386

HaykoeMHi TexHonorii Ne 4(60), 2023

DOI: 10.18372/2310-5461.60.18267
UDC 519.47(045)

Petro Stanko, PhD

National aviation university
orcid.org/0000-0002-2659-7586
e-mail: petro.stanko@npp.nau.edu.ua;

Olena Ohremchuk

National aviation university
orcid.org/0000-0003-2239-0524

e-mail: olena.okhremchuk@npp.nau.edu.ua;

Daria Salamatina

National aviation university
orcid.org/0009-0006-3451-3930
e-mail: 6872386@stud.nau.edu.ua;

Daria Sverdlova

National aviation university
orcid.org/0009-0005-5425-1336
e-mail: 6884094@stud.nau.edu.ua;

TASK SCHEDULING OPTIMISATION OF DISTRIBUTED REAL-TIME
COMPUTING SYSTEMS

Introduction

B Parallel and distributed computing systems
with multi-core processors are valuable resources
that are usually used to solve rather highly
specialized production and other problems. Users
continually submit jobs to the system, each with
unique resource and QoS requirements. The task of
job scheduling is to maximize the total utility of the
system. The area of scheduling has received much
attention over the years, resulting in a significant
amount of work and new solutions in the practice of
high performance computing. However, it can be
argued that the problem of scheduling in parallel
systems is still far from a final solution. Scheduling
of computing tasks in real-time systems reflects
trends in high-performance computing architectures,
parallel programming language models, and user
priorities. No scheduling strategy is optimal for
arbitrary task scenarios, so the scheduling system
must be adaptive by definition. These architectural
trends have led to the dominance of flexible
programming models and hence scheduling with
shared computing resources with batch queuing.
Distributed and parallel processing are no longer the
exclusive domain of supercomputers; it is moving to
autonomous network segments, geographically
distributed grid ensembles, and even desktop
computers. At the same time, rigidity and explicit
parallelism are gradually giving way to
programming models that provide an alternative to

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

traditional scheduling approaches. In this article, we
highlight problems and approaches to the theory and
practice of parallel computing in a production
environment; still unsolved problems in the field of
real-time information and control systems are
highlighted. In this paper, a regular approach for the
scheduling problems in real-time computing systems
is covered. The paper is organized as follows.
Section II presents the additional notations, terms,
and definitions. In order to limit the combinatorial
explosion of the method, we identify a structural
property of the set of tasks schedulable at each time
instant and a characterization of active schedules [1].
Our algorithm is presented in Section 3, and its
correctness is established in Section 4. Section 5 is
devoted to its complexity. Section 6 1is our
conclusion. II. Terms and Definitions Because the
terms used have had multiple meanings and implied
different assumptions over time, we are redefining
them here for this article. This work is about job
scheduling, a discipline whose goal is to decide
when and where each job should be executed during
the operation of a system. This direction follows
directly from the theory of scheduling. The
specificity of the work is that each of the threads of a
separate software application is scheduled
independently of the others. The term "multi-core
real-time computer" is used to designate a computer
shared in real-time information and control systems
and capable of performing distributed parallel
processing. Such machines typically have distributed

HaykoemHi TexHonorii Ne 4(60), 2023

387

memory or a distributed shared memory interface.
The processor pools of such machines are usually
homogeneous. The term “task™ refers to a certain
(parallel) program consisting of several parallel
threads transmitted for execution by the computer
system. Thus, a task is inherently related to the
dispatch time, and scheduling algorithms make
online scheduling decisions based on the current
state of the ordered task flow. Each task is
characterized by two parameters: length, measured
by execution time, and size, characterized by the
number of threads; we assume that each thread runs
on a separate processor. The job dimensions are not
necessarily fixed before or during execution,
although in practice this is often implied. In the
literature, the dimensions of the workspace are
determined according to the following classification
[4]. Hard sizing-The number of processors available
to execute a job is specified by the user and is
independent of the scheduler software application
(hereinafter referred to as “scheduler” for short).
This is the number of processors available to the job
throughout its execution. Flexible sizing-The
number of processors assigned to a job is determined
by the scheduler, within certain user-specified limits.
Once a job starts, it uses the same number of
processors throughout its execution. Size agreed
upon by stages. A task goes through different stages
that require different numbers of processors. The
number of allocated processors may change at any
time. The name to execute in response to a request
or job failure. In a manufacturing environment, the
workspace is almost always fixed, but with different
design approaches, configurable workspaces can
improve productivity [2]. Evolving and flexible
workspaces will require increased programming
workload, overhead for migrating code snippets and
breakpoints, and operating system support. Given a
set of jobs and available processors, a schedule is an
ordered series of mappings between some threads of
those jobs and the processors. In practice, schedules
can easily be changed depending on work flow
conditions, but sometimes advance reservations are
possible [3]. The term time-sharing refers to any
scheduling approach in which threads can be
preempted by others during execution and restarted
later. The number of jobs that each processor can
execute simultaneously is called the multiprogram-
ming level. In contrast, space-sharing approaches
provide exclusive use of the processor by a thread
until its execution is completed, or until a maximum
time limit is exceeded and the thread terminates.
Space sharing approaches allow you to manage time
by placing each task in a queue and simultaneously
executing all of its task threads once released from
that queue. This division in approaches reflects the

duality of sets of job requirements. Interactive jobs
that require low latency are typically run using time
sharing, while batch jobs that require consistent
performance are run on dedicated processors using
space sharing. Multi-core computers meet the
requirements of both categories by statically
dividing the machine's processors into subsets that
share time and space.

Schedule quality

The goal of planning and system administration
in general is to maximize the utility of the system.
Utility cannot be quantified, but is essentially a
functionality that depends on the context and many
factors. These definitions rely on contexts beyond
the planner, making objective assessment difficult.
We can define certain qualities of said functionality,
including performance, fairness, and predictability.
However, there is no consensus on how these
indicators relate to desirable qualities, nor on how
these desirable qualities relate to utility. It is simply
stated that each of them is associated with some
unknown but non-decreasing function. Therefore, it
is difficult to objectively assess the impact of
planning decisions on a specific quality. The
observed indicators allow us to make only weak
statements regarding the planning policy, for
example, “an increase in the indicator A, provided
that all other factors remain constant, will lead to a
non-negative change in the utility functional of the
system.” Unfortunately, all other factors are rarely
considered equal; Metric A may conflict with Metric
B, although their relative impact on utility is
unknown. Thus, the value of indicators lies in
supporting administrative decision making by
describing planning trade-offs, unfortunately in
heterogeneous units of measurement. Next, we
discuss each of the three desirable planning qualities
mentioned above, some metrics that have been used
to monitor each, and the trade-offs that exist
between them. Productivity-fairness-predictability
triplet The most commonly used measure of
planning quality is productivity. For online
scheduling algorithms, this score is measured using
changes in response time. Response time, also
known as thread time or processing time, is the
amount of time that elapses between a job being
submitted and completion. The intuition behind this
metric is that users are more satisfied with faster
response times, although the exact correlation is not
clear [4]. Job slowdown, sometimes called dilation,
is the ratio of a job's response time to its execution
time on an unloaded system [5]. This metric
overestimates the importance of extremely short
work tasks, and "limited dilatation" has been
proposed to prevent the risk of overestimating it. [6]:

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

388

HaykoeMHi TexHonorii Ne 4(60), 2023

S, =maxi—b gl (1)
max[T r}

ru?’
where 7, is the task waiting time; 7' is execution

time; T,

is execution time in unloaded system.

Naturally, limited deceleration is sensitive to the
value of.

The slowdown problem, like the bounded
dilation problem, is that jobs with the same response
time and CPU time can have different dilation rates.
Accordingly, a widely used indicator is the
normalized dilatation per processor (per processor
slowdown), obtained by simply dividing the
slowdown by the number of processors used [6].

Another problem with dilation measures is the
relationship between performance and task duration.
As T and 7., increases the impact 7, on

r ru w

deceleration decreases. This may have undesirable
consequences for policies that aim to minimize these
rates. For example, in a resource volume sharing
system, this policy rewards jobs that use fewer
processors because they run longer and often start
quickly [5, 7, 8]. There is a contradiction with the
goals of parallel processing. To eliminate this
contradiction, the performance indicator is not
slowdown, but response time.

To obtain unbiased comparative estimates of
different scheduling schemes, the workload must be
kept constant. For this reason, many studies use the
so-called make pan [2, 9—11], a throughput indicator
that denotes the amount of time required for a
particular machine to complete a certain set of tasks
with similar characteristics. Intuition suggests that a
shorter turnaround time for a given set of jobs may
indicate higher production productivity. Presumably
higher throughput means greater utility.

Of course, high utility requires more than just
high performance. For example, a scheduler that
selects only fast-executing jobs that minimize
schedule fragmentation can easily achieve high
throughput at low performance. This is because
fairness is traded for productivity.

Unless otherwise specified, the scheduler must
assume that utility is best achieved by providing
comparable services to each task.

The composition of jobs is a product of foreign
policy and market forces that the planner cannot
predict. Providing uneven levels of service to certain
jobs compromises the overall usefulness of the
machine. Thus, fairness is an important quality of
schedules, although it is rarely quantified.

Most scheduling algorithms guarantee minimum
fairness, that no job will be stalled, that is, every job
will eventually complete. Stricter guarantees of
fairness depend on the planning scheme. In space

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

sharing, fairness may imply some queue order (e.g.,
FCFS) or that the current job will not be delayed by
any job behind it in the queue [20]. With time sharing,
it may be that each thread receives the same amount of
CPU time, or a slice weighted by job size [12].

As you can see from the example above, fairness
is often in direct conflict with productivity, and
assessing the trade-off between the two is difficult.

Predictability is the gap between the response or
time to complete a task and the user's expectations
based on previous experience. Predictability can
indirectly improve productivity by allowing users to
predict when jobs will take place and plan resource
usage accordingly.

Let us now consider some of the work of
researchers on the problem and the results obtained.

Related work

In the literature, a number of previous work for
scheduling of transportation, communication, and
other systems have been done, which address the
scheduling design challenges in different aspects.
The theory of scheduling is characterized by a huge
number of problem types (see, e.g. [5, 7, 8, 13]).
This approach is based on a scheduling scheme
extended with original setting to carry out the
various activities. The works [2, 9] proposes to
estimate the system productivity as key performance
indicator (RPI) of online planning algorithms, at that
the quantitative estimate of this KPI is expressed
through variations of response time.

Most of the scheduling problems are combina-
torial in nature [2, 3, 13]. One of the major
challenges faced by high-end computing machines
or supercomputers, which are widely used in
scientific computing area, is energy and power
efficiency [4, 14, 15]. A promising way to improve
the energy and power efficiency is to employ the
low-power architecture developed for optimal
scheduling. The experimental results show that the
scheduler can manage the thread running with
lowers overhead and less storage order, thereby,
improving the multi/many-core system performance.
However, for fine-grained scientific workload, data
communication is more complicated [16, 17]. The
authors [18-21] analysed the scheduling
predictability and they had shown that it can be even
more important for user skill than productivity.

Other researches are mainly concerned about the
runtime scheduling algorithms, which assure the maximum
system throughput with acceptable system cost.

Problem statement

In this paper we will follow two guidelines. One
guideline is a distinction between scheduling
models, which comprise a set of scheduling

HaykoemHi TexHonorii Ne 4(60), 2023

389

problems solved by dedicated algorithms. Thus, the
aim of this paper is to present scheduling models for
parallel processing, problems defined on the grounds
of certain scheduling models, and algorithms solving
the scheduling problems. Therefore, the second
guideline is the methodology of computational
complexity research.

In the scheduling theory, the focus is on the
optimal distribution of the finite set of orders
serviced by deterministic systems with one or more
devices, with different assumptions about the nature
of their service.

Periodic and quasi-
periodic tasks

l

The dominant resource for parallel processing in
recent years has been the multi-core computer.
Therefore, research into parallel planning of work in
this area is very relevant. In Fig. Figure 1 shows a
diagram of a conceptual approach to building a
multi-core computer with task distribution. Here, the
job distribution coprocessor contains M cores, the
job distribution coprocessor contains N cores; in the
general case M=N . Sporadically occurring tasks
pass through the priority channel.

Sporadic tasks

—

Task Set QQ

'

Scaling Task Set

Admission Control

-~

A Y
'\ Core?! + .+« \Corel
TaskAssignment]

I I

I

e "

Fig. 1. Multi-core computer with task distribution; M=N

The simplest way to schedule a parallel system
is with a queue. Each job is placed in a queue and,
upon reaching the processing device, executed
until completion. Hypothetically, the queue
discipline can be standard FIFO, LIFO or another,
but without loss of generality the scheme also
applies to priority queues. Although this scheme
provides maximum fairness and predictability, it is
not very effective. Because each application uses
only a subset of the system's processors,
processors outside of that subset (M ¢ N) remain

idle during execution. This effect is known as
fragmentation [2], and its reduction is the main
goal of many studies of planning problems. The
most natural extension of the queue design is space
sharing, which is the simple idea of allowing another
task in a queue. A queue is built for execution on idle
processors, if there are enough of them. What is
deceptive, however, is that even simple scheduling
models, such as space partitioning using queuing,
hide many assumptions, leading to intense research

interest. In the remainder of this section, we
discuss some of the heuristics used to select the
next job to execute, as well as the implications,
assumptions, and implications of such choices.

Method of optimisation servicing discipline
in real-time operating systems

An important problem is the development of basic
mathematical methods and equations, convenient
for solving specific practical network problems.
Representing the network in the form of a
deterministic system and describing it with
appropriate ~ equations with deterministic
parameters will give a very rough, practically
useless result for the following reasons. First, it is
necessary to have complete a priori information
about the parameters and state of the network at
any moment. Such a task is practically impossible
in the vast majority of cases. Secondly, equipment
failures, abnormal situations, network disruptions,
overloads are fundamentally random events that

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

390

HaykoeMHi TexHonorii Ne 4(60), 2023

we cannot inspect and cannot control - they can
only be predicted with a certain accuracy. Thirdly,
even in the ideal case of having complete a priori
information about the parameters, structure and
instantaneous state of the network, these data will
be practically useless. The systems of equations
that describe the network will have an order
comparable to the number of network and
terminal nodes. For the numerical solution of such
a system of equations in real time, an almost
unrealistic amount of computing resources will be
required. Therefore, at present, only statistical
methods of network description, data exchange

parameter estimation, network management can
provide results with satisfactory asymptotic
accuracy. Monitoring and analysis technology is a
set of diagnostic tools that allow you to
objectively assess the quality of network
applications (including network operating systems
and other network software) and justify
recommendations for improving their work.
Simulation methods of real-time systems (RTS)
can also provide fairly comprehensive results for
specific cases of interaction of a real-time
operating system (RTOS) with a real-time
production hardware and software complex. Fig. 2

processes, network structure synthesis and shows a conventional diagram of the RTS model.
Interruption delays <
<+ <+
"""""""" T T
i Synchronisation module
L : - Primar T
——»{ Signal generator }—,—» Driver 1 " RN
' ! ow
i Corrector | !
: | | ! Background
! - | flows
——>»| Signal generator }—’—»
| | Corrector | !
e | Primary
flow
N Primary
flow

Fig. 2. Real-time system in hardware and software implementation. Background streams
are activated by RTOS commands and embedded in primary streams

To optimize the service discipline, we will construct,
following [20], an expression for the weighted sum of
waiting times in the queue. For OS RTas a mass
service system of the M/G/1 type for any service
discipline, the following equality is valid:

P pTO , p<1,
2.P,T,=11-p 2)
Pl o, p=1.

Here p is the portion of time when system is busy
(p<l); p, is partial portion of time when system

serves the priority p™ class tasks (e.g., sporadic
tasks, see fig.1).

Let us consider the RT OS with the relative
priority of some labeled requirement from the
priority class p. The first component of the wait time
for a tagged request is related to the request it finds

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

in the server. The second component of the waiting
time for a marked request is determined by the fact
that other requests that the marked request has
queued up are served before the marked request. Let
us denote the number of requests from class i, which
the marked request (from class p) has caught in the
queue and which are served before it, by Nj. The
average N, is average of delay component

P _ __
ZXiN,p .
i=1

The third component of the delay is related to
requests that arrived after the marked request
arrived, but were served before it. We denote the
number of such requests by M;,. The average value
of this delay component is found similarly and is

P _
inMip .
i=1

HaykoemHi TexHonorii Ne 4(60), 2023

391

Taking into account these components, we will
write down the expression for the average waiting
time in the queue for a labeled request:

P __ P __
T,=T + Y XAT+ D XAT
i=p

i"Yivp
i=p+l1
P
T+ 2P 3)
_ i=p
T = P
1- z P;
i=p+l1

> > o Ny
v, (U,Q,Wj = oqu, +

i=1

Equations (3) are solved recursively, starting
from t,,7,,....

The problem of optimizing service discipline is
put in the following form: U is vector of software
attributes; Q is vector of software quality; W is
vector of software exploitation parameters;

i=1,N, is vector of software

SRi (U’Q’Wj < mimax’

limit constraints.
By varying the parameters of the vectors and

priority classes of the service system, we search for

the extremum of the efficiency functional:

i=LNy, j=LNg, k=1,Ny; N, #N,#N,.

According to the obtained expressions (2 - 4), the
characteristics of the quality of service for all
priority classes are calculated and the service
discipline of the RT OS is optimized. An auxiliary
criterion of optimality inherent in the RT OS is the
above-considered current processor load when
processing explicit and background task streams.

Conclusion

The article considers the task of optimising
service discipline in a real-time operating system
used in production management systems and critical
application systems. Analysed response latencies
depending on the type of real-time operating system
model as a mass service system. We derived
expressions for the average waiting time of calls to
the operating system kernel for processes with
different priorities. It is shown that the most
effective step in this process is the optimisation of
the activity of the enterprises or organizations at all
levels. The results of the analysis of possible
disciplines of maintenance of real-time operating
systems used in production and technological
process management systems are presented. Using
the obtained ratios for service quality characteristics,
it is possible to choose the OS RV maintenance
discipline depending on the state of the managed
object and the type of problem to be solved.

In the future, it is planned to conduct a study of
optimisation problems of real-time operating
systems, which are used in multiprocessor
computing systems designed to serve tasks with
different priorities. it is advisable to choose the
method of frequency-monotonic analysis as the
theoretical foundation of research. This method, in
our opinion, is the most suitable for optimisation of

No Ny

Zquj + VW, — max,

j=1 k=1 Ui =Ujopy
4;=4opt 4)
Wi =Wg opt

real-time multiprocessor computing systems

designed for solving problems whose parameters, in
particular, execution length, vary within very wide
limits.

REFERENCES

[1] Dziyauddin, R. A., Niyato, D., Luong, N. C.,
Mohd Atan, A. A. A., Mohd Izhar, M. A., Azmi,
M. H., & Mohd Daud, S. Computation offloading
and content caching and delivery in Vehicular
Edge Network: A survey. Computer Networks.
2021. 197. 108228. 22 p. https://doi.org/10.1016/
j.comnet.2021.108228

[2] Levner E. (Ed.) Multiprocessor Scheduling:
Theory and Applications. - I-Tech Education and
Publishing, Vienna, Austria, 2007. 436 p.

[3] Gawiejnowicz S. Models and Algorithms of Time-
Dependent Scheduling, Second Ed. Springer-
Verlag GmbH Germany, part of Springer Nature
2008, 2020. 538 p.

[4] Okhremchuk O.S. Scheduling Optimisation Under
Contradictions in Criteria Functions. Science-
Based technologies, 2019. Vol. 2(42). P. 184-188.
doi.10.18372/2310-5461.42.13750

[5] Pinedo M.L. Scheduling: Theory, Algorithms, and
Systems, Sixth Ed. Springer Nature Switzerland,
2022. 698 p.

[6] Slomka F. Beyond the limitations of real-time
scheduling theory: a unified scheduling theory for
the analysis of real-time systems. Software-Intensive
Cyber-Physical Systems, 2021. 35. p. 201-236.
https://doi.org/10.1007/s00450-021-00429-1

[7] Tanaev V. S., Sotskov Y. N., Strusevich V. A.
Scheduling Theory. Multi-Stage Systems. Springer
Science+Business Media, Dordrecht, 1994. 404 p.

[8] Sinnen O. Task Scheduling for Parallel Systems,
John Wiley & Sons, Inc., 2007. 296 p.

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

https://doi.org/10.1016/

392 HaykoemHi TexHonorii Ne 4(60), 2023

[9] Chakrabarti A., Chakrabarti A., Sharma N., Balas [16] Jinyi Xu J. Real-time task scheduling for FPGA-

V. (Eds.) Advances in Computing Applications. based multicore systems with communication
Springer Singapore, 2016. 299 p. delay. Microprocessors and Microsystems. 2022.
[10] Tan D. Automatic determining optimal parameters in Vol. 90. P. 104468.
multi-kernel collaborative fuzzy clustering based on [17] Kohutka L. A New FPGA-Based Task Scheduler
dimension constraint. Neurocomputing. 2021. 443, for Real-Time Systems. Electronics. 2023, 12(8),
p. 58-74. doi.10.1016/j.neucom. 2021.02.0 1870. https://doi.org/10.3390/electronics 12081870
[11] Baruah S. Mixed-criticality scheduling theory: [18] Capota, E. A., Stangaciu, C. S., Micea, M. V.,
scope, promise, and limitations. IEEE Xplore & Curiac, D.-I. Towards mixed criticality task
Digital library, 2017. 5 p. http://ieeexplore. scheduling in cyber physical systems: Challenges
ieee.org/Xplore and perspectives. Journal of Systems and
[12] Xu, S., & Hall, N. G. Fatigue, personnel Software. 2019. 156. 204-216. https://doi.org/
scheduling and operations: Review and research 10.1016/5.jss.2019.06.099
opportunities. European Journal of Operational [19] Ben Messaoud, M. A thorough review of aircraft
Research. 2021. 295(3), 807-822. https://doi.org/ landing operation from practical and theoretical
10.1016/j.ejor.2021.03.036 standpoints at an airport which may include a
[13] Blazewicz J., Ecker K., Pesch E., Schmidt G., single or multiple runways. Applied Soft
Sterna M., Weglarz J. Handbook on Scheduling: Computing. 2020. 106853. 88 p. https://doi.org/
From Theory to Practice, Second Ed. Springer 10.1016/j.as0¢.2020.106853
Nature Switzerland AG, 2019. 833 p. [20] Gerofi B. Performance and Scalability of
[14] Baital K. Dynamic Scheduling of Tasks for Lightweight Multi-Kernel based Operating
Multi-core Real Time Systems based on Systems. 2018 IEEE International Parallel and
Optimum Energy and Throughput. ReView by Distributed Processing Symposium. p. 116-125.
River Valley Technologies — IET Review Copy, doi.10.1109/IPDPS.2018.00022
2018. 12 p. [21] Jansen K. Total Completion Time Minimization
[15] Baital, K. A. Dynamic Scheduling of Real-Time for Scheduling with Incompatibility Cliques
Tasks in Heterogeneous Multicore Systems. IET Proceedings of the Thirty-First International
Comput. Digit. Tech. 2019. Vol. 13 Iss. 2, pp. 93- Conference on Automated Planning and
100. https://doi.org/10.1049/iet-cdt.2018.5114. Scheduling (ICAPS 2021). p. 192-200.

Cranko II. O., Oxpemuyk O. C., Canamarina /I. P., Cepaaona /1. I.
OIITUMI3BALIS IIVIAHYBAHHS 3ABJJIAHDB B PO3INOAIVIEHUX OBUYUCJIOBAJIBHUX
CUCTEMAX PEAJIBHOI'O YACY

Po3snoodineni obuucniosanvhi cmpykmypu O GUpOOHUNUX Ma CHeYianbHuX yinetl npeoCmagisioms pecypcu M saKux
abo ocopcmkux cucmem peanvHoz2o uacy. llpobnema nnanyeanms 3a60anb NONASAE 6 GUIHAYEHHI ONMUMANLHO20
PO3NO0INY 32I0HO I3 3a2ANbHUM KPUMEPIEM KOPUCHOCMI cucmemu. Y cmammi po32eisioaromvci memoou nobdyoosu
epagixa, 3acrhosani na meopii nianysauns. [lokasano, wo natlegheKMuSHIWUM KPOKOM Y YbOMY Npoyeci € ONMumizayis
OisnbHOCMI nionpuemcms abo opeaHizayitl Ha 6CiX PIGHAX - eKOHOMIUHOMY, MEXHIYHOMY, IHopmayiiHomy i m.o0., &
yMosax npupoonux obmedcenv uacogux pecypcig. OcKibKU ONMUMI3AYis NAGHY8AHHA PO3KAA0Y 3aUMAE
¢dyHOamenmanvro eaxciuge micye 8 npoyeci opeanizayii eghekmusHoi pobomu poznodineHoi bazamonpoyecopHoi
00YUCTI0BATLHOI cuceMU, pO32A0AIOMbCA MONCTUBOCI BUKOPUCIAHHA Yi€i Mmeopii npu cmeopenni OnmumMaibHO20
PO3KNAdy HA OCHO8I meopii uepe 30 36uyauHumu i no3Hauenumu 3aaskamu. TeopemuyHnor o0cHO80I0 npodiemu
onmumizayii nianyeanusa € dazamopienesa cucmema 3 M Onoxamu nam'ami ma mabopom nociye NxM. 3 memoro
opeaHizayii Kpumepiie ONMUMAIbHOCMI PO3KIAOY OJisl 3a0e3NeUeHHsT 3PYYHOCMI Onucy, 30epicanHs ma NpocpamHol
peanizayii 3anponoOHO8AHO YMOGHUL PO3NOOLL Kpumepiie HA 2eoepagiuni, mexuiuHi abo mpaH3umHi Kameeopii i3
8KA3I6KOI0 8IONOGIOH020 NPIOpUMEMHO20 3HAUeHHA. Bpaxosyiouu yi komnoneHmu, ompumano eupasz oOis cepeoHbo2o
yacy OuiKy8amHsA 6 uep3i HA 3aA6KYy 3 No3Hauykow. llpedcmasnena cxema KOHYenmyanbHO20 nioxody 00 CMBOpPeHHs.
bacamosndeprozo Komn'tomepa 3 po3nooiiom NepioOUdHUX ma CROpaoudHuX 3ag0ans. Taxooc npedcmasnena cxema
cucmemu peanvrozo uacy (CPY) 6 anapammuiti ma npozpammuii peanizayii. 3adaui 6 ¢onosomy pexcumi ¢ CPY
aKmugylomuvcs KOMaHoamu onepayilinoi cucmemu peanvioco uacy (OCPY) i 86y008yiombcs 8 OCHOGHI NOMOKU.
Buwesasnauene O0emoncmpye YHIGepCcaNbHICMb 3aNPONOHOBAHO20 NIOX00y 00 NAAHY8AHHA 0a2amMonpoyecopHoi
004UCTI08ANLHOT CMPYKMYPU MA U020 30AMHICMb 8I0N0GI0AMU UMO2AM KOPUCIMYBAHA 8 PEANbHOMY HACL.

KntouyoBi cnoBa: Teopisa nnaHyBaHHA; GaraTokpuTepianbHa OMTUMI3aLisi; Teopis Yepr; onTMManbHWUIA po3knag;
No3HauYeHi 3asBKu.

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

https://doi.org/
https://doi.org/10.3390
https://doi.org/%2010.1016/
https://doi.org/%2010.1016/
https://doi.org/

HaykoemHi TexHonorii Ne 4(60), 2023 393

Stanko P., Ohremchuk O., Salamatina D., Sverdlova D.
TASK SCHEDULING OPTIMISATION OF DISTRIBUTED REAL-TIME
COMPUTING SYSTEMS

Distributed computing structures for production and special purposes represent the resources of soft or hard real-
time systems. The problem of task planning is to determine the optimal distribution according to the generalized
criterion of system utility. The article discusses the methods of building a schedule, based on the theory of planning. It
is shown that the most effective step in this process is the optimisation of the activity of the enterprises or organizations
at all levels - economic, technical, informational, etc., under the conditions of natural limitations on time resources.
Since the optimisation of schedule planning occupies a fundamentally important place in the process of organizing the
effective operation of a distributed multiprocessor computing system, the possibilities of using this theory in creating an
optimal schedule based on the theory of queues with ordinary and marked applications are considered. The theoretical
basis of the planning optimisation problem is a multistage system with M storage units and a set of NxM services. In
order to organize the schedule optimality criteria to ensure ease of description, storage and software implementation, a
conditional division of criteria into geographic, technical or transit categories with a description of the corresponding
priority value is proposed. Taking into account these components, an expression for the average waiting time in the
queue for a marked demand is derived. The scheme of the conceptual approach to the construction of a multi-core
computer with the distribution of periodic and sporadic tasks is presented. The scheme of the real-time system (RTS) in
hardware and software implementation is also presented. Background streams in RTS are activated by RT operating
system (RT OS) commands and are embedded in primary streams. The above demonstrates the versatility of the
proposed approach to scheduling a multiprocessor computing structure and its ability to meet the user's work
requirements in real time.

Keywords: scheduling theory; multi-criteria optimisation; queuing theory; optimal schedule; marked applications.

Crarrs Haaiduia 1o penakuii 15.11.2023 p.
[puiinsaTo no npyky 19.12.2023 p.

© P. Stanko, O. Ohremchuk, D. Salamatina, D. Sverdlova, 2023

