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Introduction 

The problem of airborne landmine detection 
consists of two very unequal parts – one is optical 
detection of visible landmines, another is detection 
of hidden landmines using combination of sensors 
using different physical principles. In this paper I 
will consider only the first one to reasonably limit 
the scope of investigation. Despite the problem of 
hidden mines, optical detection is rather actual as a 
separate task, because installation of hidden mines is 
laborious and requires human involvement, unlike 
installation of landmines on the surface that is 
simple and can be done either by variety of technical 
equipment or by using cluster ammunition. 
Detection of hidden landmines, and particularly, 
using deep learning for that, is much more 
challenging task, mostly related to fusion of data 
from different sensors – magnetometers, infrared 
cameras, ground penetrating radars, etc., which is 
also discussed in many recent publications, but is not 
even close as actively developed as optical object 
detection. So it makes sense to design appropriate 
solution for optical detection before diving deeply 
into hidden mine detection. 

Let's try to define the role and place of optical 
landmine detection in global picture of humanitarian 
demining process. Nowadays, a realistic goal can be 
set to create a kind of country-level geoinfor-
mational system of landmine contamination, where 
the territory can be divided into several hypothetical 
classes: unexplored, optically observed using 
unmanned aerial vehicle (UAV), professionally 
explored using UAV-based hidden mines detection 
methods, manually explored by professional team, 
etc. It makes sense to foresee an opportunity for 
non-professionals to participate in data acquisition. 
Because of shortage of professional deminers, 
Ukrainian farmers are known for their self-organized 
demining efforts, so it is reasonable at least to 
provide standardized tools for optical detection and 
data storing based on cheap commercial drones (that 
farmers may be familiar with in the context of 
agriculture) and free open-source data processing 

solutions. We also can expect teams of civil 
volunteers to participate at some stage.  

When a large amount of data is centrally 
available, it becomes possible to have an application 
in smartphone that warns user about dangerous 
closeness of landmines just like some applications 
warn drivers about traffic jams. Taking into account 
the sensitivity of information, end user can be 
provided with information only about the closest 
neighborhood, while authorized professional teams 
may have extended access mode. 

So, taking into consideration all mentioned 
above, I come to idea that architecture of optical 
detection system has to be as simple and as standard 
as possible.   

Analysis of recent research and publications 

To define the place of optical UAV landmine 
detection among the wide area of object detection 
and computer vision tasks, I have to mention that it 
is relatively new subdivision of UAV remote sensing 
tasks, the variety of which is described in recent 
publications [1], that have a lot in common, but each 
is specific in some way. These tasks differ in size of 
investigated objects, environmental conditions of 
sensing, dynamics of detected objects' behavior, 
requirements for on-board processing, etc.  

First of all, it is worth mentioning that there were 
successful efforts of solving the problem of optical 
detection without neural networks and deep learning. 
Such a method is described in paper [2] by 
participants of the current research. In those studies, 
optical landmine detection is considered as a 
problem of statistical detection of a prescribed 
signature over a random background with Gaussian 
distribution. In fact, machine learning was used, 
though it was not deep learning. The conceptual 
difference is that no information about the shape of 
landmine was used, with exception of round form of 
sliding window, which was not a distinctive feature 
of the method. So we can expect better results using 
neural networks and deep learning, either in higher 
performance rate, or lower requirements to 
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resolution, but only in the case of enough training 
data availability. Currently, I have to admit that we 
can’t tell precisely how much training data is enough 
in the case of aerial landmine detection. Most likely 
the answer to this question will be determined 
experimentally, rather than in strict mathematical way. 

Last several years advanced groups of 
researchers published their results of convolutional 
neural network(CNN) usage in UAV landmine 
detection, some of them generously sharing both 
code and data with public [3]. The inspiring 
contribution of such efforts is essential for new 
researchers, however, the progress in NN 
development is so rapid nowadays, that some 
statements become questionable, like that about 
Faster R-CNN showing better accuracy than YOLO 
for small object detection. Such statements need  
to be checked regularly as the progress in NN 
development goes on. 

Of course, a problem of training data shortage 
arises, and is sometimes solved in rather 
sophisticated ways, like 3Ddesign and 3D-printing 
[4]. Ukrainian researchers usually use more general 
approaches like data augmentation [5].  

Besides using commercial drones with RGB 
cameras for landmine detection, there are some 
researches that use different approaches. Currently, 
new researches in the area of landmine detection are 
not limited to RGB images. Multispectral imagery is 
also used, engaging similar network architectures, 
YOLO, in particular, with some advances to adopt 
them for different number of layers in the imagery  
[6, 7]. In the case of scaling the technology to 
Ukrainian extents it should be proven that introduction 
of more expensive cameras is economically feasible.  

Some researchers demonstrate completely 
different approach to hardware, constructing smart 
terrestrial robots that use YOLO as network 
architecture [8]. The approach is definitely worth 
attention, but obviously requires different datasets 
than UAV platforms for training networks. 

Some datasets of landmine imagery are shared 
with public, either on researchers’ website [16], or 
on Roboflow open-source deep learning platform 
[17], but they are either dedicated to limited set of 
mine types, or contain ordinary photos, not taken 
from drone. 

Formulation of the problem 

In landmine detection the problem of datasets 
availability is painful for novice researchers. For 
obvious reasons of sensitive information protection, 
landmines filmed from drones are seldom in open-
source datasets. In most cases, researchers need 
some cooperation with military authorities to get 

necessary training data. I can summarize that 
nowadays, despite rapid development of neural 
networks and deep learning methods of landmine 
detection, there is still shortage of publications that 
describe researches made on data obtained from 
drones, and that few researches make accent on the 
necessary and sufficient amount of data.  

The purpose of the work is to show that the 
problem of limited amount of training data can be 
effectively overcome by data augmentation and 
iterational process of training optical landmine 
detector is possible starting from very limited 
amount of training data. Also the purpose is to 
demonstrate that the problem can be solved using 
open-source tools and libraries for neural networks 
training, object detection and dataset preparation. 

Materials and Methods 

The accent in this paper is made on utilizing tools 
and methods familiar to broad audience and 
affordable with limited funds. UAVs used are 
ordinary commercial light quadcopters, freely 
available at the market at the moment of research. 
They are DJI Phantom and Bebop Parrot series 
equipped with the FC300C, Zenmuse XT2, Zenmuse 
Z30, FLIR One Pro, etc. cameras. All the photos 
were taken at test sites in Ukraine in process of 
broader research that included experiments with 
multispectral and infrared cameras [2], but didn’t 
include experiments with CNN, so getting common 
RGB photos of landmines was not the main concern. 
However, the available resulting number of photos 
seemed to be enough to start creating datasets and 
training CNN.  

Different landmines, both antipersonnel and 
antitank, were installed at test sites, mostly on the 
grass surface, because deep grass is probably the 
most challenging environment for detection in 
Ukraine. Several photos of each mine were taken 
from different altitude, to vary visibility from fully 
visible in detail to recognizable only by shape. 
Images were then processed without scaling or using 
any color, contrast or brightness adjustment. The 
only changes were augmentation by rotation and 
flipping, and converting to grayscale to train 
separate model.  

The keystone of such research is network 
architecture. During the last few years researchers 
compared the efficiency of different CNN 
architectures for landmine detection task, and came 
to some conclusions. For example, scientists from 
Binghamton University in their famous research [3] 
concluded that Faster R-CNN is more accurate than 
YOLO for detecting “butterfly” antipersonnel mines. 
But taking into account the rapid progress in the 
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area, such conclusions are relevant for rather a short 
period, and need to be revised on each iteration of 
deep learning ecosystem development.  

So, in situation where serious benchmark 
research is needed for qualified estimation of 
relative effectiveness of different detectors, but 
results stay actual for a relatively short period of 
time, it seems reasonable to make an assumption 
about the most effective detector based on global 
tendencies in research area. 

Many publications show that in 2023 the default 
choice of CNN for detection is YOLO [4-8], because 
of its relative simplicity and outstanding 
performance [9,10]. YOLO uses the approach when 
detection is considered regression problem, 
determining simultaneously the coordinates of 
object’s bounding box and class of the object [9]. 
The balance between the accuracy of bounding box 
and appropriate class detection varies from task to 
task. Speaking about landmine detection, I can state 
that both precise bounding box and landmine model 
are incomparably less important than the very fact of 
landmine presence. In fact, it could be satisfactory to 
show the presence of mine with single point 
coordinates and no information about class, but 
100% confidence. So, modern detectors like YOLO 
seem even overcomplicated in some sense. But 
highly developed ecosystem simplifies the usage of 
these sophisticated systems and nowadays it is 
unavoidable to experiment with them whenever we 
deal with object detection. 

One of the benefits of YOLO is availability of 
open-source libraries that allow performing training, 
validation and detection effortlessly, without even 
knowing the details of programming. In our opinion, 
such a library of first choice is open-source library 
Ultralytics YOLO, having its major version 

YOLOv8 at the moment of research [11]. It is 
powerful Python-based library that has a lot of 
possibilities of fine tuning the detector. Among them 
are: predefined set of network models that differ in 
internal number of parameters, input arguments that 
allow prioritizing different parameters of detection, 
such as accuracy of bounding box or classification 
confidence, built-in augmentation capabilities, etc. A 
friendly community of developers providing 
excellent support is also worth mentioning. 

A standard approach to deep learning research 
assumes, as de-facto standard, the presence of three 
independent datasets – for training, validation and 
testing. So, limited amount of data is a serious 
obstacle for such a research. Intuitively, the amount 
of data at our disposal was enough for a single 
dataset. Most of the landmines represented in our 
photoset were filmed at two sites, less of them at 
three sites, and some at single, so it was problematic 
to create three independent datasets. 

So, several antipersonnel mines were chosen, all 
the photos were placed in two independent groups of 
images. The size of images was determined by 
default image size used for Ultralytics YOLOv8 – 
640×640. This size fitted well enough for all 
antipersonnel mines, the largest of them occupying 
nearly 2/3 of the image, while the smallest being 
tens of pixels large.   

There are several options for creating datasets. In 
my research I used Label Studio open-source 
application [14]. It is Python-based application that 
runs in browser, and allows the creation of datasets 
in a number of different formats, including YOLO 
format. The application has its extended enterprise 
version, but minimal functionality for dataset 
creation is present in free version. 
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Fig. 1. Minimal and maximal size images used for training dataset: 
а – MOH50 antipersonnel; b – MOH90 ant; ipersonnel; c – MOH100 antipersonnel; d – MOH200 antipersonnel; 

e – PMN antipersonnel; f – TM62M antitank; g – TM72 antitank; h – ТМ-62П2 antitank 

 
Augmentation of data was the important part of 

this research. Two options were used – built-in 
capabilities of Ultralytics library (default settings 
were used), and separate augmentation using 
external library. Albumentations, separate Python-
based library [15] was used to increase the number 
of images in training dataset. This library provides a 
wide range of options to transform labeled images, 
both geometry-based and color-based. Its powerful 
feature is a possibility to combine several 
transformations easily and intuitively. Also useful is 
the ability to apply changes randomly to predefined 
percentage of dataset and to randomize some 
transformation parameters. In our case, I used it for 
random rotation, increasing dataset size x6 times.  

All the training and validation was performed 
using 640×640 images, but in real life various image 
sizes are expected, and there are at least two ways to 
approach this. One is using complete image as an 
input to standard Ultralytics library detection 
method, setting image size as an argument, another 
is slicing image into 640×640 overlapping fragments 
before detection. That is what SAHI approach is 
intended for [12,13]. It automates the pipeline of 
image slicing, performing detection for each 
fragment, and joining fragments together, including 

prediction boxes. It is already adopted to use with 
Ultralytics library, so there is no need to slice and 
join images manually. The size of sliced fragments 
is not limited to the size used in the dataset, but I 
kept these sizes equal for simplicity. 

Standard metrics were used for model validation, 
such as precision P, recall R and F1 score, which are 
calculated as (1), (2) and (3): 

TPFP
TPP
−

= ,    (1) 

where TP is the number of correctly predicted 
classes, FP is the number of falsely predicted classes 
(or false alarms)  

TPFN
TPR
−

= ,   (2) 

where FN is the number of negatively predicted 
classes that should be positive 

RP
PRF
+

=
21 .   (3) 

It is obvious that in the context of landmine 
detection recall is the most important parameter, 
because it shows the ability to detect all present 
targets, so if it is needed to quantify landmine 
detector with a single parameter, recall for all classes 
will be the first choice. 
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Results 

The model chosen was so-called yolov8s (small) – 
second in the set of available models that consists of 
n-nano, s-small, m-medium, l-large and x-extra-
large. The training dataset was gradually increased 
by data augmentation from 216 images, through 648 
to 1296. Validation dataset contained 90 images, and 
remained the same during iterations. Finally, both 
datasets were converted to grayscale and separate 
model was trained, that has shown small changes for 
most mines, but much worth results for MOH50. 

The number of iterations was taken 20. I can state 
that validation was performed correctly, because 
validation dataset is independent. No special testing 
dataset was provided because of data shortage. 
Illustrations provided are generated using images 
that were included neither in training, nor in 
validation dataset. Results of model validation are 
represented by standard recall-, precision-, F1-
confidence curves generated by library immediately 
after training process. The first group of illustrations 
are all 640×640. Also, a comparison of usual vs 
SAHI approach is shown for image size 1140×1080. 

 

Number of images – 216 

Number of images 
increased to 648 
(augmentation by  
arbitrary rotation) 

Number of images 
increased to 1296 

(augmentation  
by arbitrary rotation) 

1296 grayscale images 
both in train and 

validation datasets 

Recall-confidence curves 

Precision-confidence curves 

    
F1-confidence curves 

 

 
Fig. 2. Comparing results for datasets: training set contains 216, 648, 1296 images (augmentation by arbitrary rotation), 

and 1296 grayscale images. Validation set contains 90 images 
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The limited set of independent test images includes mines of arbitrary shape and size, all of them 
antipersonnel, placed in the grass, different from training images in color gamma and with smaller size.  

a b c 

Fig. 3. Testing on images different form training set in terms of color gamma and size:  
a – both MOH100 and MOH50 are correctly detected; b, c – MOH90 is falsely detected as MOH100 and MOH200  

The next figure shows changes of detection accuracy during rotation of the image. 

   

Fig. 4. Detection of MOH90 and MOH200 on the image similar to training dataset rotating the image.  
The result shows that orientation matters for landmines of arbitrary shape 

Landmines of round shape, both antipersonnel 
and antitank, are placed into separate training dataset 
including 72 images. Only two classes – one for 
PMN antipersonnel, another for a group of similar 
TM antitank mines, are used. Validation dataset 

contains 26 images of same or similar mines filmed 
on different background. Because of low form 
variability, it isn’t reasonable to perform 
augmentation by rotation, that was done for mines of 
arbitrary shape.  

   
PMN antipersonnel TM62M antitank TM72 antitank 

Fig. 5. Detection of round-shaped landmines 
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For such a limited datset it seems reasonable to use ultralight net modification – YOLOv8n (nano). There 
is some difference from YOLOv8s (small) model, but this difference can be considered non-critical. 

   
YOLOv8n (nano) model result 

   
YOLOv8s (small) model result 

Fig. 6. Validation results of round-shaped landmines dataset 

Also, SAHI approach was tested, showing good results for images of arbitrary size. It is recommended to 
use it in the case of significant difference of dataset images size and size of the images used in detection. 

  
Fig. 7. Illustration of SAHI approach (on the left) on 1140x1080 images. SAHI shows some increase of confidence 

Discussion 

The problem of limited amount of data results in 
difficulties in presentation of research results. It is 
de-facto standard to provide independent datasets for 
validation and testing, and model performance 
indexes should be obtained from it. However, if each 
type of mine is represented in the dataset with one 
instance filmed at different angle, distance and 
background, can we speak about “independent” 

testing dataset? All we can do is to play with 
augmentation. To make the case more similar to 
other object detection problems, we can group 
similar landmine types to classes, for example, all 
antitank round-shaped landmines are candidates for 
such grouping, or pairs of antipersonnel landmines, 
such as MOH50, MOH90 and MOH100, MOH200 
respectively. It can bring necessary generalization, 
that network lacks processing these types separately. 
After that, if our assumption is correct, detector 
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should be able to detect similar mine of any class, 
not represented in dataset directly.  

And still the question is – to what extent are these 
images independent, in comparison with such 
diverse detection objects as persons, dogs or 
bicycles? So, the question of correct validation and 
testing of such models is still open. During 
investigation, we have to sacrifice some amount of 
data for validation purposes, but finally, when 
optimal hyperparameters are found, we have to use 
all the available data for the final dataset in 
production. After all, our final objective is not 
getting accurate numbers and plots, but building 
reliable detector that will simplify deminers’ work. 

Conclusion 
In this study I showed that it is possible to start 

the development of AI-based landmine detector even 
based on a very limited dataset. The current paper 
shows only the first iteration, so results are still far 
from requirements for accuracy needed in 
humanitarian demining. In the next iterations, when 
more data is available, I will be able to quantify the 
threshold of necessary amount of data needed for 
reliable detector. For this purpose, activities on test 
sites in Ukraine are needed. Also, different strategies 
of dataset assembling need to be tested, such as 
grouping landmines of different models having 
similar shape and size. Also, for different 
environments we may require separate datasets. An 
important milestone should be testing detector on 
real minefield imagery. So, current paper presents 
important step in complex iterational process of 
optical landmine detector development. 
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Саприкін Є. 
ОПТИЧНЕ ВИЯВЛЕННЯ НАЗЕМНИХ МІН З ВИКОРИСТАННЯМ ГЛИБОКОГО 
НАВЧАННЯ НА ОСНОВІ ОБМЕЖЕНОГО НАБОРУ ДАНИХ АЕРОЗНІМАННЯ 

Виявлення наземних мін є одним із найбільш інноваційних застосувань безпілотних літальних апаратів, що 
зобов’язане своєю появою швидкому розвитку як літальних апаратів, оснащених різними оптичними камерами 
та датчиками, що засновані на різних фізичних принципах, так і методів класифікації та виявлення об’єктів,  
включно з машинним навчанням та зокрема глибоким навчанням. Оптичне виявлення є важливою частиною 
цілісного процесу виявлення мін,і може виконуватися окремо або в поєднанні з обробкою даних з інших типів 
камер або датчиків. Розвиток глибоких згорткових нейронних мереж кардинально змінив стан речей у галузі 
оптичного виявлення, зробивши їх де-факто вибором номер один для більшості завдань класифікації, виявлення 
та сегментації об’єктів. Проте стримуючим фактором у випадку виявлення наземних мін є обмежена 
доступність відповідних даних для навчання, яку різні дослідники намагаються подолати різними способами. 
Визначення необхідного обсягу навчальних даних все ще залишається експериментальною задачею. 
Незважаючи на кілька років розвитку цієї галузі, все ще існує дефіцит досліджень, заснованих на реальних 
зображеннях наземних мін, отриманих з безпілотних літальних апаратів, тому наразі будь-які зусилля в цьому 
напрямку є цінними та служать джерелом натхнення для нових дослідників. У даній статті описане таке 
дослідження, а саме його перша ітерація, коли популярні інструменти з відкритим вихідним кодом 
використовуються для побудови системи виявлення, а їх ефективність оцінюється на базі обмеженої 
кількості даних. Показано, що проблема обмеженої кількості тренувальних даних може бути ефективно 
подолана нарощуванням даних, і продемонстровано ітераційний процес навчання оптичного детектора мін. 
Також продемонстровано ефективність використання вільно розповсюджуваних інструментів та бібліотек 
для тренування нейронних мереж, виявлення об’єктів та підготовки наборів даних. 
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Saprykin Ievgen 
OPTICAL DEEP LEARNING LANDMINE DETECTION BASED ON LIMITED DATASET OF 
AERIAL IMAGERY  

Landmine detection is one of the most innovative applications of unmanned aerial vehicles that became possible due 
to rapid development of both aerial vehicles equipped by different optical cameras and sensors using different physical 
principles, and object classification and detection methods, including machine learning and especially deep learning. 
Optical detection is an essential part of the overall landmine detection process that can be performed either separately 
or in combination with data processing from other types of cameras or sensors. The development of deep convolutional 
neural networks has dramatically changed the landscape of optical detection by making them de-facto choice number 
one for the majority of object classification, detection and segmentation tasks. However, the deterrent factor in the case 
of landmine detection is limited availability of appropriate data for training that different researchers try to overcome 
in different ways. The assessment of necessary amount of training data for any particular object detection problem still 
remains an experimental task. Despite several years of development in this area, still there is a shortage of research 
based on real landmine imagery obtained from unmanned aerial vehicles, so currently any public effort in this direction 
is valuable and works as an inspiration for new researchers. This paper describes such a study, namely its first iteration 
in which popular open-source tools are used to build detection pipeline and estimation of their efficiency is done using 
limited amount of data. It is shown that the problem of limited amount of training data can be effectively overcome by 
data augmentation and iterational process of training optical landmine detector is demonstrated. The effectiveness of 
open-source tools and libraries for neural networks training, object detection and dataset preparation is also 
demonstrated.    
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