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EVALUATING THE CHARACTERISTICS OF THE VTSM SPECTRUM SENSING  

METHOD IN COGNITIVE RADIO NETWORKS 
 

Introduction 

The spectrum sensing problem has transformed 
significantly with the emergence of cognitive radio and 
opportunistic spectrum access concepts. These 
developments have added new layers of complexity to 
the challenges encountered by cognitive radio systems. 
This paper provides an in-depth survey of spectrum 
sensing methodologies designed specifically for 
cognitive radio networks. This research introduces 
the notion of multi-dimensional spectrum sensing by 
investigating various facets of the spectrum sensing issue 
from a cognitive radio standpoint. It underscores the 
challenges linked to spectrum sensing and evaluates the 
methods that enable it. Furthermore, the paper explores 
cooperative sensing concepts and their different forms, 
discusses external sensing algorithms and alternative 
methods, and examines the statistical modeling of 
network traffic to forecast primary user behavior. 

Spectrum sensing is a key task in the development 
of cognitive radio, enabling the identification of 
usage patterns across dimensions such as time, 
frequency, space, and angle. This capability is 
essential for efficiently utilizing available spectrum. 
However, continuous spectrum sensing is demanding 
for wireless devices. To address this, we propose a 
monitoring platform that offers spectrum sensing as a 
service. This service utilizes geographically 
distributed spectrum sensors, implemented via 
software-defined radio (SDR). These sensors perform 
sensing operations and send the results to a 
centralized storage and computing platform, which 
then distributes the data to requesting devices. 
Although this service cannot eliminate the need for 
spectrum sensing by wireless terminals, it can 
significantly improve energy efficiency and extend 
standby times by instructing mobile devices to 

conduct sensing only when and where unused radio 
bands are expected. 

One of the most critical components of the 
cognitive radio concept is the ability to measure, 
sense, learn, and be aware of parameters related to 
radio channel characteristics, spectrum availability, 
power, operating environment, user requirements, 
applications, available networks, local policies, and 
other operating restrictions. In cognitive radio 
terminology, primary users are defined as users with 
higher priority or legacy rights over a specific part of 
the spectrum. In contrast, secondary users, who have 
lower priority, utilize the spectrum in a manner that 
does not interfere with primary users. Therefore, 
secondary users need cognitive radio capabilities to 
reliably sense the spectrum, determine if it is being 
used by primary users, and adjust radio parameters to 
exploit the unused spectrum. 

This paper focuses on spectrum sensing, the most 
crucial element in establishing cognitive radio. 
Spectrum sensing entails gaining awareness of 
spectrum usage and detecting the presence of primary 
users within a geographical area. This awareness can 
be obtained through geolocation and databases, 
beacons, or local spectrum sensing by cognitive 
radios. Beacons, for instance, transmit information 
about spectrum occupancy and other advanced 
features like channel quality. The emphasis of this 
paper is on spectrum sensing performed by cognitive 
radios because of its wider application areas and 
lower infrastructure requirements. Other sensing 
methods are also discussed as necessary. 

Traditionally, spectrum sensing has been viewed 
as the measurement of spectral content or radio 
frequency energy over the spectrum. In cognitive 
radio, however, this term encompasses a broader 
scope, involving the acquisition of spectrum usage 
characteristics across multiple dimensions such as 
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time, space, frequency, and code. It also includes 
identifying various signal types occupying the 
spectrum, including their modulation, waveform, 
bandwidth, and carrier frequency, among other 
attributes. This comprehensive approach necessitates 
advanced signal analysis techniques and increased 
computational complexity. 

In summary, this paper explores the complex 
challenges associated with spectrum sensing in 
cognitive radio networks. It reviews current methods 
and introduces new ideas to improve our 
understanding and implementation of effective 
spectrum sensing strategies. By analyzing and 
exploring different approaches in detail, this study 
aids in the continuous development and optimization 
of cognitive radio systems, ensuring that the spectrum 
is utilized efficiently and reliably. 

Analysis of recent research and publications 

In recent years, we've witnessed notable progress 
in the realm of spectrum sensing within cognitive 
radio networks. This surge in advancement is largely 
propelled by the growing necessity to enhance the 
efficiency and dependability of spectrum utilization. 
Researchers have delved into an array of methodo-
logies, each presenting unique advantages and 
hurdles. This review highlights some of the key 
methods that have been prominently featured in 
academic discussions, namely Energy Detector Based 
Sensing, Waveform-Based Sensing, Cyclostationarity-
Based Sensing, and Matched-Filtering. 

Energy Detector Based Sensing is one of the most 
common methods due to its simplicity and ease of 
implementation. It works by measuring the energy of 
the received signal and comparing it to a predefined 
threshold to detect the presence of a primary user. 
Despite its straightforward approach, this method is 
highly susceptible to noise and interference, which 
can lead to false alarms and missed detections [1]. 
Recent studies have proposed various enhancements, 
such as adaptive thresholding and cooperative 
sensing, to improve its robustness and reliability [2]. 

Waveform-Based Sensing relies on the known 
patterns of the primary user’s signal. By comparing 
the received signal to these known patterns, this 
method can accurately detect the presence of primary 
users [3]. This approach is highly effective when the 
primary user’s signal characteristics are well-known 
and stable. However, its performance can degrade in 
the presence of signal variations or when the exact 
waveform is not known. Recent research has focused 
on developing more adaptive algorithms that can 
handle a wider range of signal variations and improve 
detection accuracy [4]. 

Cyclostationarity-Based Sensing takes advantage 
of the cyclostationary properties of the primary user’s 

signal, such as periodicity in the mean and 
autocorrelation. This method is capable of 
distinguishing between different types of signals and 
is less affected by noise compared to energy detection 
[5]. However, it requires complex signal processing 
and higher computational resources. Recent 
advancements have aimed at optimizing the 
computational efficiency of cyclostationary feature 
extraction and developing more sophisticated 
algorithms to enhance detection performance in low 
signal-to-noise ratio (SNR) environments [6]. 

Matched-Filtering is considered the optimal 
detection method when the primary user’s signal is 
known. It works by correlating the received signal 
with a known template of the primary user’s signal, 
providing the highest detection probability for a given 
SNR [7]. Despite its optimal performance, matched-
filtering requires precise knowledge of the primary 
user’s signal and can be computationally intensive. 
Recent publications have explored techniques to 
reduce the computational burden and adapt matched-
filtering for scenarios with partial or imperfect 
knowledge of the primary user’s signal [8]. 

Each of these methods has been extensively studied 
and improved upon in recent research. For instance, 
hybrid approaches combining multiple sensing techniques 
have been proposed to leverage the strengths of each 
method while mitigating their individual weaknesses 
[9]. These hybrid methods aim to provide more robust 
and reliable spectrum sensing by integrating information 
from different sensing algorithms. 

The ongoing research in spectrum sensing methodologies 
highlights the importance of developing adaptive and 
efficient techniques to meet the dynamic and diverse 
requirements of cognitive radio networks. Future 
work is likely to focus on further enhancing the 
reliability and efficiency of these methods, exploring 
new signal processing techniques, and integrating 
machine learning approaches to improve the overall 
performance of spectrum sensing in cognitive radio 
environments [10]. 

Problem Statement 

The rapid expansion of wireless communication 
technologies has led to an unprecedented demand for 
spectrum resources. Traditional static spectrum 
allocation policies have proven inadequate, resulting 
in significant underutilization of available spectrum 
bands. This inefficiency has prompted the exploration 
of dynamic spectrum access solutions, such as 
cognitive radio networks (CRNs), which allow 
secondary users to exploit vacant spectrum bands 
opportunistically [1]. Despite the promise of CRNs, 
effective spectrum sensing remains a significant 
challenge. 
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One of the primary issues in spectrum sensing is 
the accurate detection of spectrum holes without 
causing interference to primary users. Traditional 
methods, including energy detection, waveform-
based sensing, cyclostationarity-based sensing, and 
matched filtering, each have their own set of 
limitations. Energy detection, for example, is highly 
susceptible to noise, leading to high false alarm rates, 
especially in low signal-to-noise ratio (SNR) 
environments [2, 3]. Waveform-based sensing and 
matched filtering require prior knowledge of the 
primary user’s signal, which may not always be 
available or accurate [4, 5]. 

The variability of wireless environments further 
complicates spectrum sensing. Factors such as fading, 
shadowing, and varying interference levels can 
significantly impact the performance of traditional 
sensing methods. Cyclostationarity-based sensing, 
while robust to noise, demands high computational 
resources and complex signal processing, making it 
less feasible for real-time applications in dynamic 
environments [6, 7]. These challenges necessitate the 
development of more adaptive and efficient spectrum 
sensing techniques. 

Recent advancements have introduced the concept 
of Variable Threshold Sensing (VTS), which 
dynamically adjusts the sensing threshold based on 
the observed noise level. This adaptive approach aims 
to enhance detection accuracy and reduce false alarm 
rates, addressing some of the key limitations of 
traditional methods [8]. However, comprehensive 
evaluations of VTS under various operational 
conditions are essential to validate its effectiveness 
and identify areas for further improvement. 

Another critical issue is the integration of 
spectrum sensing methods into the overall framework 
of CRNs. Effective spectrum sensing must detect the 
presence of primary users and provide reliable 
information to support spectrum management 
decisions. This includes real-time adaptation to 
changing network conditions, efficient allocation of 
spectrum resources, and minimization of 
interference. The interplay between spectrum sensing 
and other cognitive radio functions is crucial for the 
seamless operation of CRNs [9]. 

Moreover, the increasing complexity of wireless 
environments, with the proliferation of diverse 
devices and services, underscores the need for 
advanced spectrum sensing techniques. Traditional 
methods may not suffice in scenarios with 
heterogeneous network conditions and varied user 
requirements. Therefore, there is a pressing need for 
innovative solutions that can adapt to these 
complexities and ensure reliable spectrum access for 
secondary users [10]. 

The evaluation of the VTSM spectrum sensing 
method in different scenarios, including varying SNR 
conditions, diverse primary user signals, and 
fluctuating noise environments, is critical. Such 
evaluations will provide insights into the practical 
applications of VTS and its potential to enhance the 
performance of CRNs. By comparing VTS with 
traditional methods, this research aims to highlight its 
advantages and limitations, contributing to the 
ongoing development of more effective spectrum 
sensing strategies [11]. 

In conclusion, the development of robust and 
efficient spectrum sensing methods is vital for the 
successful deployment of cognitive radio networks. 
The VTSM spectrum sensing method offers a 
promising approach, but thorough analysis and 
optimization are required to ensure its efficacy in 
real-world applications. This study aims to address 
these challenges by providing a comprehensive 
evaluation of VTS, thereby contributing to the 
broader understanding and advancement of cognitive 
radio technologies [12]. 

The purpose of the article 

The goal of this article is to examine how the 
Variable Threshold Sensing (VTS) method performs 
in cognitive radio networks. Given the ever-changing 
nature of wireless environments and the need for 
efficient spectrum use, it’s important to look into 
advanced spectrum sensing techniques that can adjust 
to different conditions. This study gives a detailed 
analysis of VTS, highlighting its potential benefits 
over traditional spectrum sensing methods and its 
ability to enhance the accuracy and reliability of 
spectrum detection. 

Another important goal of this research is to 
compare the VTS method with well-known spectrum 
sensing techniques like energy detection, waveform-
based sensing, cyclostationarity-based sensing, and 
matched filtering. By thoroughly evaluating these 
methods under various signal-to-noise ratio (SNR) 
conditions, primary user signal types, and noise 
environments, this article aims to pinpoint the specific 
situations where VTS performs better than other 
methods. This comparative analysis will offer practical 
insights into the applications of VTS and help steer 
future research and development in this area. 

Lastly, the article aims to contribute to the broader 
understanding of cognitive radio networks by 
examining the integration of VTS with other 
spectrum management strategies. By assessing how 
VTS can enhance overall spectrum efficiency and 
reduce interference in CRNs, this study provides a 
foundation for further innovation and optimization in 
cognitive radio technologies. Ultimately, the findings 
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of this research will support the ongoing efforts to 
develop more robust and effective spectrum sensing 
solutions, ensuring the successful deployment and 
operation of cognitive radio networks. 

Summary of the main material 

This section provides a detailed description and 
mathematical characterization of existing spectrum 
sensing methods used in cognitive radio networks 
(CRNs), along with a comparative analysis based on 
key performance criteria. The methods discussed 
include Energy Detector Based Sensing, Waveform-
Based Sensing, Cyclostationarity-Based Sensing, 
Matched-Filtering, and Variable Time Segment 
(VTS) Sensing. 

Energy Detector Based Sensing (EDS) is one of 
the most widely used methods due to its simplicity 
and low computational requirements. It measures the 
energy in the received signal and compares it to a 
predefined threshold to decide the presence of a primary 
user. The decision statistic for EDS is given by: 

𝑇𝑇 = 1
𝑁𝑁
∑ |𝑟𝑟[𝑛𝑛]|2𝑁𝑁−1
𝑛𝑛=0 ,  (1) 

where r[n] is the received signal, and N is the number 
of samples [13–15]. 

The detection threshold λ is chosen based on the 
desired false alarm rate 𝑃𝑃𝑓𝑓𝑓𝑓 

�𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑃𝑃(𝑇𝑇 > λ|𝐻𝐻0)�,     (2) 

where 𝐻𝐻0represents the hypothesis that no primary 
user is present [13–15]. 

The performance of the detection algorithm can be 
summarized with two probabilities: probability of 
detection 𝑃𝑃𝐷𝐷 and probability of false alarm 𝑃𝑃𝑓𝑓𝑓𝑓. 𝑃𝑃𝐷𝐷 is 
the probability of detecting a signal on the considered 
frequency when it truly is present. Thus, a large detection 
probability is desired. It can be formulated as [1]: 

𝑃𝑃𝐷𝐷 = 𝑃𝑃(𝑇𝑇 > 𝜆𝜆|𝐻𝐻1).  (3) 

To compare the performance across various 
threshold values, we can use receiver operating 
characteristic (ROC) curves. This analysis enables us 
to identify the optimal threshold. Figure 1 illustrates 
the ROC curves for different SNR values [1].

 
Fig. 1. ROC curves for EDS spectrum sensing under different SNR values

Waveform-Based Sensing (WFB) is applicable to 
systems with known signal patterns, such as pilot 
signals or preambles. It involves correlating the 
received signal with a known reference waveform 
[1,5]. Known patterns are usually utilized in wireless 
systems to assist synchronization or for other 
purposes. A preamble is a known sequence 
transmitted before each burst, and a midamble is 
transmitted in the middle of a burst or slot. In the 
presence of a known pattern, sensing can be 
performed by correlating the received signal with a 
known copy of itself [16-18]. The decision statistic 
for Waveform-Based Sensing is given by:  

𝑇𝑇 = �∑ 𝑟𝑟[𝑛𝑛]𝑠𝑠∗[𝑛𝑛]𝑁𝑁−1
𝑛𝑛=0 �,    (4) 

where r[n] is the received signal, and s[n] is the 
known reference signal [16–18]. In the absence of the 
primary user, the value becomes [1]: 

𝑇𝑇 = �∑ 𝑤𝑤[𝑛𝑛]𝑠𝑠∗[𝑛𝑛]𝑁𝑁−1
𝑛𝑛=0 �.  (5) 

Similarly, in the presence of a primary user’s signal, 
the sensing metric becomes 

𝑇𝑇  = 1
𝑁𝑁
∑ |𝑟𝑟[𝑛𝑛]|2𝑁𝑁−1
𝑛𝑛=0   +  �∑ 𝑤𝑤[𝑛𝑛]𝑠𝑠∗[𝑛𝑛]𝑁𝑁−1

𝑛𝑛=0 �.    (6) 

Cyclostationarity-based sensing (CSD) exploits 
the cyclostationary properties of the received signals, 
which arise from the periodicity in the signal or its 
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statistics such as mean and autocorrelation. This 
method differentiates primary user signals from noise 
by analyzing spectral correlation functions.  

Instead of using power spectral density (PSD), the 
cyclic correlation function is employed to detect 
signals within a given spectrum. Cyclostationarity-
based detection algorithms can distinguish between 
noise and primary users’ signals. Cyclostationary 
signals have statistical properties that vary 
periodically with time, unlike noise which is typically 
wide-sense stationary. This method is particularly 
robust against noise uncertainty and can distinguish 
between different types of transmissions.  

The cyclic autocorrelation function is defined as: 

𝑅𝑅𝑦𝑦(τ,α) = lim
𝑇𝑇→∞

1
𝑇𝑇 ∫ 𝑦𝑦(𝑡𝑡)𝑦𝑦∗(𝑡𝑡 + τ)𝑒𝑒−𝑗𝑗2πα𝑡𝑡𝑇𝑇/2

−𝑇𝑇/2 𝑑𝑑𝑑𝑑 (7) 

where y(t) is the received signal, 𝜏𝜏 is the time delay, 
and α is the cyclic frequency [20–22]. 

Matched Filtering (MF) is the optimal detection 
technique when the primary user’s signal is known. It 
maximizes the signal-to-noise ratio (SNR) in the 
presence of additive stochastic noise. A matched filter 
is a linear filter used in digital signal processing 
(DSP) that maximizes the signal-to-noise ratio (SNR) 
in the presence of stochastic additive noise to enable 
coherent detection. The probabilities of detection and 
false alarm are defined as [22, 23]: 

𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑄𝑄 � η
σ𝐻𝐻0

�,   (8) 

𝑃𝑃𝐷𝐷 = 𝑄𝑄 �η−μ𝐻𝐻1
σ𝐻𝐻1

�.  (9) 

 

 
Fig. 2. ROC curves for three detection methods: MF, CSD, and EDS for SNR = -3dB

The Variable Time Segment Monitoring (VTSM) 
method is used to optimize the detection and analysis 
of spectral characteristics of signals. This method 
involves dividing time series into segments of varying 
lengths, which allows for a more flexible and efficient 
exploration of the signal's frequency content. 

The signal is divided into time segments of 
varying lengths instead of uniformly distributed time 
segments. For each segment, the Discrete Fourier 
Transform (DFT) is computed to obtain the spectral 
characteristics of each segment. The segments can be 
adapted to provide a more accurate analysis of 
specific frequency components of the signal. The 
spectral characteristics of each segment are analyzed 
to identify significant frequency components and 
their changes over time. This process provides more 
detailed and accurate information about the signal, as 
each segment is optimally selected to detect specific 
spectral features. 

The key steps in the VTSM method involve 
initializing by setting the initial segment length and 
threshold, and estimating initial noise variance. 
Segmentation and detection involve calculating the 
energy for each segment, comparing it with the 
threshold to make a decision, updating segment 
length based on variance estimate, and adapting the 
threshold for the next segment. 

Consider a received signal r(t) over a time 
segment 𝑇𝑇𝑘𝑘 , where k denotes the segment index. The 
signal can be modeled as: 

𝑟𝑟(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑛𝑛(𝑡𝑡),  (10) 
where s(t) is the primary user's signal and n(t) is the 
noise component. 

The total observation time is divided into variable-
length segments 𝑇𝑇𝑘𝑘. The length of each segment is 
determined based on the statistical properties of the 
received signal in the previous segments. The decision 
to adapt the segment length can be formulated as: 
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𝑇𝑇𝑘𝑘+1 = 𝑓𝑓�𝑇𝑇𝑘𝑘 ,σ𝑘𝑘2��,  (11) 

 
where σ𝑘𝑘2  is the estimated variance of the received 
signal in the k-th segment. 

For each time segment 𝑇𝑇𝑘𝑘, the energy detector 
calculates the test statistic as: 

𝐸𝐸𝑘𝑘 = 1
𝑇𝑇𝑘𝑘
∫ |𝑟𝑟(𝑡𝑡)|2𝑇𝑇𝑘𝑘
0 𝑑𝑑𝑑𝑑.  (12) 

The performance of the VTS method can be 
evaluated using the following metrics: 

𝑃𝑃𝐷𝐷 = 𝑃𝑃(𝐸𝐸𝑘𝑘 > 𝜆𝜆𝑘𝑘|𝐻𝐻1),  (13) 

𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑃𝑃(𝐸𝐸𝑘𝑘 > 𝜆𝜆𝑘𝑘|𝐻𝐻0).  (14) 

Table 1 
Performance Metrics of Spectrum Sensing Methods 

Method Detection Accuracy False Alarm Rate Latency Computational Complexity 

EDS Moderate High Low Low 
WFB High Low Moderate High 
CSD High Low High High 
MF Very High Very Low Moderate Very High 
VTSM High Low Moderate Moderate 

The ROC curve for Spectrum Sensing Methods 
(Fig. 3) shows the trade-off between the detection 
probability and the false alarm probability. 

Each spectrum sensing method analyzed–Energy 
Detector Based Sensing, Waveform-Based Sensing, 
Cyclostationarity-Based Sensing, Matched Filtering, 

and Variable Time Segment Monitoring (VTSM)—
offers distinct advantages and limitations.  

Energy Detector Based Sensing is characterized 
by its simplicity and low computational complexity, 
making it suitable for real-time applications, though 
its high false alarm rate under low SNR conditions 
limits its effectiveness (Fig. 3). 

 
Fig. 3. ROC curves for Spectrum Sensing Methods

Waveform-Based Sensing and Cyclostationarity-
Based Sensing provide high detection accuracy and 
low false alarm rates, but their need for prior 
knowledge of the signal and high computational 
demands make them less flexible in dynamic 
environments.  

Matched Filtering, while offering the highest 
detection accuracy and the lowest false alarm rate, is 
also the most computationally intensive and is best 
used when the primary user's signal is well known. 

The Variable Time Segment Monitoring (VTSM) 
method distinguishes itself with a balanced approach 
that integrates flexibility, accuracy, and moderate 



Наукоємні технології № 3(63), 2024  271 

 I. Soproniuk, O. Komar, 2024 

computational complexity. By dynamically adjusting 
the length of time segments according to the observed 
signal characteristics, VTSM adeptly adapts to 
changing signal environments, achieving high 
detection accuracy and low false alarm rates. This 
adaptability makes VTSM especially suitable for 
dynamic and complex environments, providing a 
versatile solution for spectrum sensing.  

Conclusions 

Spectrum sensing is a critical component of 
cognitive radio networks, enabling the efficient and 
dynamic use of available frequency bands. Effective 
spectrum monitoring ensures that cognitive radios 
can accurately detect the presence of primary users, 
minimize interference, and optimize the utilization of 
the spectrum. The ability to detect and adapt to 
changing signal environments is paramount for the 
successful implementation of cognitive radio 
systems, which aim to address the increasing demand 
for wireless communication bandwidth. 

The choice of spectrum sensing method plays a 
crucial role in achieving these goals. Each method—
Energy Detector Based Sensing, Waveform-Based 
Sensing, Cyclostationarity-Based Sensing, Matched 
Filtering, and Variable Time Segment Monitoring 
(VTSM) – offers distinct advantages and is suited to 
different scenarios. VTSM, in particular, stands out 
for its balanced approach, combining flexibility, 
accuracy, and moderate computational complexity, 
making it especially suitable for dynamic and 
complex environments. Ultimately, selecting the 
most appropriate spectrum sensing method depends 
on the specific requirements of the application, 
including accuracy needs, tolerance for false alarms, 
available computational resources, and the nature of 
the signal environment. By carefully considering 
these factors, cognitive radio networks can achieve 
reliable and efficient spectrum sensing, ensuring 
optimal performance and resource utilization. 
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Сопронюк І. І., Комар О. М. 
ОЦІНКА ХАРАКТЕРИСТИК МЕТОДУ МОНІТОРИНГУ СПЕКТРУ VTSM  
ДЛЯ МЕРЕЖ КОГНІТИВНОГО РАДІО 

У статті досліджено проблеми спектрального аналізу у когнітивних радіомережах (CRN), які обумовлені 
зростаючим попитом на ефективне використання спектру. Проаналізовано альтернативні традиційні методи 
спектрального моніторингу, зокрема, моніторинг на основі енергетичного детектора, моніторинг на основі 
форми сигналу, циклостаціонарний моніторинг та узгоджену фільтрацію. 

Основна увага в дослідженні приділяється методу змінного моніторингу часових сегментів (VTSM), новому 
підходу, який оптимізує спектральний моніторинг шляхом динамічного регулювання часових сегментів, що 
використовуються для аналізу спектральних характеристик. У статті підкреслюється здатність методу 
VTSM підвищувати точність виявлення хибних тривог та знижувати їх рівень шляхом адаптації до різних радіо 
середовищ, що робить метод особливо придатним для складних і динамічних сценаріїв CRN. 

У статті проведено порівняльну оцінку методу VTSM з традиційними методами за ключовими показниками 
ефективності, такими як точність виявлення, рівень хибних тривог, затримка та обчислювальна складність. 
Аналіз показує, що хоча традиційні методи мають свої переваги, VTSM пропонує збалансований підхід, 
поєднуючи гнучкість, точність і помірні обчислювальні вимоги, що робить його універсальним рішенням. Також 
метод VTSM відрізняється своєю здатністю динамічно адаптувати довжину часових сегментів на основі 
характеристик сигналу, що спостерігаються, забезпечуючи високу точність виявлення та низький рівень хибних 
тривог. 

Отримані результати сприяють більш глибокому розумінню та розвитку когнітивних радіомереж, 
підтримуючи розробку більш надійних та ефективних рішень для спектрального моніторингу, які є надзвичайно 
важливими для оптимізації продуктивності мережі та забезпечення надійного зв’язку в умовах великої 
завантаженості когнітивного радіосередовища. Перспективи подальшого дослідження включають поглиблену 
оцінку VTSM у реальних умовах експлуатації, а також можливість його інтеграції з іншими методами 
моніторингу для підвищення загальної ефективності CRN. 

Ключові слова: «розумне» радіо, когнітивне радіо, частотний діапазон, моніторинг спектру, спектральна 
ефективність, циклостаціонарність, узгоджене фільтрування, метод VTSM, енергетичний детектор.  

 
Soproniuk I., Komar О. 
EVALUATING THE CHARACTERISTICS OF THE VTS SPECTRUM SENSING METHOD  
IN COGNITIVE RADIO NETWORKS 

The article investigates the complexities associated with spectrum analysis in cognitive radio networks (CRNs). It 
begins by acknowledging the evolving challenges of spectrum sensing due to the dynamic nature of wireless environments 
and the increasing demand for efficient spectrum utilization. The study thoroughly examines various traditional spectrum 
sensing methods, including Energy Detector Based Sensing, Waveform-Based Sensing, Cyclostationarity-Based Sensing, 
and Matched Filtering. 
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The focus of the research is on the Variable Time Segment Monitoring (VTSM) method, a novel approach that 
optimizes spectrum sensing by dynamically adjusting the time segments used for analyzing spectral characteristics. The 
paper highlights the VTSM method's ability to enhance detection accuracy and reduce false alarms by adapting to 
different signal environments, making it particularly suited for complex and dynamic CRN scenarios. 

Furthermore, the article compares VTSM with traditional methods across key performance metrics such as detection 
accuracy, false alarm rate, latency, and computational complexity. The analysis reveals that while traditional methods 
have their strengths, VTSM offers a balanced approach, combining flexibility, accuracy, and moderate computational 
demands, thereby providing a versatile solution for modern spectrum sensing challenges. The findings contribute to the 
broader understanding and advancement of cognitive radio technologies, supporting the development of more robust and 
efficient spectrum sensing solutions, which are crucial for optimizing network performance and ensuring reliable 
communication in increasingly congested and complex wireless environments. 

The article concludes by emphasizing the importance of selecting the appropriate spectrum sensing method based on 
the specific requirements of the CRN application, considering factors such as accuracy, computational resources, and 
environmental dynamics. The findings contribute to the broader understanding and advancement of cognitive radio 
technologies, supporting the development of more robust and efficient spectrum sensing solutions. 

Keywords: «smart» radio, cognitive radio, frequency range, spectrum monitoring, spectral efficiency, cyclostationarity, 
matched filtering, VTSM method, energy detector.  
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