,0578 | 1,8889 | 1,153 2,177 43,398 10,019
3 0,0603 0,0874 2,2855 0,3484 | 0,0603 | 3,2386 | 1,161 3,785 71,136 10,934
4 0,0690 0,1468 3,8063 0,6145 | 0,0689 | 4,5265 | 1,178 5,416 86,692 14,967
5 0,0801 0,2644 4,4138 0,7800 | 0,0801 | 5,1182 | 1,185 6,153 87,080 21,325
6 0,0930 0,2547 5,3490 1,0849 | 0,0930 | 5,7282 | 1,193 6,932 86,681 30,193
7 0,1198 0,4314 16,8085 | 2,1631 | 0,1198 | 7,991 1,251 | 10,430 | 106,292 | 52,310
8 0,1508 0,8135 29,2221 | 3,1804 | 0,1508 | 9,995 1,329 | 13,826 | 123,682 | 80,421
9 0,1958 0,7147 39,4535 | 4,3363 | 0,1958 | 10,885 | 1,456 | 16,309 | 123,719 | 134,515
10 0,2640 0,7340 47,5874 | 5,4602 | 0,2460 | 11,247 | 1,596 | 18,239 | 120,580 | 208,424
The wvariety of statistical characteristics of
o . 60
vibration signals creates the problem of selecting the J:
most reliable and informative characteristic for bearing 50t o
condition monitoring. Each individual characteristic Q/
may be more sensitive for some types of defects and 40 7
/

less sensitive for others. Comprehensive monitoring
of the condition of the mechanism in terms of the
ability to detect various types of defects should be
universal. Therefore, for reliable monitoring, the
entire set of vibration signal characteristics available
for analysis should be taken into account and
analysed. This, in turn, makes it difficult to interpret
the information obtained in this way. To solve this
problem, it is proposed to combine all the analysed
statistical characteristics into one generalised one,
using the principal component method.

The Principal Component Analysis (PCA) method
is used to reduce the dimensionality and combine the
statistical characteristics of vibration signals in the
time domain, which are given in Table 2. The
calculations of the principal components of the
vibration signals showed their acceptability for
assessing the state of the turbocharger bearing, and
the dependence of the change in the first principal
component on the accumulation of damage was
monotonically increasing, in contrast to other
principal components, whose dependence is unstable
oscillatory. Thus, the first principal component is a
potential combined indicator of the state of the
turbocharger bearing. The graph in Fig. 5 shows that
the first principal component increases monotonically
as the bearing approaches failure.

PCA1l
) W
=) S

1 2 3 4 5 6 17 8 9 10
measurement number (day)

Fig. 5. First Principal Component as a condition
indicator for turbocharger bearings

The spectral kurtosis is considered a powerful tool
for predicting the condition of bearings in the
frequency domain. The spectral kurtosis is a
statistical value used in the frequency domain to
determine the impulse response of a signal. It is a
dimensionless quantity and compares the data
distribution to a Gaussian distribution. To visualise
the changes in spectral kurtosis over time, let's plot
the spectral kurtosis value as a function of frequency
and day (number) of measurement (Fig. 6).

The danger of the fault is indicated on the colour
scale. It is a measurement number normalised on a
scale from 0 to 1. At the beginning of the monitoring
process, when the ship's bearing is in good condition,
no peaks are observed.
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Fig. 6. Dependence of the spectral excess
on the frequency and measurement number
of vibration signals with a gradual increase

in the unbalance of a ship's bearing

The appearance of a pinhole defect is manifested in
the appearance of an oscillatory component of the
spectral excess, the value of which increases with the
approach of bearing failure. It can be clearly seen that
the value of the spectral excess near the characteristic
frequency of the defect of 2.46 kHz (Table 1) gradually
increases as the bearing condition deteriorates.

The spectral excess becomes larger in the
frequency band where the fault signal is dominant and
is zero in the frequency band where the spectrum is
dominated by normal vibration. Thus, the spectral
excess makes it possible not only to judge the degree
of damage to a ship's bearing, but also to observe the
dynamics of the defect development and make a
relative forecast of the bearing's service life.

Conclusions

The structure of the vibration spectrum is
investigated on the basis of experimental data on
vibration monitoring of the operational properties of
ship rolling bearings of turbochargers and a large
amount of digital information on the parameters of
vibration signals preceding destruction. The principal
component method was used to analyse the structure
of the vibration spectrum.

A new information parameter for vibrodiagnostics
of point defects based on the analysis of the
magnitude of the change in the time of the first
principal component as it approaches the state of
fracture is revealed and experimentally confirmed.

An information parameter for predicting the state
of ship bearings based on the analysis of frequency
changes in the spectral excess of the vibration signal
when approaching the state of failure is proposed. The
visualisation of changes in the computer diagnostics
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of this parameter has confirmed the possibility of
observing the dynamics of the development of point
defects.

The paper considers a real practical situation of
vibration monitoring of a point defect in the outer ring
of a bearing. The study of the applicability of the
principal component method to other types of defects
performed in this paper has shown their prospects for
vibration monitoring of defects located on the inner ring
of a bearing and during ball dropout from the cage.
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Hlapko O. B., Crenanuuxos /I. M., lapko A. O., filuenko A. B.
KOMIT'HOTEPHA JIATHOCTHUKA CTAHY CYJHOBHUX NITHIAITHUKIB KOYEHHA
PU IX EKCIIVIYATALII

3anpononosano pezyromamu cmamucmuunoi 00poOKU GIOPAYIUHUX CUSHANIB, OMPUMAHUX NI0 4aAC OIASHOCMUKU
CYOHOBUX eHepeemUYHUX YCMAHOB0K NPOMA20M npoyecy ekcniyamayii. Biominnoro ocobaugicmio monimopuuey
MEeXHIYHO20 CMAHY elNeMeHmi8 CYOHOBUX eHepIeMmUYHUX YCMAHOB0K € HesusHaueHicmv y ikcayii ma mpusanocmi
eKcmpemManbHuxX Hasanmaicenv. Busnaueno ocobnusicms KOMN 10MEPHOL 8i6p00iazHOCMUKy POMOPHUX MEXAHIZMIS,
AKA € Y MO MOMY WO 30Kpema QIi3udHUX UMIPIOBAHb GIOPAYIUHUX CUSHANIE NOMPEOYEMbCS X BUKOPUCMAHHA Y
MAMEMAMUYHUX MOOENAX Qi3uuH020 CMaHy RIOWUNHUKY. Bukomano pospaxynku cmamucmuuHux Xapakmepucmux
BIOpayiHUX CUSHANI@ Y 4acosiil obracmi, makux Kk cmanoapmue eioxunenns (Std), acumempisn (Skewness), excyec
(Kurtosis), nosnuu poszmax xoausamv (Peak2Peak), cepeonvoxeéadpamuune snauenns (RMS), xpecm-gpaxmop
(CrestFactor), ¢opm-paxmop  (ShapeFactor), imnynochui ¢axmop (ImpulseFactor), epanuunuii  paxmop
(MarginFactor), enepeis (Energy). Pisnomanimmsa OiaeHOCMUYHUX CUSHATIE HABOOUMb 00 HeoOXIOHOCMI 31umms
NOKA3HUKIB Pi3HOT po3mipHOCmi be3 empamu HAA6HOI iHghopmayii 8 EOUHULL Y3a2albHIOIOYUL NOKA3HUK, 018 4020 8 pOOOomi
BUKOPUCAHO Memo0 207108HUX KOMNOHeHm. ORuUcano Memooono2iio cCmamucmuyHo20 ONpayto8aHHs ma NpaKmuyHy
peanizayito  0iaeHOCMUKU GiOPAYIIHUX CUCHANIE NpU  AHALI3  eBONIOYIl  NOUWIKOONCEeHb NIOWUNHUKIE KOYEeHHS
mypbonacHimay4ie CYOHOBUX eHepeMUYHUX YCMAHOBOK. BuseieHo U eKCnepumMeHmanibHO RNiOMEEepO#CeHO HOBUL
KoMn tomepHutl inpopmayitinuti napamemp 8i6pooiacHOCMUKU, 3aCHOSAHUL HA AHANIZT NEPUO2O 20106HO20 KOMHNOHEHMA
Y uacoeoi obracmi ma CneKmpaibHo2O0 eKcyecy 6 uacmomuoi obaacmi. Buxopucmanmsi Hosux OiacHOCMUYHUX
napamempié Haoae 3mo2y Hi MilbKu CYOUmMu Npo CMyneHb NOUWKOONCeHb NIOWUNHUKA KOYeHHs, a I cnocmepieamu
OUHAMIKY pO36UMKY OeqheKmy ma pobumu GIOHOCHIU NPOSHO3 pOHOU020 pecypcy NIOWUNHUKA KoyenHs. Pozensnymo
PeanvHy NpaKmudHy CUmyayilo — KOMN 1OmepHy OIa2HOCMUKY GiOpayitiHux CUcHaié CYOHO8I NIOWUNHUKU KOYEHHS.
MouKk08020 Oepekmy 308HIUIHLO20 Oehekmy Kinbys RIOWUNHUKA KOYeHHsA. Busnauenns sacmocosnocmi memody
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20JI0BHUX KOMNOHeHm 00 IHWux 6udig deghekmy noxazanio ix nepcnexmusHicmv 015 6iopoodiacHocmuyi Oepexmis,
PO3MAUOBAHUX HA SHYMPIUHbOMY KilbYl NIOWUNHUKA T NIOYAC BUNAOAHHS KYIbKU 3 000UMU.

Knro4yoBi cnoBa: KoMmm'lOTepHa fAiarHOCTMKa, BibOpauilHi curHanm, CygoHOBI MIOWMNHWKM KOYEHHS, eKcniyarauis,
iHTenekTyanbHi cuctemu, iHpopmadinHi napameTpum

Sharko O., Stepanchikov D., Sharko A., Yanenko A.
COMPUTER DIAGNOSTICS OF SHIP ROLLING BEARINGS CONDITION DURING
THEIR OPERATION

The results of statistical processing of vibration signals obtained during diagnostics of ship power plants during the
operation process are offered. A distinctive feature of monitoring the technical condition of elements of ship power plants
is the uncertainty in the fixation and duration of extreme loads. The peculiarity of computer vibration diagnostics of
rotary mechanisms is determined, which is that, in particular, physical measurements of vibration signals require their
use in mathematical models of the physical state of the bearing. Calculations of statistical characteristics of vibration
signals in the time domain, such as standard deviation (Std), asymmetry (Skewness), kurtosis (Kurtosis), full range of
oscillations (Peak2Peak), root mean square value (RMS), cross factor (CrestFactor), form- factor (ShapeFactor), impulse
factor (ImpulseFactor), marginal factor (MarginFactor), energy (Energy). The variety of diagnostic signals leads to the
need to merge indicators of different dimensions without losing available information into a single generalizing indicator,
for which the method of principal components is used in the work. The methodology of statistical processing and practical
implementation of diagnostics of vibration signals during the analysis of damage evolution of rolling bearings of
turbochargers of marine power plants are described. A new computer information parameter of vibration diagnostics
based on the analysis of the first principal component in the time domain and spectral excess in the frequency domain
has been identified and experimentally confirmed. The use of new diagnostic parameters makes it possible not only to
judge the degree of damage to the rolling bearing, but also to observe the dynamics of the development of the defect and
make a relative forecast of the working life of the rolling bearing. A real practical situation is considered — computer
diagnostics of vibration signals of ship rolling bearings of a point defect of an external defect of a rolling bearing ring.
Determining the applicability of the principal component method to other types of defects showed their potential for
vibrodiagnosis of defects located on the inner ring of the bearing and when the ball falls out of the holder.

Keywords: computer diagnostics, vibration signals, ship rolling bearings, operation, intelligent systems, information
parameters
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