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Introduction

The problem of airborne landmine detection
consists of two very unequal parts — one is optical
detection of visible landmines, another is detection
of hidden landmines using combination of sensors
using different physical principles. In this paper I
will consider only the first one to reasonably limit
the scope of investigation. Despite the problem of
hidden mines, optical detection is rather actual as a
separate task, because installation of hidden mines is
laborious and requires human involvement, unlike
installation of landmines on the surface that is
simple and can be done either by variety of technical
equipment or by wusing cluster ammunition.
Detection of hidden landmines, and particularly,
using deep learning for that, is much more
challenging task, mostly related to fusion of data
from different sensors — magnetometers, infrared
cameras, ground penetrating radars, etc., which is
also discussed in many recent publications, but is not
even close as actively developed as optical object
detection. So it makes sense to design appropriate
solution for optical detection before diving deeply
into hidden mine detection.

Let's try to define the role and place of optical
landmine detection in global picture of humanitarian
demining process. Nowadays, a realistic goal can be
set to create a kind of country-level geoinfor-
mational system of landmine contamination, where
the territory can be divided into several hypothetical
classes: unexplored, optically observed using
unmanned aerial vehicle (UAV), professionally
explored using UAV-based hidden mines detection
methods, manually explored by professional team,
etc. It makes sense to foresee an opportunity for
non-professionals to participate in data acquisition.
Because of shortage of professional deminers,
Ukrainian farmers are known for their self-organized
demining efforts, so it is reasonable at least to
provide standardized tools for optical detection and
data storing based on cheap commercial drones (that
farmers may be familiar with in the context of
agriculture) and free open-source data processing

solutions. We also can expect teams of civil
volunteers to participate at some stage.

When a large amount of data is centrally
available, it becomes possible to have an application
in smartphone that warns user about dangerous
closeness of landmines just like some applications
warn drivers about traffic jams. Taking into account
the sensitivity of information, end user can be
provided with information only about the closest
neighborhood, while authorized professional teams
may have extended access mode.

So, taking into consideration all mentioned
above, I come to idea that architecture of optical
detection system has to be as simple and as standard
as possible.

Analysis of recent research and publications

To define the place of optical UAV landmine
detection among the wide area of object detection
and computer vision tasks, I have to mention that it
is relatively new subdivision of UAV remote sensing
tasks, the variety of which is described in recent
publications [1], that have a lot in common, but each
is specific in some way. These tasks differ in size of
investigated objects, environmental conditions of
sensing, dynamics of detected objects' behavior,
requirements for on-board processing, etc.

First of all, it is worth mentioning that there were
successful efforts of solving the problem of optical
detection without neural networks and deep learning.
Such a method is described in paper [2] by
participants of the current research. In those studies,
optical landmine detection is considered as a
problem of statistical detection of a prescribed
signature over a random background with Gaussian
distribution. In fact, machine learning was used,
though it was not deep learning. The conceptual
difference is that no information about the shape of
landmine was used, with exception of round form of
sliding window, which was not a distinctive feature
of the method. So we can expect better results using
neural networks and deep learning, either in higher
performance rate, or lower requirements to
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resolution, but only in the case of enough training
data availability. Currently, I have to admit that we
can’t tell precisely how much training data is enough
in the case of aerial landmine detection. Most likely
the answer to this question will be determined
experimentally, rather than in strict mathematical way.

Last several years advanced groups of
researchers published their results of convolutional
neural network(CNN) usage in UAV landmine
detection, some of them generously sharing both
code and data with public [3]. The inspiring
contribution of such efforts is essential for new
researchers, however, the progress in NN
development is so rapid nowadays, that some
statements become questionable, like that about
Faster R-CNN showing better accuracy than YOLO
for small object detection. Such statements need
to be checked regularly as the progress in NN
development goes on.

Of course, a problem of training data shortage
arises, and 1s sometimes solved in rather
sophisticated ways, like 3Ddesign and 3D-printing
[4]. Ukrainian researchers usually use more general
approaches like data augmentation [5].

Besides using commercial drones with RGB
cameras for landmine detection, there are some
researches that use different approaches. Currently,
new researches in the area of landmine detection are
not limited to RGB images. Multispectral imagery is
also used, engaging similar network architectures,
YOLO, in particular, with some advances to adopt
them for different number of layers in the imagery
[6, 7]. In the case of scaling the technology to
Ukrainian extents it should be proven that introduction
of more expensive cameras is economically feasible.

Some researchers demonstrate completely
different approach to hardware, constructing smart
terrestrial robots that use YOLO as network
architecture [8]. The approach is definitely worth
attention, but obviously requires different datasets
than UAV platforms for training networks.

Some datasets of landmine imagery are shared
with public, either on researchers’ website [16], or
on Roboflow open-source deep learning platform
[17], but they are either dedicated to limited set of
mine types, or contain ordinary photos, not taken
from drone.

Formulation of the problem

In landmine detection the problem of datasets
availability is painful for novice researchers. For
obvious reasons of sensitive information protection,
landmines filmed from drones are seldom in open-
source datasets. In most cases, researchers need
some cooperation with military authorities to get
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necessary training data. I can summarize that
nowadays, despite rapid development of neural
networks and deep learning methods of landmine
detection, there is still shortage of publications that
describe researches made on data obtained from
drones, and that few researches make accent on the
necessary and sufficient amount of data.

The purpose of the work is to show that the
problem of limited amount of training data can be
effectively overcome by data augmentation and
iterational process of training optical landmine
detector is possible starting from very limited
amount of training data. Also the purpose is to
demonstrate that the problem can be solved using
open-source tools and libraries for neural networks
training, object detection and dataset preparation.

Materials and Methods

The accent in this paper is made on utilizing tools
and methods familiar to broad audience and
affordable with limited funds. UAVs used are
ordinary commercial light quadcopters, freely
available at the market at the moment of research.
They are DJI Phantom and Bebop Parrot series
equipped with the FC300C, Zenmuse XT2, Zenmuse
730, FLIR One Pro, etc. cameras. All the photos
were taken at test sites in Ukraine in process of
broader research that included experiments with
multispectral and infrared cameras [2], but didn’t
include experiments with CNN, so getting common
RGB photos of landmines was not the main concern.
However, the available resulting number of photos
seemed to be enough to start creating datasets and
training CNN.

Different landmines, both antipersonnel and
antitank, were installed at test sites, mostly on the
grass surface, because deep grass is probably the
most challenging environment for detection in
Ukraine. Several photos of each mine were taken
from different altitude, to vary visibility from fully
visible in detail to recognizable only by shape.
Images were then processed without scaling or using
any color, contrast or brightness adjustment. The
only changes were augmentation by rotation and
flipping, and converting to grayscale to train
separate model.

The keystone of such research is network
architecture. During the last few years researchers
compared the efficiency of different CNN
architectures for landmine detection task, and came
to some conclusions. For example, scientists from
Binghamton University in their famous research [3]
concluded that Faster R-CNN is more accurate than
YOLO for detecting “butterfly” antipersonnel mines.
But taking into account the rapid progress in the
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area, such conclusions are relevant for rather a short
period, and need to be revised on each iteration of
deep learning ecosystem development.

So, in situation where serious benchmark
research is needed for qualified estimation of
relative effectiveness of different detectors, but
results stay actual for a relatively short period of
time, it seems reasonable to make an assumption
about the most effective detector based on global
tendencies in research area.

Many publications show that in 2023 the default
choice of CNN for detection is YOLO [4-8], because
of its relative simplicity and outstanding
performance [9,10]. YOLO uses the approach when
detection is considered regression problem,
determining simultaneously the coordinates of
object’s bounding box and class of the object [9].
The balance between the accuracy of bounding box
and appropriate class detection varies from task to
task. Speaking about landmine detection, I can state
that both precise bounding box and landmine model
are incomparably less important than the very fact of
landmine presence. In fact, it could be satisfactory to
show the presence of mine with single point
coordinates and no information about class, but
100% confidence. So, modern detectors like YOLO
seem even overcomplicated in some sense. But
highly developed ecosystem simplifies the usage of
these sophisticated systems and nowadays it is
unavoidable to experiment with them whenever we
deal with object detection.

One of the benefits of YOLO is availability of
open-source libraries that allow performing training,
validation and detection effortlessly, without even
knowing the details of programming. In our opinion,
such a library of first choice is open-source library
Ultralytics YOLO, having its major version

YOLOvVS at the moment of research [11]. It is
powerful Python-based library that has a lot of
possibilities of fine tuning the detector. Among them
are: predefined set of network models that differ in
internal number of parameters, input arguments that
allow prioritizing different parameters of detection,
such as accuracy of bounding box or classification
confidence, built-in augmentation capabilities, etc. A
friendly community of developers providing
excellent support is also worth mentioning.

A standard approach to deep learning research
assumes, as de-facto standard, the presence of three
independent datasets — for training, validation and
testing. So, limited amount of data is a serious
obstacle for such a research. Intuitively, the amount
of data at our disposal was enough for a single
dataset. Most of the landmines represented in our
photoset were filmed at two sites, less of them at
three sites, and some at single, so it was problematic
to create three independent datasets.

So, several antipersonnel mines were chosen, all
the photos were placed in two independent groups of
images. The size of images was determined by
default image size used for Ultralytics YOLOVS —
640%x640. This size fitted well enough for all
antipersonnel mines, the largest of them occupying
nearly 2/3 of the image, while the smallest being
tens of pixels large.

There are several options for creating datasets. In
my research I used Label Studio open-source
application [14]. It is Python-based application that
runs in browser, and allows the creation of datasets
in a number of different formats, including YOLO
format. The application has its extended enterprise
version, but minimal functionality for dataset
creation is present in free version.
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Fig. 1. Minimal and maximal size images used for training dataset:
a — MOHS50 antipersonnel; b — MOH90 ant; ipersonnel; ¢ — MOH100 antipersonnel; d — MOH200 antipersonnel;
e — PMN antipersonnel; f— TM62M antitank; g — TM72 antitank; 7 — TM-62I12 antitank

Augmentation of data was the important part of
this research. Two options were used — built-in
capabilities of Ultralytics library (default settings
were used), and separate augmentation using
external library. Albumentations, separate Python-
based library [15] was used to increase the number
of images in training dataset. This library provides a
wide range of options to transform labeled images,
both geometry-based and color-based. Its powerful
feature is a possibility to combine several
transformations easily and intuitively. Also useful is
the ability to apply changes randomly to predefined
percentage of dataset and to randomize some
transformation parameters. In our case, [ used it for
random rotation, increasing dataset size x6 times.

All the training and validation was performed
using 640x640 images, but in real life various image
sizes are expected, and there are at least two ways to
approach this. One is using complete image as an
input to standard Ultralytics library detection
method, setting image size as an argument, another
is slicing image into 640x640 overlapping fragments
before detection. That is what SAHI approach is
intended for [12,13]. It automates the pipeline of
image slicing, performing detection for each
fragment, and joining fragments together, including
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prediction boxes. It is already adopted to use with
Ultralytics library, so there is no need to slice and
join images manually. The size of sliced fragments
is not limited to the size used in the dataset, but I
kept these sizes equal for simplicity.

Standard metrics were used for model validation,
such as precision P, recall R and F1 score, which are
calculated as (1), (2) and (3):

po TP
FP-TP

where TP is the number of correctly predicted
classes, FP is the number of falsely predicted classes

(1)

(or false alarms)
R= L, )
FN -TP

where FN is the number of negatively predicted
classes that should be positive
_ 2PR . 3)

P+R

It is obvious that in the context of landmine
detection recall is the most important parameter,
because it shows the ability to detect all present
targets, so if it is needed to quantify landmine
detector with a single parameter, recall for all classes
will be the first choice.

F1
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Results

The model chosen was so-called yolov8s (small) —
second in the set of available models that consists of
n-nano, s-small, m-medium, l-large and x-extra-
large. The training dataset was gradually increased
by data augmentation from 216 images, through 648
to 1296. Validation dataset contained 90 images, and
remained the same during iterations. Finally, both
datasets were converted to grayscale and separate
model was trained, that has shown small changes for
most mines, but much worth results for MOHS50.

Number of images
increased to 648
(augmentation by
arbitrary rotation)

Number of images — 216

The number of iterations was taken 20. I can state
that validation was performed correctly, because
validation dataset is independent. No special testing
dataset was provided because of data shortage.
Illustrations provided are generated using images
that were included neither in training, nor in
validation dataset. Results of model validation are
represented by standard recall-, precision-, FI1-
confidence curves generated by library immediately
after training process. The first group of illustrations
are all 640x640. Also, a comparison of usual vs
SAHI approach is shown for image size 1140x1080.

Number of images
increased to 1296
(augmentation
by arbitrary rotation)

1296 grayscale images
both in train and
validation datasets

Recall-confidence curves
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Fig. 2. Comparing results for datasets: training set contains 216, 648, 1296 images (augmentation by arbitrary rotation),
and 1296 grayscale images. Validation set contains 90 images
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The limited set of independent test images includes mines of arbitrary shape and size, all of them

antipersonnel, placed in the grass, different from training images in color gamma and with smaller size.

ey
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—

Fig. 3. Testing on images different form training set in terms of color gamma and size:
a —both MOH100 and MOHS50 are correctly detected; b, c — MOH90 is falsely detected as MOH100 and MOH200

The next figure shows changes of detection accuracy during rotation of the image.

Fig. 4. Detection of MOH90 and MOH200 on the image similar to training dataset rotating the image.
The result shows that orientation matters for landmines of arbitrary shape

Landmines of round shape, both antipersonnel
and antitank, are placed into separate training dataset
including 72 images. Only two classes — one for
PMN antipersonnel, another for a group of similar
TM antitank mines, are used. Validation dataset

PM antipersnnel

arbitrary shape.

TM62M antitank

contains 26 images of same or similar mines filmed
on different background. Because of low form
variability, it isn’t reasonable to perform
augmentation by rotation, that was done for mines of

Fig. 5. Detection of round-shaped landmines
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For such a limited datset it seems reasonable to use ultralight net modification — YOLOvVS8n (nano). There
is some difference from YOLOvVS8s (small) model, but this difference can be considered non-critical.
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Fig. 6. Validation results of round-shaped landmines dataset

Also, SAHI approach was tested, showing good results for images of arbitrary size. It is recommended to
use it in the case of significant difference of dataset images size and size of the images used in detection.

Fig. 7. Illustration of SAHI approach (on the left) on 1140x1080 images. SAHI shows some increase of confidence

Discussion testing dataset? All we can do is to play with

The problem of limited amount of data results in
difficulties in presentation of research results. It is
de-facto standard to provide independent datasets for
validation and testing, and model performance
indexes should be obtained from it. However, if each
type of mine is represented in the dataset with one
instance filmed at different angle, distance and
background, can we speak about “independent”

augmentation. To make the case more similar to
other object detection problems, we can group
similar landmine types to classes, for example, all
antitank round-shaped landmines are candidates for
such grouping, or pairs of antipersonnel landmines,
such as MOH50, MOH90 and MOH100, MOH200
respectively. It can bring necessary generalization,
that network lacks processing these types separately.
After that, if our assumption is correct, detector
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should be able to detect similar mine of any class,
not represented in dataset directly.

And still the question is — to what extent are these
images independent, in comparison with such
diverse detection objects as persons, dogs or
bicycles? So, the question of correct validation and
testing of such models is still open. During
investigation, we have to sacrifice some amount of
data for wvalidation purposes, but finally, when
optimal hyperparameters are found, we have to use
all the available data for the final dataset in
production. After all, our final objective is not
getting accurate numbers and plots, but building
reliable detector that will simplify deminers’” work.

Conclusion

In this study I showed that it is possible to start
the development of Al-based landmine detector even
based on a very limited dataset. The current paper
shows only the first iteration, so results are still far
from requirements for accuracy needed in
humanitarian demining. In the next iterations, when
more data is available, [ will be able to quantify the
threshold of necessary amount of data needed for
reliable detector. For this purpose, activities on test
sites in Ukraine are needed. Also, different strategies
of dataset assembling need to be tested, such as
grouping landmines of different models having
similar shape and size. Also, for different
environments we may require separate datasets. An
important milestone should be testing detector on
real minefield imagery. So, current paper presents
important step in complex iterational process of
optical landmine detector development.
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Canpukin €.
OIITUYHE BUSABJIEHHA HASEMHUX MIH 3 BUKOPUCTAHHSAM I'V'IMBOKOI'O
HABYAHHSA HA OCHOBI OBMEKEHOI'O HABOPY JAHUX AEPO3HIMAHHA

Busienenns nazemuux min € 0OHUM i3 HAUOLILW THHOBAYIIHUX 3ACOCYBAHbL DE3NIIOMHUX TIMATLHUX ANAPAmie, wo
30008 ’s13aHe C80€I0 NOABOIO WBUOKOMY PO3BUMKY AK JIMANbHUX ANAPAMIE, OCHAWEHUX DI3HUMU ONMUYHUMU KaAMepaMU
ma 0amyuKamu, wo 3aCHOBAHT HA PI3HUX (DI3UYHUX NPUHYUNAX, MaK 1 MemoOie Kiacugixayii ma euseieHHs 00 €Kmis,
BKNIOYHO 3 MAWUHHUM HABYAHHAM MA 30KpemMa 2nubOKuUM HaguanHaMm. Onmuune UABIEHHS € GANCIUBOIO YACHMUHOIO
YINICHO20 npoyecy BUSGLEHHs MIH,I MOJCE GUKOHYS8AMUCS OKPeMO ab0 68 NOEOHAHHI 3 0OPOOKOI0 OAHUX 3 THULUX MUNI8
Kamep abo oamuuxie. Pozeumox enuboKux 320pmKosux HeupoOHHUX Mepedc KapOUHAIbHO 3MIHUG CMaH peyell y 2any3i
ONMUYHO20 BUAGILEHHS, 3p0bUSWU IX 0e-(PaKkmo euOOPOM HOMeEP 0OUH 05t DLIbULOCMI 3a60aHb KIACUDIKayil, GUseIeHHs
ma ceemenmayii 06 ’exmis. IIpome cmpumyrouum Gaxmopom y unaoxy 6UAGNIEHH HA3EMHUX MIH € oOMedicena
docmynHicms 8IONOBIOHUX OAHUX Ol HABYAHHSA, AKY PI3HI OOCHIOHUKU HAMA2AIOMbCA NOOOAAMU PISHUMU CROCOOAMUL.
Busnauennss HeobxioHo2o 00cAcy HAGUANLHUX OAHUX 6Ce Wje 3ATUUAEMbCA  eKCNEPUMEHMANbHOI 3a0ayero.
Hesesaorcarouu na xinoka pokie pozsumky yiei eanysi, éce we icHye Oe@iyum 00CniONHceHb, 3ACHOBAHUX HA DedbHUX
300PANCEHHAX HAZEMHUX MIH, OMPUMAHUX 3 OE3NLIOMHUX TIMATbHUX Anapamis, momy Hapasi 6y0b-aKi 3yCULIL 8 YbOMY
HANpAMKY € YIHHUMU Ma CLYHCAMb 0HCEPEesioM HAMXHEHHA O HOBUX OOCHIOHUKIG. Y Oauill cmammi onucawe make
00CiONCeH s, a came 1020 nepwia imepayis, KOAU NONYIAPHI [THCMPYMeHmU 3 GIOKPUMUM BUXIOHUM KOOOM
BUKOPUCMOBYIOMbCSL Ok NOOYO08U CUCmeMU BUSIGNEHHs, A IX eghekmugnicmv OyiHIOEMbC Ha 6a3i oOMmedcenol
Kinbkocmi danux. Iloxasano, wo npobrema 06mednceHOi KiTbKOCMI MPEHY8ATbHUX OAHUX Modce Oymu epekmusHo
noooaana HaApOWYBAHHAM OAHUX, | NPOOEMOHCMPOBAHO iMepayitinull npoyec HABUAHHA ONMUYHO20 OeMeKmopa MiH.
Takodc npooemMoHCmpoBaAHO eheKMmuHICmb UKOPUCTNAHHS GLILHO PO3NOGCIO0IICYSAHUX ITHCMPYMenmie ma 6ioaiomex
0JIs1 MPEHYBAHHSL HEUPOHHUX MePedic, BUGIEHHs 00 €Kmie ma nid2omoeKku HAboPie OaHUX.

Knio4yoBi cnoBa: BUsiIBNEHHS1 HA3eMHUX MiH, 6€3ninoTHI NiTanbHi anapatu, rmuboke HaB4YaHHs, YOLO.

Saprykin Ievgen
OPTICAL DEEP LEARNING LANDMINE DETECTION BASED ON LIMITED DATASET OF
AERIAL IMAGERY

Landmine detection is one of the most innovative applications of unmanned aerial vehicles that became possible due
to rapid development of both aerial vehicles equipped by different optical cameras and sensors using different physical
principles, and object classification and detection methods, including machine learning and especially deep learning.
Optical detection is an essential part of the overall landmine detection process that can be performed either separately
or in combination with data processing from other types of cameras or sensors. The development of deep convolutional
neural networks has dramatically changed the landscape of optical detection by making them de-facto choice number
one for the majority of object classification, detection and segmentation tasks. However, the deterrent factor in the case
of landmine detection is limited availability of appropriate data for training that different researchers try to overcome
in different ways. The assessment of necessary amount of training data for any particular object detection problem still
remains an experimental task. Despite several years of development in this area, still there is a shortage of research
based on real landmine imagery obtained from unmanned aerial vehicles, so currently any public effort in this direction
is valuable and works as an inspiration for new researchers. This paper describes such a study, namely its first iteration
in which popular open-source tools are used to build detection pipeline and estimation of their efficiency is done using
limited amount of data. It is shown that the problem of limited amount of training data can be effectively overcome by
data augmentation and iterational process of training optical landmine detector is demonstrated. The effectiveness of
open-source tools and libraries for neural networks training, object detection and dataset preparation is also
demonstrated.

Keywords: landmine detection, unmanned aerial vehicles, deep learning, YOLO.
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