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EVALUATING THE CHARACTERISTICS OF THE VITSM SPECTRUM SENSING
METHOD IN COGNITIVE RADIO NETWORKS

Introduction

The spectrum sensing problem has transformed
significantly with the emergence of cognitive radio and
opportunistic spectrum access concepts. These
developments have added new layers of complexity to
the challenges encountered by cognitive radio systems.
This paper provides an in-depth survey of spectrum
sensing methodologies designed specifically for
cognitive radio networks. This research introduces
the notion of multi-dimensional spectrum sensing by
investigating various facets of the spectrum sensing issue
from a cognitive radio standpoint. It underscores the
challenges linked to spectrum sensing and evaluates the
methods that enable it. Furthermore, the paper explores
cooperative sensing concepts and their different forms,
discusses external sensing algorithms and alternative
methods, and examines the statistical modeling of
network traffic to forecast primary user behavior.

Spectrum sensing is a key task in the development
of cognitive radio, enabling the identification of
usage patterns across dimensions such as time,
frequency, space, and angle. This capability is
essential for efficiently utilizing available spectrum.
However, continuous spectrum sensing is demanding
for wireless devices. To address this, we propose a
monitoring platform that offers spectrum sensing as a
service. This service utilizes geographically
distributed spectrum sensors, implemented via
software-defined radio (SDR). These sensors perform
sensing operations and send the results to a
centralized storage and computing platform, which
then distributes the data to requesting devices.
Although this service cannot eliminate the need for
spectrum sensing by wireless terminals, it can
significantly improve energy efficiency and extend
standby times by instructing mobile devices to

conduct sensing only when and where unused radio
bands are expected.

One of the most critical components of the
cognitive radio concept is the ability to measure,
sense, learn, and be aware of parameters related to
radio channel characteristics, spectrum availability,
power, operating environment, user requirements,
applications, available networks, local policies, and
other operating restrictions. In cognitive radio
terminology, primary users are defined as users with
higher priority or legacy rights over a specific part of
the spectrum. In contrast, secondary users, who have
lower priority, utilize the spectrum in a manner that
does not interfere with primary users. Therefore,
secondary users need cognitive radio capabilities to
reliably sense the spectrum, determine if it is being
used by primary users, and adjust radio parameters to
exploit the unused spectrum.

This paper focuses on spectrum sensing, the most
crucial element in establishing cognitive radio.
Spectrum sensing entails gaining awareness of
spectrum usage and detecting the presence of primary
users within a geographical area. This awareness can
be obtained through geolocation and databases,
beacons, or local spectrum sensing by cognitive
radios. Beacons, for instance, transmit information
about spectrum occupancy and other advanced
features like channel quality. The emphasis of this
paper is on spectrum sensing performed by cognitive
radios because of its wider application areas and
lower infrastructure requirements. Other sensing
methods are also discussed as necessary.

Traditionally, spectrum sensing has been viewed
as the measurement of spectral content or radio
frequency energy over the spectrum. In cognitive
radio, however, this term encompasses a broader
scope, involving the acquisition of spectrum usage
characteristics across multiple dimensions such as
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time, space, frequency, and code. It also includes
identifying various signal types occupying the
spectrum, including their modulation, waveform,
bandwidth, and carrier frequency, among other
attributes. This comprehensive approach necessitates
advanced signal analysis techniques and increased
computational complexity.

In summary, this paper explores the complex
challenges associated with spectrum sensing in
cognitive radio networks. It reviews current methods
and introduces new ideas to improve our
understanding and implementation of effective
spectrum sensing strategies. By analyzing and
exploring different approaches in detail, this study
aids in the continuous development and optimization
of cognitive radio systems, ensuring that the spectrum
is utilized efficiently and reliably.

Analysis of recent research and publications

In recent years, we've witnessed notable progress
in the realm of spectrum sensing within cognitive
radio networks. This surge in advancement is largely
propelled by the growing necessity to enhance the
efficiency and dependability of spectrum utilization.
Researchers have delved into an array of methodo-
logies, each presenting unique advantages and
hurdles. This review highlights some of the key
methods that have been prominently featured in
academic discussions, namely Energy Detector Based
Sensing, Waveform-Based Sensing, Cyclostationarity-
Based Sensing, and Matched-Filtering.

Energy Detector Based Sensing is one of the most
common methods due to its simplicity and ease of
implementation. It works by measuring the energy of
the received signal and comparing it to a predefined
threshold to detect the presence of a primary user.
Despite its straightforward approach, this method is
highly susceptible to noise and interference, which
can lead to false alarms and missed detections [1].
Recent studies have proposed various enhancements,
such as adaptive thresholding and cooperative
sensing, to improve its robustness and reliability [2].

Waveform-Based Sensing relies on the known
patterns of the primary user’s signal. By comparing
the received signal to these known patterns, this
method can accurately detect the presence of primary
users [3]. This approach is highly effective when the
primary user’s signal characteristics are well-known
and stable. However, its performance can degrade in
the presence of signal variations or when the exact
waveform is not known. Recent research has focused
on developing more adaptive algorithms that can
handle a wider range of signal variations and improve
detection accuracy [4].

Cyclostationarity-Based Sensing takes advantage
of the cyclostationary properties of the primary user’s
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signal, such as periodicity in the mean and
autocorrelation. This method is capable of
distinguishing between different types of signals and
is less affected by noise compared to energy detection
[5]. However, it requires complex signal processing
and higher computational resources. Recent
advancements have aimed at optimizing the
computational efficiency of cyclostationary feature
extraction and developing more sophisticated
algorithms to enhance detection performance in low
signal-to-noise ratio (SNR) environments [6].

Matched-Filtering is considered the optimal
detection method when the primary user’s signal is
known. It works by correlating the received signal
with a known template of the primary user’s signal,
providing the highest detection probability for a given
SNR [7]. Despite its optimal performance, matched-
filtering requires precise knowledge of the primary
user’s signal and can be computationally intensive.
Recent publications have explored techniques to
reduce the computational burden and adapt matched-
filtering for scenarios with partial or imperfect
knowledge of the primary user’s signal [8].

Each of these methods has been extensively studied
and improved upon in recent research. For instance,
hybrid approaches combining multiple sensing techniques
have been proposed to leverage the strengths of each
method while mitigating their individual weaknesses
[9]. These hybrid methods aim to provide more robust
and reliable spectrum sensing by integrating information
from different sensing algorithms.

The ongoing research in spectrum sensing methodologies
highlights the importance of developing adaptive and
efficient techniques to meet the dynamic and diverse
requirements of cognitive radio networks. Future
work is likely to focus on further enhancing the
reliability and efficiency of these methods, exploring
new signal processing techniques, and integrating
machine learning approaches to improve the overall
performance of spectrum sensing in cognitive radio
environments [10].

Problem Statement

The rapid expansion of wireless communication
technologies has led to an unprecedented demand for
spectrum resources. Traditional static spectrum
allocation policies have proven inadequate, resulting
in significant underutilization of available spectrum
bands. This inefficiency has prompted the exploration
of dynamic spectrum access solutions, such as
cognitive radio networks (CRNs), which allow
secondary users to exploit vacant spectrum bands
opportunistically [1]. Despite the promise of CRNs,
effective spectrum sensing remains a significant
challenge.
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One of the primary issues in spectrum sensing is
the accurate detection of spectrum holes without
causing interference to primary users. Traditional
methods, including energy detection, waveform-
based sensing, cyclostationarity-based sensing, and
matched filtering, each have their own set of
limitations. Energy detection, for example, is highly
susceptible to noise, leading to high false alarm rates,
especially in low signal-to-noise ratio (SNR)
environments [2, 3]. Waveform-based sensing and
matched filtering require prior knowledge of the
primary user’s signal, which may not always be
available or accurate [4, 5].

The variability of wireless environments further
complicates spectrum sensing. Factors such as fading,
shadowing, and varying interference levels can
significantly impact the performance of traditional
sensing methods. Cyclostationarity-based sensing,
while robust to noise, demands high computational
resources and complex signal processing, making it
less feasible for real-time applications in dynamic
environments [6, 7]. These challenges necessitate the
development of more adaptive and efficient spectrum
sensing techniques.

Recent advancements have introduced the concept
of Variable Threshold Sensing (VTS), which
dynamically adjusts the sensing threshold based on
the observed noise level. This adaptive approach aims
to enhance detection accuracy and reduce false alarm
rates, addressing some of the key limitations of
traditional methods [8]. However, comprehensive
evaluations of VTS under various operational
conditions are essential to validate its effectiveness
and identify areas for further improvement.

Another critical issue is the integration of
spectrum sensing methods into the overall framework
of CRNs. Effective spectrum sensing must detect the
presence of primary users and provide reliable
information to support spectrum management
decisions. This includes real-time adaptation to
changing network conditions, efficient allocation of
spectrum  resources, and minimization of
interference. The interplay between spectrum sensing
and other cognitive radio functions is crucial for the
seamless operation of CRNs [9].

Moreover, the increasing complexity of wireless
environments, with the proliferation of diverse
devices and services, underscores the need for
advanced spectrum sensing techniques. Traditional
methods may not suffice in scenarios with
heterogeneous network conditions and varied user
requirements. Therefore, there is a pressing need for
innovative solutions that can adapt to these
complexities and ensure reliable spectrum access for
secondary users [10].

The evaluation of the VTSM spectrum sensing
method in different scenarios, including varying SNR
conditions, diverse primary user signals, and
fluctuating noise environments, is critical. Such
evaluations will provide insights into the practical
applications of VTS and its potential to enhance the
performance of CRNs. By comparing VTS with
traditional methods, this research aims to highlight its
advantages and limitations, contributing to the
ongoing development of more effective spectrum
sensing strategies [11].

In conclusion, the development of robust and
efficient spectrum sensing methods is vital for the
successful deployment of cognitive radio networks.
The VTSM spectrum sensing method offers a
promising approach, but thorough analysis and
optimization are required to ensure its efficacy in
real-world applications. This study aims to address
these challenges by providing a comprehensive
evaluation of VTS, thereby contributing to the
broader understanding and advancement of cognitive
radio technologies [12].

The purpose of the article

The goal of this article is to examine how the
Variable Threshold Sensing (VTS) method performs
in cognitive radio networks. Given the ever-changing
nature of wireless environments and the need for
efficient spectrum use, it’s important to look into
advanced spectrum sensing techniques that can adjust
to different conditions. This study gives a detailed
analysis of VTS, highlighting its potential benefits
over traditional spectrum sensing methods and its
ability to enhance the accuracy and reliability of
spectrum detection.

Another important goal of this research is to
compare the VTS method with well-known spectrum
sensing techniques like energy detection, waveform-
based sensing, cyclostationarity-based sensing, and
matched filtering. By thoroughly evaluating these
methods under various signal-to-noise ratio (SNR)
conditions, primary user signal types, and noise
environments, this article aims to pinpoint the specific
situations where VTS performs better than other
methods. This comparative analysis will offer practical
insights into the applications of VTS and help steer
future research and development in this area.

Lastly, the article aims to contribute to the broader
understanding of cognitive radio networks by
examining the integration of VTS with other
spectrum management strategies. By assessing how
VTS can enhance overall spectrum efficiency and
reduce interference in CRNs, this study provides a
foundation for further innovation and optimization in
cognitive radio technologies. Ultimately, the findings
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of this research will support the ongoing efforts to
develop more robust and effective spectrum sensing
solutions, ensuring the successful deployment and
operation of cognitive radio networks.

Summary of the main material

This section provides a detailed description and
mathematical characterization of existing spectrum
sensing methods used in cognitive radio networks
(CRNs), along with a comparative analysis based on
key performance criteria. The methods discussed
include Energy Detector Based Sensing, Waveform-
Based Sensing, Cyclostationarity-Based Sensing,
Matched-Filtering, and Variable Time Segment
(VTS) Sensing.

Energy Detector Based Sensing (EDS) is one of
the most widely used methods due to its simplicity
and low computational requirements. It measures the
energy in the received signal and compares it to a
predefined threshold to decide the presence of a primary
user. The decision statistic for EDS is given by:

T =~ ¥NZ3Ir[n]l?, (D

where r[n] is the received signal, and N is the number
of samples [13—15].

The detection threshold A is chosen based on the
desired false alarm rate Py,

(Pra = P(T > MH)), )

where Hgrepresents the hypothesis that no primary
user is present [13—15].

The performance of the detection algorithm can be
summarized with two probabilities: probability of
detection Pp and probability of false alarm Py, Pp is
the probability of detecting a signal on the considered
frequency when it truly is present. Thus, a large detection
probability is desired. It can be formulated as [1]:

To compare the performance across various
threshold values, we can use receiver operating
characteristic (ROC) curves. This analysis enables us
to identify the optimal threshold. Figure 1 illustrates
the ROC curves for different SNR values [1].

ROC Curves for Energy Detector Based Spectrum Sensing
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Fig. 1. ROC curves for EDS spectrum sensing under different SNR values

Waveform-Based Sensing (WFB) is applicable to
systems with known signal patterns, such as pilot
signals or preambles. It involves correlating the
received signal with a known reference waveform
[1,5]. Known patterns are usually utilized in wireless
systems to assist synchronization or for other
purposes. A preamble is a known sequence
transmitted before each burst, and a midamble is
transmitted in the middle of a burst or slot. In the
presence of a known pattern, sensing can be
performed by correlating the received signal with a
known copy of itself [16-18]. The decision statistic
for Waveform-Based Sensing is given by:
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= [ZRzs rinls*[n]], 4)
where r[n] is the received signal, and s[n] is the
known reference signal [16—18]. In the absence of the
primary user, the value becomes [1]:

= [Zh=3 winls™[nl]. )
Similarly, in the presence of a primary user’s signal,
the sensing metric becomes

T =¥l + [ZNZ3wnls ]| (6)

Cyclostationarity-based sensing (CSD) exploits
the cyclostationary properties of the received signals,
which arise from the periodicity in the signal or its
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statistics such as mean and autocorrelation. This
method differentiates primary user signals from noise
by analyzing spectral correlation functions.

Instead of using power spectral density (PSD), the
cyclic correlation function is employed to detect
signals within a given spectrum. Cyclostationarity-
based detection algorithms can distinguish between
noise and primary users’ signals. Cyclostationary
signals have statistical properties that vary
periodically with time, unlike noise which is typically
wide-sense stationary. This method is particularly
robust against noise uncertainty and can distinguish
between different types of transmissions.

The cyclic autocorrelation function is defined as:

. T/2 . _
Ry(t,@) = lim 2 [7/% y(6)y* (¢ + Ve 2™ dt (7)

where y(?) is the received signal, 7 is the time delay,
and a is the cyclic frequency [20-22].

Matched Filtering (MF) is the optimal detection
technique when the primary user’s signal is known. It
maximizes the signal-to-noise ratio (SNR) in the
presence of additive stochastic noise. A matched filter
is a linear filter used in digital signal processing
(DSP) that maximizes the signal-to-noise ratio (SNR)
in the presence of stochastic additive noise to enable
coherent detection. The probabilities of detection and
false alarm are defined as [22, 23]:

Pra=0 () ®)
Py = (k). ©)

Receiver Operating Characteristic (ROC) Curves for SNR=-3 dB
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Fig. 2. ROC curves for three detection methods: MF, CSD, and EDS for SNR = -3dB

The Variable Time Segment Monitoring (VTSM)
method is used to optimize the detection and analysis
of spectral characteristics of signals. This method
involves dividing time series into segments of varying
lengths, which allows for a more flexible and efficient
exploration of the signal's frequency content.

The signal is divided into time segments of
varying lengths instead of uniformly distributed time
segments. For each segment, the Discrete Fourier
Transform (DFT) is computed to obtain the spectral
characteristics of each segment. The segments can be
adapted to provide a more accurate analysis of
specific frequency components of the signal. The
spectral characteristics of each segment are analyzed
to identify significant frequency components and
their changes over time. This process provides more
detailed and accurate information about the signal, as
each segment is optimally selected to detect specific
spectral features.

The key steps in the VTSM method involve
initializing by setting the initial segment length and
threshold, and estimating initial noise variance.
Segmentation and detection involve calculating the
energy for each segment, comparing it with the
threshold to make a decision, updating segment
length based on variance estimate, and adapting the
threshold for the next segment.

Consider a received signal ~(f) over a time
segment T}, , where k denotes the segment index. The
signal can be modeled as:

r(t) = s(t) + n(t), (10)
where s(¢) is the primary user's signal and n(?) is the
noise component.

The total observation time is divided into variable-
length segments Tj. The length of each segment is
determined based on the statistical properties of the
received signal in the previous segments. The decision
to adapt the segment length can be formulated as:
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where 0% is the estimated variance of the received

Tisr = f(Tk»(/’Z)’

signal in the k-th segment.
For each time segment T}, the energy detector
calculates the test statistic as:

(11)

1

= T—fOTk|r(t)|2 dt.

k

The performance of the VTS method can be
evaluated using the following metrics:

P, = P(Ey > A¢|Hy),

Pfa = P(Ek > AkIHO)

Table 1
Performance Metrics of Spectrum Sensing Methods
Method Detection Accuracy False Alarm Rate Latency Computational Complexity

EDS Moderate High Low Low

WFB High Low Moderate High

CSD High Low High High

MF Very High Very Low Moderate Very High

VTSM High Low Moderate Moderate

The ROC curve for Spectrum Sensing Methods
(Fig. 3) shows the trade-off between the detection
probability and the false alarm probability.

Each spectrum sensing method analyzed—Energy
Detector Based Sensing, Waveform-Based Sensing,
Cyclostationarity-Based Sensing, Matched Filtering,

and Variable Time Segment Monitoring (VTSM)—
offers distinct advantages and limitations.

Energy Detector Based Sensing is characterized
by its simplicity and low computational complexity,
making it suitable for real-time applications, though
its high false alarm rate under low SNR conditions
limits its effectiveness (Fig. 3).

ROC Curves for Spectrum Sensing Methods
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Fig. 3. ROC curves for Spectrum Sensing Methods

Waveform-Based Sensing and Cyclostationarity-
Based Sensing provide high detection accuracy and
low false alarm rates, but their need for prior
knowledge of the signal and high computational
demands make them less flexible in dynamic
environments.
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Matched Filtering, while offering the highest
detection accuracy and the lowest false alarm rate, is
also the most computationally intensive and is best
used when the primary user's signal is well known.

The Variable Time Segment Monitoring (VTSM)
method distinguishes itself with a balanced approach
that integrates flexibility, accuracy, and moderate
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computational complexity. By dynamically adjusting
the length of time segments according to the observed
signal characteristics, VTSM adeptly adapts to
changing signal environments, achieving high
detection accuracy and low false alarm rates. This
adaptability makes VTSM especially suitable for
dynamic and complex environments, providing a
versatile solution for spectrum sensing.

Conclusions

Spectrum sensing is a critical component of
cognitive radio networks, enabling the efficient and
dynamic use of available frequency bands. Effective
spectrum monitoring ensures that cognitive radios
can accurately detect the presence of primary users,
minimize interference, and optimize the utilization of
the spectrum. The ability to detect and adapt to
changing signal environments is paramount for the
successful implementation of cognitive radio
systems, which aim to address the increasing demand
for wireless communication bandwidth.

The choice of spectrum sensing method plays a
crucial role in achieving these goals. Each method—
Energy Detector Based Sensing, Waveform-Based
Sensing, Cyclostationarity-Based Sensing, Matched
Filtering, and Variable Time Segment Monitoring
(VTSM) — offers distinct advantages and is suited to
different scenarios. VTSM, in particular, stands out
for its balanced approach, combining flexibility,
accuracy, and moderate computational complexity,
making it especially suitable for dynamic and
complex environments. Ultimately, selecting the
most appropriate spectrum sensing method depends
on the specific requirements of the application,
including accuracy needs, tolerance for false alarms,
available computational resources, and the nature of
the signal environment. By carefully considering
these factors, cognitive radio networks can achieve
reliable and efficient spectrum sensing, ensuring
optimal performance and resource utilization.
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Conponmok L. 1., Komap O. M.
OUIHKA XAPAKTEPUCTUK METOAY MOHITOPHUHI'Y CHEKTPY VTSM
JJISI MEPEXKX KOTHITUBHOT'O PAJIO

Y ecmammi docnioaceno npobnemu cnekmpanviozo ananizy y xoewimuenux paodiomepexcax (CRN), ski oOymosneni
3pOCmaroyuM NORUMOM Ha epekmuene suKopucmanus cnekmpy. Ilpoananizosano anemeprHamusHi mpaouyitini memoou
CHEeKMpPanbHO20 MOHIMOPUHZY, 30Kpemd, MOHIMOPUHS HA OCHOB8I eHepeemuiH020 OemeKmopd, MOHIMOPUHe HA OCHO8I
Gopmu cuenany, YyukioCMayioHapHutl MOHIMOPpUH2 Ma y3200xceHny Gitbmpayio.

OcHogHa y8aza 8 00CHiOHNCeHHi NPUOIIAEMbCA Memooy 3MIHHO20 MOHIMOpuHzy uyacosux ceemenmia (VISM), nosomy
nioxo0y, AKU ONMUMIZYE CReKMparbHuii MOHITOPHHT wisXoM OUHAMIYHOZ0 De2YlI0GAHHS YACOBUX CE2ZMEHMIS, U0
BUKOPUCMOBYIOMbCA OISl AHANIZY CHEKMPATbHUX Xapakmepucmuk. Y cmammi niokpecniocmoscss 30amHicms Memooy
VTSM niosuugyeamu moyuHicme 6Us6IeHH XUOHUX MPUGO2 MA 3HUIICYBAMU IX Pi6eHb WLIAXOM adanmayii 00 Pi3HUX paodio
cepedosuuy, wo poobums memoo 0cobauso Npuoamuum 0Jisk CKIaOHux i ounamiynux cyenapiiec CRN.

Y ecmammi nposedeno nopisuanvuy oyinky memody VISM 3 mpaouyitinumu memooamu 3a KI0Y08UMU NOKASHUKAMU
epexmusHoCMi, MAKUMU K MOYHICMb BUABNEHHA, PIBEHb XUOHUX MPUBO2, 3AMPUMKA A 00UUCTIOBANbHA CKIAOHICID.
Ananiz nokasye, wo xoua mpaouyiini memoou maroms ceoi nepesacu, VISM nponomye 36anarncosanuti nioxio,
NOEOHYIOHU SHYUKICIMb, MOYHICMb | NOMIPHI 004UCTIO8ANbHI 6umo2u, IO pobums 11020 yHigepcarbHum piuenHsm. Taxoorc
memoo VISM e6iopisusacmovcs c80€10 30amHIiCmio OUHAMIYHO a0anmyéamu OO0BNHCUHY HACOBUX CE2MEHMI8 HA OCHOSI
Xapaxmepucmuk CUSHALY, WO CHOCMEePIealombCsl, 3a0e3neuyiod GUCOKY MOUHICIb BUSABTIEHHS A HU3bKULL Pi6eHb XUOHUX
mpusoe.

Ompumani pezyrbmamu cnpusioms OLlbwl 2IUOOKOMY PO3YMIHHIO MA PO3GUMKY KOZHIMUBHUX padiomepeic,
niompumyrouu po3pooKy 6inbus HAOTHUX MA eQeKMUBHUX PilleHb 051 CHeKMPATbHO20 MOHIMOPUHRY, AKI € HA038UYALIHO
8axcaUBUMU ONIsL ONMUMI3AYIT NPOOYKMUBHOCMI Mepedci ma 3abe3nedenHs HAOIIHO20 38 'A3KY 6 YMO08AX 8eiuKol
3a8aHMAaNCeHoCcmi Ko2HImUueHo2o padiocepedosuuya. Ilepcnexkmugu noo0anbUI020 00CIOHCEHHS BKIIOHAIOMb NO2AUOAEHY
oyinky VISM y peanvhux ymoeax excniyamayii, a makoiC MOXCIUBICb 1020 inmezpayii 3 IHWUMU Memooamu
MoOHImopuHey 0714 niosuujenns sazanvroi egpexmusrocmi CRN.

KnrouoBi cnoBa: «po3ymMHe» papfio, KOTHITMBHE pafio, YaCTOTHUW Aiana3oH, MOHITOPUHI CMEeKTpy, ChekTparnbHa
e(PEeKTUBHICTb, LUKNOCTaLiOHapHICTb, Y3rogkeHe (biJILprBaHHH, meToq VTSM, eHepreTuyHuin geTekTop.

Soproniuk I., Komar O.
EVALUATING THE CHARACTERISTICS OF THE VTS SPECTRUM SENSING METHOD
IN COGNITIVE RADIO NETWORKS

The article investigates the complexities associated with spectrum analysis in cognitive radio networks (CRNs). It
begins by acknowledging the evolving challenges of spectrum sensing due to the dynamic nature of wireless environments
and the increasing demand for efficient spectrum utilization. The study thoroughly examines various traditional spectrum
sensing methods, including Energy Detector Based Sensing, Waveform-Based Sensing, Cyclostationarity-Based Sensing,
and Matched Filtering.
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The focus of the research is on the Variable Time Segment Monitoring (VISM) method, a novel approach that
optimizes spectrum sensing by dynamically adjusting the time segments used for analyzing spectral characteristics. The
paper highlights the VISM method's ability to enhance detection accuracy and reduce false alarms by adapting to
different signal environments, making it particularly suited for complex and dynamic CRN scenarios.

Furthermore, the article compares VISM with traditional methods across key performance metrics such as detection
accuracy, false alarm rate, latency, and computational complexity. The analysis reveals that while traditional methods
have their strengths, VISM offers a balanced approach, combining flexibility, accuracy, and moderate computational
demands, thereby providing a versatile solution for modern spectrum sensing challenges. The findings contribute to the
broader understanding and advancement of cognitive radio technologies, supporting the development of more robust and
efficient spectrum sensing solutions, which are crucial for optimizing network performance and ensuring reliable
communication in increasingly congested and complex wireless environments.

The article concludes by emphasizing the importance of selecting the appropriate spectrum sensing method based on
the specific requirements of the CRN application, considering factors such as accuracy, computational resources, and
environmental dynamics. The findings contribute to the broader understanding and advancement of cognitive radio
technologies, supporting the development of more robust and efficient spectrum sensing solutions.

Keywords: «smart» radio, cognitive radio, frequency range, spectrum monitoring, spectral efficiency, cyclostationarity,
matched filtering, VTSM method, energy detector.

Crarrs Haaiduwia 1o penakuii 27.07.2024 p.
IpwuitnasaTo no apyky 11.09.2024 p.

© 1. Soproniuk, O. Komar, 2024



