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TASK SCHEDULING OPTIMISATION OF DISTRIBUTED REAL-TIME  
COMPUTING SYSTEMS 

 

Introduction 

В Parallel and distributed computing systems 
with multi-core processors are valuable resources 
that are usually used to solve rather highly 
specialized production and other problems. Users 
continually submit jobs to the system, each with 
unique resource and QoS requirements. The task of 
job scheduling is to maximize the total utility of the 
system. The area of scheduling has received much 
attention over the years, resulting in a significant 
amount of work and new solutions in the practice of 
high performance computing. However, it can be 
argued that the problem of scheduling in parallel 
systems is still far from a final solution. Scheduling 
of computing tasks in real-time systems reflects 
trends in high-performance computing architectures, 
parallel programming language models, and user 
priorities. No scheduling strategy is optimal for 
arbitrary task scenarios, so the scheduling system 
must be adaptive by definition. These architectural 
trends have led to the dominance of flexible 
programming models and hence scheduling with 
shared computing resources with batch queuing. 
Distributed and parallel processing are no longer the 
exclusive domain of supercomputers; it is moving to 
autonomous network segments, geographically 
distributed grid ensembles, and even desktop 
computers. At the same time, rigidity and explicit 
parallelism are gradually giving way to 
programming models that provide an alternative to 

traditional scheduling approaches. In this article, we 
highlight problems and approaches to the theory and 
practice of parallel computing in a production 
environment; still unsolved problems in the field of 
real-time information and control systems are 
highlighted. In this paper, a regular approach for the 
scheduling problems in real-time computing systems 
is covered. The paper is organized as follows. 
Section II presents the additional notations, terms, 
and definitions. In order to limit the combinatorial 
explosion of the method, we identify a structural 
property of the set of tasks schedulable at each time 
instant and a characterization of active schedules [1]. 
Our algorithm is presented in Section 3, and its 
correctness is established in Section 4. Section 5 is 
devoted to its complexity. Section 6 is our 
conclusion. II. Terms and Definitions Because the 
terms used have had multiple meanings and implied 
different assumptions over time, we are redefining 
them here for this article. This work is about job 
scheduling, a discipline whose goal is to decide 
when and where each job should be executed during 
the operation of a system. This direction follows 
directly from the theory of scheduling. The 
specificity of the work is that each of the threads of a 
separate software application is scheduled 
independently of the others. The term "multi-core 
real-time computer" is used to designate a computer 
shared in real-time information and control systems 
and capable of performing distributed parallel 
processing. Such machines typically have distributed 
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memory or a distributed shared memory interface. 
The processor pools of such machines are usually 
homogeneous. The term “task” refers to a certain 
(parallel) program consisting of several parallel 
threads transmitted for execution by the computer 
system. Thus, a task is inherently related to the 
dispatch time, and scheduling algorithms make 
online scheduling decisions based on the current 
state of the ordered task flow. Each task is 
characterized by two parameters: length, measured 
by execution time, and size, characterized by the 
number of threads; we assume that each thread runs 
on a separate processor. The job dimensions are not 
necessarily fixed before or during execution, 
although in practice this is often implied. In the 
literature, the dimensions of the workspace are 
determined according to the following classification 
[4]. Hard sizing-The number of processors available 
to execute a job is specified by the user and is 
independent of the scheduler software application 
(hereinafter referred to as “scheduler” for short). 
This is the number of processors available to the job 
throughout its execution. Flexible sizing-The 
number of processors assigned to a job is determined 
by the scheduler, within certain user-specified limits. 
Once a job starts, it uses the same number of 
processors throughout its execution. Size agreed 
upon by stages. A task goes through different stages 
that require different numbers of processors. The 
number of allocated processors may change at any 
time. The name to execute in response to a request 
or job failure. In a manufacturing environment, the 
workspace is almost always fixed, but with different 
design approaches, configurable workspaces can 
improve productivity [2]. Evolving and flexible 
workspaces will require increased programming 
workload, overhead for migrating code snippets and 
breakpoints, and operating system support. Given a 
set of jobs and available processors, a schedule is an 
ordered series of mappings between some threads of 
those jobs and the processors. In practice, schedules 
can easily be changed depending on work flow 
conditions, but sometimes advance reservations are 
possible [3]. The term time-sharing refers to any 
scheduling approach in which threads can be 
preempted by others during execution and restarted 
later. The number of jobs that each processor can 
execute simultaneously is called the multiprogram-
ming level. In contrast, space-sharing approaches 
provide exclusive use of the processor by a thread 
until its execution is completed, or until a maximum 
time limit is exceeded and the thread terminates. 
Space sharing approaches allow you to manage time 
by placing each task in a queue and simultaneously 
executing all of its task threads once released from 
that queue. This division in approaches reflects the 

duality of sets of job requirements. Interactive jobs 
that require low latency are typically run using time 
sharing, while batch jobs that require consistent 
performance are run on dedicated processors using 
space sharing. Multi-core computers meet the 
requirements of both categories by statically 
dividing the machine's processors into subsets that 
share time and space. 

Schedule quality 
The goal of planning and system administration 

in general is to maximize the utility of the system. 
Utility cannot be quantified, but is essentially a 
functionality that depends on the context and many 
factors. These definitions rely on contexts beyond 
the planner, making objective assessment difficult. 
We can define certain qualities of said functionality, 
including performance, fairness, and predictability. 
However, there is no consensus on how these 
indicators relate to desirable qualities, nor on how 
these desirable qualities relate to utility. It is simply 
stated that each of them is associated with some 
unknown but non-decreasing function. Therefore, it 
is difficult to objectively assess the impact of 
planning decisions on a specific quality. The 
observed indicators allow us to make only weak 
statements regarding the planning policy, for 
example, “an increase in the indicator A, provided 
that all other factors remain constant, will lead to a 
non-negative change in the utility functional of the 
system.” Unfortunately, all other factors are rarely 
considered equal; Metric A may conflict with Metric 
B, although their relative impact on utility is 
unknown. Thus, the value of indicators lies in 
supporting administrative decision making by 
describing planning trade-offs, unfortunately in 
heterogeneous units of measurement. Next, we 
discuss each of the three desirable planning qualities 
mentioned above, some metrics that have been used 
to monitor each, and the trade-offs that exist 
between them. Productivity-fairness-predictability 
triplet The most commonly used measure of 
planning quality is productivity. For online 
scheduling algorithms, this score is measured using 
changes in response time. Response time, also 
known as thread time or processing time, is the 
amount of time that elapses between a job being 
submitted and completion. The intuition behind this 
metric is that users are more satisfied with faster 
response times, although the exact correlation is not 
clear [4]. Job slowdown, sometimes called dilation, 
is the ratio of a job's response time to its execution 
time on an unloaded system [5]. This metric 
overestimates the importance of extremely short 
work tasks, and "limited dilatation" has been 
proposed to prevent the risk of overestimating it. [6]: 
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where wT  is the task waiting time; rT  is execution 
time; r uT  is execution time in unloaded system. 
Naturally, limited deceleration is sensitive to the 
value of. 

The slowdown problem, like the bounded 
dilation problem, is that jobs with the same response 
time and CPU time can have different dilation rates. 
Accordingly, a widely used indicator is the 
normalized dilatation per processor (per processor 
slowdown), obtained by simply dividing the 
slowdown by the number of processors used [6]. 

Another problem with dilation measures is the 
relationship between performance and task duration. 
As rT  and r uT  increases the impact wT  on 
deceleration decreases. This may have undesirable 
consequences for policies that aim to minimize these 
rates. For example, in a resource volume sharing 
system, this policy rewards jobs that use fewer 
processors because they run longer and often start 
quickly [5, 7, 8 ]. There is a contradiction with the 
goals of parallel processing. To eliminate this 
contradiction, the performance indicator is not 
slowdown, but response time. 

To obtain unbiased comparative estimates of 
different scheduling schemes, the workload must be 
kept constant. For this reason, many studies use the 
so-called make pan [2, 9–11], a throughput indicator 
that denotes the amount of time required for a 
particular machine to complete a certain set of tasks 
with similar characteristics. Intuition suggests that a 
shorter turnaround time for a given set of jobs may 
indicate higher production productivity. Presumably 
higher throughput means greater utility. 

Of course, high utility requires more than just 
high performance. For example, a scheduler that 
selects only fast-executing jobs that minimize 
schedule fragmentation can easily achieve high 
throughput at low performance. This is because 
fairness is traded for productivity. 

Unless otherwise specified, the scheduler must 
assume that utility is best achieved by providing 
comparable services to each task. 

The composition of jobs is a product of foreign 
policy and market forces that the planner cannot 
predict. Providing uneven levels of service to certain 
jobs compromises the overall usefulness of the 
machine. Thus, fairness is an important quality of 
schedules, although it is rarely quantified. 

Most scheduling algorithms guarantee minimum 
fairness, that no job will be stalled, that is, every job 
will eventually complete. Stricter guarantees of 
fairness depend on the planning scheme. In space 

sharing, fairness may imply some queue order (e.g., 
FCFS) or that the current job will not be delayed by 
any job behind it in the queue [20]. With time sharing, 
it may be that each thread receives the same amount of 
CPU time, or a slice weighted by job size [12]. 

As you can see from the example above, fairness 
is often in direct conflict with productivity, and 
assessing the trade-off between the two is difficult. 

Predictability is the gap between the response or 
time to complete a task and the user's expectations 
based on previous experience. Predictability can 
indirectly improve productivity by allowing users to 
predict when jobs will take place and plan resource 
usage accordingly. 

Let us now consider some of the work of 
researchers on the problem and the results obtained. 

Related work 

In the literature, a number of previous work for 
scheduling of transportation, communication, and 
other systems have been done, which address the 
scheduling design challenges in different aspects. 
The theory of scheduling is characterized by a huge 
number of problem types (see, e.g. [5, 7, 8, 13]). 
This approach is based on a scheduling scheme 
extended with original setting to carry out the 
various activities. The works [2, 9] proposes to 
estimate the system productivity as key performance 
indicator (RPI) of online planning algorithms, at that 
the quantitative estimate of this KPI is expressed 
through variations of response time. 

Most of the scheduling problems are combina-
torial in nature [2, 3, 13]. One of the major 
challenges faced by high-end computing machines 
or supercomputers, which are widely used in 
scientific computing area, is energy and power 
efficiency [4, 14, 15]. A promising way to improve 
the energy and power efficiency is to employ the 
low-power architecture developed for optimal 
scheduling. The experimental results show that the 
scheduler can manage the thread running with 
lowers overhead and less storage order, thereby, 
improving the multi/many-core system performance. 
However, for fine-grained scientific workload, data 
communication is more complicated [16, 17]. The 
authors [18–21] analysed the scheduling 
predictability and they had shown that it can be even 
more important for user skill than productivity.  

Other researches are mainly concerned about the 
runtime scheduling algorithms, which assure the maximum 
system throughput with acceptable system cost. 

Problem statement 
In this paper we will follow two guidelines. One 

guideline is a distinction between scheduling 
models, which comprise a set of scheduling 
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problems solved by dedicated algorithms. Thus, the 
aim of this paper is to present scheduling models for 
parallel processing, problems defined on the grounds 
of certain scheduling models, and algorithms solving 
the scheduling problems. Therefore, the second 
guideline is the methodology of computational 
complexity research. 

In the scheduling theory, the focus is on the 
optimal distribution of the finite set of orders 
serviced by deterministic systems with one or more 
devices, with different assumptions about the nature 
of their service. 

The dominant resource for parallel processing in 
recent years has been the multi-core computer. 
Therefore, research into parallel planning of work in 
this area is very relevant. In Fig. Figure 1 shows a 
diagram of a conceptual approach to building a 
multi-core computer with task distribution. Here, the 
job distribution coprocessor contains M cores, the 
job distribution coprocessor contains N cores; in the 
general case M≠N . Sporadically occurring tasks 
pass through the priority channel. 

 
Fig. 1. Multi-core computer with task distribution; M≠N 

The simplest way to schedule a parallel system 
is with a queue. Each job is placed in a queue and, 
upon reaching the processing device, executed 
until completion. Hypothetically, the queue 
discipline can be standard FIFO, LIFO or another, 
but without loss of generality the scheme also 
applies to priority queues. Although this scheme 
provides maximum fairness and predictability, it is 
not very effective. Because each application uses 
only a subset of the system's processors, 
processors outside of that subset ( )M N∉  remain 
idle during execution. This effect is known as 
fragmentation [2], and its reduction is the main 
goal of many studies of planning problems. The 
most natural extension of the queue design is space 
sharing, which is the simple idea of allowing another 
task in a queue. A queue is built for execution on idle 
processors, if there are enough of them. What is 
deceptive, however, is that even simple scheduling 
models, such as space partitioning using queuing, 
hide many assumptions, leading to intense research 

interest. In the remainder of this section, we 
discuss some of the heuristics used to select the 
next job to execute, as well as the implications, 
assumptions, and implications of such choices. 

Method of optimisation servicing discipline 
in real-time operating systems 

An important problem is the development of basic 
mathematical methods and equations, convenient 
for solving specific practical network problems. 
Representing the network in the form of a 
deterministic system and describing it with 
appropriate equations with deterministic 
parameters will give a very rough, practically 
useless result for the following reasons. First, it is 
necessary to have complete a priori information 
about the parameters and state of the network at 
any moment. Such a task is practically impossible 
in the vast majority of cases. Secondly, equipment 
failures, abnormal situations, network disruptions, 
overloads are fundamentally random events that 
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we cannot inspect and cannot control - they can 
only be predicted with a certain accuracy. Thirdly, 
even in the ideal case of having complete a priori 
information about the parameters, structure and 
instantaneous state of the network, these data will 
be practically useless. The systems of equations 
that describe the network will have an order 
comparable to the number of network and 
terminal nodes. For the numerical solution of such 
a system of equations in real time, an almost 
unrealistic amount of computing resources will be 
required. Therefore, at present, only statistical 
methods of network description, data exchange 
processes, network structure synthesis and 

parameter estimation, network management can 
provide results with satisfactory asymptotic 
accuracy. Monitoring and analysis technology is a 
set of diagnostic tools that allow you to 
objectively assess the quality of network 
applications (including network operating systems 
and other network software) and justify 
recommendations for improving their work. 
Simulation methods of real-time systems (RTS) 
can also provide fairly comprehensive results for 
specific cases of interaction of a real-time 
operating system (RTOS) with a real-time 
production hardware and software complex. Fig. 2 
shows a conventional diagram of the RTS model. 

 

Synchronisation module 
Driver  Primary 

flow  

  
Background 

flows  

Primary 
flow  

Primary 
flow  

Corrector 

Signal generator  

Interruption delays  τ 

τ τ 

τ 

Corrector 

Signal generator  … 

 
Fig. 2. Real-time system in hardware and software implementation. Background streams  

are activated by RTOS commands and embedded in primary streams 

To optimize the service discipline, we will construct, 
following [20], an expression for the weighted sum of 
waiting times in the queue. For OS RTas a mass 
service system of the M/G/1 type for any service 
discipline, the following equality is valid: 

0

1

 ,   1 ,
1

 ,   1 .

P

p p
p=

ρτ ρ <ρ τ = −ρ
∞ ρ ≥

∑      (2) 

Here ρ is the portion of time when system is busy 
(ρ<1); pρ  is partial portion of time when system 
serves the priority pth class tasks (e.g., sporadic 
tasks, see fig.1). 

Let us consider the RT OS with the relative 
priority of some labeled requirement from the 
priority class p. The first component of the wait time 
for a tagged request is related to the request it finds 

in the server. The second component of the waiting 
time for a marked request is determined by the fact 
that other requests that the marked request has 
queued up are served before the marked request. Let 
us denote the number of requests from class i, which 
the marked request (from class p) has caught in the 
queue and which are served before it, by Nip. The 
average Nip is average of delay component  

1

P
i ip

i
x N

=
∑ . 

The third component of the delay is related to 
requests that arrived after the marked request 
arrived, but were served before it. We denote the 
number of such requests by Mip. The average value 
of this delay component is found similarly and is 

1

P
ipi

i
x M

=
∑ . 
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Taking into account these components, we will 
write down the expression for the average waiting 
time in the queue for a labeled request: 

0
1

0

1

 ,

 .
1

P P

p i i i i i p
i p i p

P

i i
i p

p P

i
i p

x x
= = +

=

= +

τ = τ + λ τ + λ τ

τ + ρ τ
τ =

− ρ

∑ ∑

∑

∑

    (3) 

Equations (3) are solved recursively, starting 
from 1 2, ,τ τ  . 

The problem of optimizing service discipline is 
put in the following form: U


 is vector of software 

attributes; Q


 is vector of software quality; W


 is 
vector of software exploitation parameters; 

max, , , 1,i i ci N
→ → → ℜ ≤ℜ = 

 
U Q W  is vector of software 

limit constraints. 
By varying the parameters of the vectors and 

priority classes of the service system, we search for 
the extremum of the efficiency functional: 
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== = =
=
=

 Ψ = α + β + γ → 
 

= = = ≠ ≠

∑ ∑ ∑U Q W
                  (4) 

According to the obtained expressions (2 - 4), the 
characteristics of the quality of service for all 
priority classes are calculated and the service 
discipline of the RT OS is optimized. An auxiliary 
criterion of optimality inherent in the RT OS is the 
above-considered current processor load when 
processing explicit and background task streams. 

Conclusion 

The article considers the task of optimising 
service discipline in a real-time operating system 
used in production management systems and critical 
application systems. Analysed response latencies 
depending on the type of real-time operating system 
model as a mass service system. We derived 
expressions for the average waiting time of calls to 
the operating system kernel for processes with 
different priorities. It is shown that the most 
effective step in this process is the optimisation of 
the activity of the enterprises or organizations at all 
levels. The results of the analysis of possible 
disciplines of maintenance of real-time operating 
systems used in production and technological 
process management systems are presented. Using 
the obtained ratios for service quality characteristics, 
it is possible to choose the OS RV maintenance 
discipline depending on the state of the managed 
object and the type of problem to be solved. 

In the future, it is planned to conduct a study of 
optimisation problems of real-time operating 
systems, which are used in multiprocessor 
computing systems designed to serve tasks with 
different priorities. it is advisable to choose the 
method of frequency-monotonic analysis as the 
theoretical foundation of research. This method, in 
our opinion, is the most suitable for optimisation of 

real-time multiprocessor computing systems 
designed for solving problems whose parameters, in 
particular, execution length, vary within very wide 
limits. 
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Cтанко П. О., Охремчук О. С., Саламатіна Д. Р., Свердлова Д. І. 
ОПТИМІЗАЦІЯ ПЛАНУВАННЯ ЗАВДАНЬ В РОЗПОДІЛЕНИХ ОБЧИСЛЮВАЛЬНИХ 
СИСТЕМАХ РЕАЛЬНОГО ЧАСУ 

Розподілені обчислювальні структури для виробничих та спеціальних цілей представляють ресурси м'яких 
або жорстких систем реального часу. Проблема планування завдань полягає в визначенні оптимального 
розподілу згідно із загальним критерієм корисності системи. У статті розглядаються методи побудови 
графіка, засновані на теорії планування. Показано, що найефективнішим кроком у цьому процесі є оптимізація 
діяльності підприємств або організацій на всіх рівнях - економічному, технічному, інформаційному і т.д., в 
умовах природних обмежень часових ресурсів. Оскільки оптимізація планування розкладу займає 
фундаментально важливе місце в процесі організації ефективної роботи розподіленої багатопроцесорної 
обчислювальної системи, розглядаються можливості використання цієї теорії при створенні оптимального 
розкладу на основі теорії черг зі звичайними і позначеними заявками. Теоретичною основою проблеми 
оптимізації планування є багаторівнева система з M блоками пам'яті та набором послуг N×M. З метою 
організації критеріїв оптимальності розкладу для забезпечення зручності опису, зберігання та програмної 
реалізації запропоновано умовний розподіл критеріїв на географічні, технічні або транзитні категорії із 
вказівкою відповідного пріоритетного значення. Враховуючи ці компоненти, отримано вираз для середнього 
часу очікування в черзі на заявку з позначкою. Представлена схема концептуального підходу до створення 
багатоядерного комп'ютера з розподілом періодичних та спорадичних завдань. Також представлена схема 
системи реального часу (СРЧ) в апаратній та програмній реалізації. Задачі в фоновому режимі в СРЧ 
активуються командами операційної системи реального часу (ОСРЧ) і вбудовуються в основні потоки. 
Вищезазначене демонструє універсальність запропонованого підходу до планування багатопроцесорної 
обчислювальної структури та його здатність відповідати вимогам користувача в реальному часі. 

Ключові слова: теорія планування; багатокритеріальна оптимізація; теорія черг; оптимальний розклад; 
позначені заявки. 
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Stanko P., Ohremchuk O., Salamatina D., Sverdlova D. 
TASK SCHEDULING OPTIMISATION OF DISTRIBUTED REAL-TIME  
COMPUTING SYSTEMS 

Distributed computing structures for production and special purposes represent the resources of soft or hard real-
time systems. The problem of task planning is to determine the optimal distribution according to the generalized 
criterion of system utility. The article discusses the methods of building a schedule, based on the theory of planning. It 
is shown that the most effective step in this process is the optimisation of the activity of the enterprises or organizations 
at all levels - economic, technical, informational, etc., under the conditions of natural limitations on time resources. 
Since the optimisation of schedule planning occupies a fundamentally important place in the process of organizing the 
effective operation of a distributed multiprocessor computing system, the possibilities of using this theory in creating an 
optimal schedule based on the theory of queues with ordinary and marked applications are considered. The theoretical 
basis of the planning optimisation problem is a multistage system with M storage units and a set of N×M services. In 
order to organize the schedule optimality criteria to ensure ease of description, storage and software implementation, a 
conditional division of criteria into geographic, technical or transit categories with a description of the corresponding 
priority value is proposed. Taking into account these components, an expression for the average waiting time in the 
queue for a marked demand is derived. The scheme of the conceptual approach to the construction of a multi-core 
computer with the distribution of periodic and sporadic tasks is presented. The scheme of the real-time system (RTS) in 
hardware and software implementation is also presented. Background streams in RTS are activated by RT operating 
system (RT OS) commands and are embedded in primary streams. The above demonstrates the versatility of the 
proposed approach to scheduling a multiprocessor computing structure and its ability to meet the user's work 
requirements in real time. 

Keywords: scheduling theory; multi-criteria optimisation; queuing theory; optimal schedule; marked applications. 
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