HaykoemHi TexHonorii Ne 3(59), 2023

251

DOI: 10.18372/2310-5461.59.17946
UDC 629.123.066

Oleksandr Sharko PhD

Kherson State Maritime Academy
73000, Kherson, 20, Ushakov ave.
orcid.org/0000-0001-9025-7990
e-mail: mvsharko@gmail.com;

Artem Yanenko

Kherson State Maritime Academy
73000, Kherson, 20, Ushakov ave.
orcid.org/0009-0004-7992-8369
e-mail: yanenko9494(@gmail.com

MODELING OF INTELIGENT SOFTWARE FOR THE DIAGNOSIS AND MONITORING
OF SHIP POWER PLANT COMPONENTS USING MARKOV CHAINS

Introduction

The cost of maritime vessels reaches tens of
millions of US dollars. Ship power plant systems
(SPPs) account for 10 to 30% of this cost. The
construction period of a single vessel lasts over a
year, with a normative service life of 20 to 25 years.
Throughout the entire service life, the power plant is
usually not replaced but undergoes continuous
maintenance and periodic repairs.

The reliability and operational suitability of metal
structures depend on the quality of monitoring the
technical condition and mechanical properties of
materials in accordance with international standards.
However, during operation, deviations from the
normative values of material properties occur due to
the uncertain nature and magnitude of loads,
necessitating periodic equipment shutdowns for
diagnostic purposes.

The execution of diagnostic work in
transportation is determined by technical conditions
and regulations. To forecast diagnostic results in the
short term, regression models, discriminant models,
cluster analysis, and taxonomy are used. These
methods require prior knowledge of past situations
and operating parameters, which are practically
impossible to determine in transportation conditions.
Simultaneously, during the intervals between
diagnostic processes, there may be emergency peak
loads on the turbocharger material during operation.

In all four-stroke internal combustion engines, air
compression is achieved using a compressor v,,
which is powered by a gas turbine. The combination
of the compressor and gas turbine is called a
turbocharger. The gas section of the turbocharger
consists of a radial-axial wheel located in a housing.
Sealing along the gas section aims to prevent gas
leakage from the working chamber of the gas
section. The structural properties of turbocharger

components deteriorate not only with increasing
operating time but also with intensified power loads.

The smooth operation of marine vessel power
equipment elements depends on the quality of
monitoring their technical condition through
physical diagnostic methods. The most effective
method to reduce operational costs and enhance
equipment reliability is to conduct maintenance
based on interactive monitoring of its condition,
detection of malfunctions, and prediction of power
equipment parameters. This makes the tasks of
control, diagnostics, and prediction of power
equipment parameters particularly relevant.

In the operating conditions of ship power plant
(SPP) elements, the effects of unpredictable and often
extreme loads are probabilistic in nature. Since there is
no historical record of the reasons for changes in
mechanical properties, their magnitude, and duration,
the diagnostic process starts without considering or
making any adjustments based on the current situation.
It consists of a sequential determination of structural
properties according to existing regulations. After
obtaining information related to the quantitative
assessment of one of the factors at the start of the
diagnostic process, the reference point for the
beginning of the diagnosis shifts towards shortening
the diagnostic process. Thus, the process of changing
the position of the reference point is random,
characterized by the arbitrary selection of the initial
adjustable factor with discrete time characteristics for
the duration of the first and subsequent steps and a
finite or countable set of states. Such a process will be
Markovian since subsequent states of the initial point
in the diagnostic process are independent of past states.

The objective of this work is to mathematically
model the diagnostic processes during the
monitoring of the technical condition of
turbocharger elements in ship power plant systems
(SPPs) using Markov chains.
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The purpose of the work is the practical use of
Markov chains to assess the quality of diagnostics of
elements of ship power plants during their operation

Problem Statement

Methods for assessing the reliability of
equipment in the absence of information about peak
and extreme loads during the period between repair
cycles during the operation of products, when used,
have a number of limitations and inaccurate
assessments caused by dynamic changes in the
external environment and stochasticity of processes,
i.e., there is a situation of uncertainty and risk. Broad
prospects open up when using probabilistic methods,
including Markov chains.

Analysis of recent research and publications

Markov chains characterize a stochastic process
in which the conditional probability distribution of
future states depends only on the current state of the
process.

Markov chains make it possible to improve the
mechanism for making decisions and diagnosing the
situation at various levels of processes [1, 2]. The
use of information technologies for assessing the
suitability of enterprises for innovative transfor-
mations using Markov chains is presented in [3].
Information support for managing complex
organizational and technical objects based on
Markov chains is presented in [4]. Models of
Markov processes of logical transitions, taking into
account probabilistic estimates of the states of
methods, are presented in [5, 6]. In [7], the main
methodological provisions for constructing a
homogeneous Markov network with a fixed number
of states and a discontinuous period are presented in
detail. Markov chains with discrete time are used
[8,9]. An intelligent forecasting model for a
hydrological water system is described in [10]. The
connection between control and the human factor in
mathematical models of complex systems based on
the Markov chain is presented in [11]. In [12], the
possibility of checking the asymptotic distribution of
transition probabilities of the Markov sequence of a
parametric family was studied. In [13], stochastic
interception using filtering and smoothing is
described, in [14] stochastic estimation of the
efficiency of transport materials. The scenario-based
stochastic optimization model is described in [15].
The information-entropy model of the basis for
making managerial decisions under conditions of
uncertainty is presented in [16], the analysis of delay
in constructing the hierarchy of Bayesian networks
in [17]. The use of information technology to
identify uncertainty parameters in statistical
estimates is presented in [18, 19]. Mathematical
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support for excluding the human factor's influence
on navigation equipment systems under uncertainty
and risk is presented in [20-22]. A quantitative
assessment the uncertainty forecasts is presented in
[23], in [24] a review of the fate of the characte-
ristics of mechanical tests is given. The origin and
destination matrix based on Markov chains is
presented in [25]. Intelligent charging of connecting
electric vehicles under driving behavior uncertainty
is shown in [26]. Evolutionary trends in building a
business management system are presented in
[27, 28]. The application of the Monte Carlo method
in the construction of Markov chains is described in
[29-31]. This review shows that the practical
applications of Markov chains are wide and varied.
Separate fragments of the presented experience were
used to develop the research methodology.

As evident from the provided overview, Markov
chains have specific applications characterized by a
general methodology for changing the dynamics of
probabilities within their respective domains.
However, the characteristic features of the
diagnostic modeling process for elements of SPP do
not allow for the complete utilization and transfer of
accumulated experience in solving loosely-
structured problems. This is due to the need to
transition from discrete time of operation for SPP to
a continuous sequence of states characterized by
diagnostic intervals during the monitoring process.
The construction of transition probability matrices
and corresponding directed graphs aimed at ranking
the elements of the SPP in terms of their failures
during operation is also essential in this context.

Materials and methods

The study utilized diagnostic parameters of
turbocharger elements such as the -casing,
compressor, turbine, seals, rotor, bearings, oil
pumps, and probabilistic estimates of their failures.
These estimates were obtained based on a larger
statistical dataset of ship operation in conditions of
uncertain external influences. Markov chains were
employed as the research method.

In the context of diagnosing in conditions of
uncertain external influences characterized by elements
of randomness, the goal of Markov chains is to search
for a combination of characteristics and parameters that
improve the mechanisms of diagnosis and decision-
making in a visual form. If the system transitions from
one state to another at predetermined time intervals
with the accumulation of corresponding informational
resources, it represents a discrete-time sequential
Markov process.

Input information about failures of turbocharger
elements in terms of conditional probabilities is
presented in Table 1.
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Table 1

Current State of Turbocharger Element Diagnostic System

Ne Controlled parameter Weight ratio Designation
1 Frame 0.090 Vi

2 Compressor 0.005 Vs

3 Turbine 0.048 V3

4 Seal 0.167 Va4

5 Rotor 0.152 Vs

6 Bearing 0.438 Ve

7 Oil pumps 0.1 V7

Markov chains enable the generation of events.
Technical solutions for evaluating the sequence of
using  diagnostic  procedures  for  specific
turbocharger elements in shipboard power systems
within the framework of Markov theory postulate
the selection of the best alternative, which can be
facilitated by the apparatus of probability theory.

Methodology

Reliability of equipment is a comprehensive
property that refers to its ability to perform the
assigned functions while maintaining its characteristics
under specific operating conditions within defined
limits or for a required period of time. Markov chains
are used as a mathematical model to study the behavior
of certain stochastic systems.

When modeling complex technical objects or
organizational-technical systems, an essential aspect
is representing the structure of interactions and
transitions. Independent trials are a special case of
Markov chains. Events are considered as the states
of the system, and the trials themselves represent
changes in the system's state.

Transition probabilities P;; do not depend on the

moment of time, but depend only on j and i

Ri Ry B,
P=\hy Py B, 6]
Pln PnZ Prm

n
where 0<P; <1... 3 P; =1.
i=1

Here n — is the number of system components.
A Markov chain is said to be homogeneous when
the transition probability P; of the system moving

from state i to state j does not depend on the trial
number. The probability P, is referred to as the

transitional probability.
The probability P;(n) can be found using the

formula known as the Markov equality:

Pji(n) =2, P(m)P(n—m), 2

where m — the number of steps in which the
diagnostic system can go from state i to state j.
Any state S; can be reached from any other state

within a finite number of transitions.

The probability of transitioning from one state to
another is the same regardless of the number of
intermediate states that need to be passed through to
reach the intended target.

A characteristic feature of modeling the
intelligent support for diagnostics and monitoring of
ship power plant elements is that the conditional
probability P;(S) does not depend on the current

Pji (8= P ji *
previous state number,
subsequent state number.

The transition probabilities can be represented by
the following equation

P(xy=8)=qo(S$)V s> (3)

where V — is the universal quantifier, S — represents
discrete states, gy — is the probability of finding the
system at time #, = 0, is the reference point.

state, i.e., Here, i represents the

and | represents the

The variable E represents a finite number of
states

E={el,ez,...,en}. 4)

The probability of the system transition is
expressed through the stages of diagnosing the
elements of the SPP turbochargers

P(xn+1 = Sn+1 ”xn = Sn) = P(Sn ’ Sn+l )V(Sn+l’ Sn ) (5)

The use of Markov chains for determining the
processes of intelligent diagnosis and monitoring of
turbocharger elements in shipboard power plants
(SPP) is based on the following principles. The
diagnostic system operates in states JasJg s,
Transitions are only possible at the time points that
correspond to monitoring stages, which are
considered as steps. The argument of the Markov
chain is the step number.
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At any given time, the Markov chain can be
characterized by row vectors of the transition
probability matrix (1). By multiplying the row
vector that describes the probability distribution at a
certain diagnostic stage by the transition probability
matrix, we obtain the probability distribution at the

Definition of parameters
and diagnostic zones

Choice of diagnostic
method

ormation ot a priori
information about
extreme environmental

Determination of
conditional probabilities of
the current state of the
system

Construction of the matrix
of transition probabilities

Study of the causes and
probabilities of failures of
elements of the power plant

next stage in a visual form and at different
monitoring levels. The conceptual model of
intelligent diagnosis and monitoring of SPP

elements using Markov chains can be represented as
fig. 1.

Search and
analysis of
solutions

Simulation of
random
variables

Link
Visualization
Construction of
directed graphs

Establishing the

State Space Establishment

probabilities of the system
being in a given state

Identification of
results

Fig. 1. Conceptual model of diagnostics and monitoring of transportation equipment elements using Markov chains

Experiment

By selecting reliability and fitness for operation
as the primary parameters for diagnosing the
turbocharger elements in shipboard power plants
(SPP) in terms of their failure probabilities, we
construct a transition probability matrix (Table 2).

According to Tables 1 and 2, the diagnostic
system can be in one of the seven states. If the SPP
elements are operating under extreme load
conditions, the probability of turbocharger housing
failure, as per Table 2, will be 0.09. The probability
of compressor v, failure is 0.005, turbine failure is
0.048, seal failure is 0.167, rotor failure is 0.152,
bearing failure is 0.438, and oil pump failure is 0.1.

If there are emergency changes in equipment
operation during the service, the state of the
diagnostic system will be characterized by the
second row of the transition matrix. Therefore, the
probability of housing failure remains at the same
level of 0.09. However, the probability of
compressor v, failure increases to 0.008, turbine
failure increases to 0.051, seal failure increases to
0.18, and bearing failure increases to 0.431. The
probability of oil pump failure decreases to 0.09.

Similar ~ transformations of  conditional
probabilities can occur in the monitoring process
through other rows of the transition matrix in
subsequent stages of priority use of diagnostic
parameters.

Table 2
Conditional probabilities of the monitoring process for turbocharger elements in SPP
Frame Compressor Turbine Seal Rotor Bearing Oil pumps
Frame 0.09 0.005 0.048 0.167 0.152 0.438 0.1
Compressor 0.09 0.008 0.051 0.15 0.18 0.431 0.09
Turbine 0.08 0.006 0.068 0.169 0.151 0.446 0.08
Seal 0.08 0.007 0.054 0.152 0.163 0.474 0.07
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End of table 2
Frame Compressor Turbine Seal Rotor Bearing Oil pumps
Rotor 0.07 0.005 0.062 0.141 0.172 0.44 0.11
Bearing 0.09 0.007 0.056 0.15 0.166 0.421 0.11
Oil pumps 0.08 0.006 0.064 0.159 0.161 0.43 0.1

If we multiply the initial state probability distribution vector by the transition probability matrix, we will
obtain the probability distribution for the next diagnostic step. The probability of the diagnostic system

transitioning from state S, to state S; on the first step will be equal to

P(1)=(0.09 0.005 0.048 0.167 0.152 0.438 0.1) x 0.08 0.007 0.054 0.152

=(0.076115 0.005932 0.0530915 0.138106 0.150879 0.3990015 0.091375)

0.09 0.008 0.051 0.15

0.08 0.006 0.068 0.169

0.07 0.005 0.062 0.141

0.09 0.007 0.056 0.15

0.18

0.151

0.163

0.172

0.166

0.08 0.006 0.064 0.159 0.161

0.09 0.005 0.048 0.167 0.152 0.438

0.431

0.446

0.474

0.44

0.421

0.43

0.1

0.09

0.08

007 | =

0.11

0.11

0.1

The probability that at the second step the system will switch to the state S, under the influence of

ongoing changes in operating conditions and the influence of the environment will be equal to

0.09 0.005 0.048 0.167
0.09 0.008 0.051 0.15
0.08 0.006 0.068 0.169
P(2)=(0.076 0.0059 0.0531 0.138 0.151 0.399 0.091) x | 0.08 0.007 0.054 0.152
0.07 0.005 0.062 0.141
0.09 0.007 0.056 0.15
0.08 0.006 0.064 0.159

0.152
0.18
0.151
0.163
0.172
0.166
0.161

=(0.07646161 0.005808971 0.052570518 0.13921821 0.150061988 0.398693323 0.09168438)

0.438
0.431
0.446
0.474
0.44
0.421
0.43

0.1
0.09
0.08
0.07 ] =
0.11
0.11
0.1
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In conditions of unstable operation of turbochargers in ship energy installations (SEU), experimental
environmental influences, and alternating loads, the probability of the diagnostic system transitioning from
state S, to state S3 is equal to

0.09 0.005 0.048 0.167 0.152 0.438 0.1

0.09 0.008 0.051 0.15 0.18 0.431 0.09
0.08 0.006 0.068 0.169 0.151 0.446 0.08
P(3)=(0.076 0.0058 0.0525 0.139 0.1501 0.398 0.0916) x | 0.08 0.007 0.054 0.152 0.163 0.474 0.07| =
0.07 0.005 0.062 0.141 0.172 044 0.11
0.09 0.007 0.056 0.15 0.166 0421 0.11
0.08 0.006 0.064 0.159 0.161 043 0.1
=(0.07646861 0.005809975 0.052557234 0.13922596 0.15005277 0.398729431 0.09165102)

The probability of transition from state S, to state S, is

0.09 0.005 0.048 0.167 0.152 0438 0.1

0.09 0.008 0.051 0.15 0.18 0431 0.09
0.08 0.006 0.068 0.169 0.151 0.446 0.08
P(4)=(0.0765 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916) x 0.08 0.007 0.054 0.152 0.163 0474 0.07 | =
0.07 0.005 0.062 0.141 0.172 044 0.11
0.09 0.007 0.056 0.15 0.166 0421 0.11
0.08 0.006 0.064 0.159 0.161 043 0.1
=(0.07646882 0.005809998 0.052556461 0.13922503 0.150052307 0.398727454 0.09165093)

The probability of transition from state S, to state Sy is

0.09 0.005 0.048 0.167 0.152 0438 0.1

0.09 0.008 0.051 0.15 0.18 0431 0.09
0.08 0.006 0.068 0.169 0.151 0.446 0.08
P(5)=(0.0765 0.00581 0.0525 0.1392 0.15005 0.3987 0.0916) x | 0.08 0.007 0.054 0.152 0.163 0474 0.07 | =
0.07 0.005 0.062 0.141 0.172 044 0.11
0.09 0.007 0.056 0.15 0.166 0421 0.11
0.08 0.006 0.064 0.159 0.161 043 0.1
=(0.07646857 0.00580998 0.052556268 0.139224552 0.150051843 0.398726167 0.09165062)

The probability of transition from state S5 to state Sy is

0.09 0.005 0.048 0.167 0.152 0.438 0.1

0.09 0.008 0.051 0.15 0.18 0.431 0.09
0.08 0.006 0.068 0.169 0.151 0.446 0.08
P(6)=(0.0765 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916)x | 0.08 0.007 0.054 0.152 0.163 0474 0.07 | =
0.07 0.005 0.062 0.141 0.172 044 0.11
0.09 0.007 0.056 0.15 0.166 0421 0.11
0.08 0.006 0.064 0.159 0.161 043 0.1

=(0.07646824 0.005809953 0.052556045 0.139223959 0.150051162 0.398724401 0.09165024)

The probability of transition from state S to state S is

0.09 0,05 0.048 0.167 0.152 0438 0.1

0.05 0,008 0.051 0.15 0.18 0431 0.09
0,08 0,006 0.068 0.0169 0.161 0.436 0.08
P(7)=(0.076 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916) x | 0,08 0,007 0.054 0.0152 0.153 0421 0.07 |=
0,07 0,005 0.062 0.141 0.172 044 0.11
0,09 0,007 0.052 0.15 0.166 0421 0.11
0,08 0,006 0.064 0.159 0.161 043 0.1

=(0.07646798 0.005809932 0.052555879 0.139223507 0.150050667 0.398723085 0.09164995).

The overall probability of the diagnostic and monitoring system for turbochargers in ship energy
installations can be represented as a system of inequalities, which shows that the probability of failures and
the system's failure to detect them decreases at each step: P(1) > P(2) > P(3) > P(4) > P(5) > P(6) > P(7).

© Oleksandr Sharko, Artem Yanenko, 2023



HaykoemHi TexHonorii Ne 3(59), 2023

257

Results and Discussion

The formalization of the main activities for the
development of intelligent diagnostic
monitoring software for ship energy installation
elements, as presented in Figure 1, has allowed
establishing the degree of reliability of the
interconnections between individual diagnostic
system characteristics. This serves as the basis for
predicting failures of the ship energy installation
elements before and after the diagnostic process.

A key feature of the presented model is the
consideration of possible deviations from normal
functioning of the turbocharger elements in ship
energy installations and a consistent level of risk in
making management decisions regarding their
further operation under challenging conditions.

When making management decisions regarding
the implementation or abandonment of intelligent
diagnostic and monitoring software for ship energy
installation elements, the only error-free assessment
lies in evaluating the current situation regarding the
condition of the turbocharger elements in the ship
energy installation. The monitoring results are
influenced by numerous factors, some of which are
difficult to account for and can be represented as
associative probabilities.

The probability of a selected state in the

subsequent time interval, denoted as P,.j, will be

determined based on the existing situation without
their simultaneity. By combining all the transition
probabilities from these states, we obtain a
probability matrix, the visualization of which can be
reflected in a directed graph or a network diagram.

Each transition from state i to state j is
characterized by a transition probability, which
indicates how often the system will transition from
state i to state j. If we measure the transition
frequencies over a sufficiently long period of time,
they will coincide with the transition probabilities.

To implement the proposed conceptual model of
intelligent diagnostic and monitoring software for
ship energy installation elements using Markov
chains, a simulation model in the form of a directed
graph or a network diagram has been created.

In the directed graph, the vertices represent the
states of the process, while the edges represent the
transitions between them. The flexibility of the
simulation model implemented using the directed
graph lies in its adaptability to the external
environment in which diagnostic volumes are

and

operated. The key factors of simulation models are
the input variables, which are determined by
reactions to external stimuli.

Since the graph is directed, it is not possible to
transition to another state from every state when
each state has its own probability. The transition
from one node to another can occur after a random
time interval. It is proposed to consider the step
number as the argument that determines the process,
rather than time. In this case, the random process
will be characterized by a sequence of states.

When the initial probability distribution and the
transition probability matrix are known, the overall
probabilistic dynamics of the process can be
determined and calculated cyclically.

As an example of constructing a Markov chain
graph that reflects the modeling of intelligent
diagnostic and monitoring systems for marine power
plants using Markov chains, states were selected
based on the priority of parameter placement,
characterized by the most significant probabilities of
failure. These parameters include bearings, seals,
rotor, oil pumps, casing, turbine, and compressor v,.
Transitions between these states are represented as
edges or arcs of the graph components.

The weights of the edges, expressed in terms of
empirically determined probabilities, are based on
the synthesis of information published in statistical
compilations. Based on the calculations performed,
the priority, main content, methodologies, and level
of the diagnostic process are determined. A step-by-
step plan is developed, strategies are formulated, and
necessary resources are mobilized.

The goal of using Markov chains in this study is
to find a combination of diagnostic
characteristics and parameters that enables the
improvement of the monitoring mechanism and
decision-making process in a visual form. The
visualization of Markov chains in a finite-
dimensional state space for modeling the intelligent
diagnosis and monitoring of ship power plant
turbocharger elements using Markov chains is
presented in Fig. 2.

An advantage of the information management
system for intelligent diagnosis and monitoring of
SPP using Markov chains is the ability to customize
the system for any information situation. It is
possible to change the priority of the first monitored
element, which in our scheme is the bearing, and the
sequence of subsequent steps.

system
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258

HaykoemHi TexHonorii Ne 3(59), 2023

0.42

0.152

Bearings
Ve

0.05

0.007
Compressor

V2

0.08 U

0.06

>0.101
Frame
Vi
0.048
Turbine
V3
0.068

0.051

Fig. 2. Directed graph of Markov chains for the diagnosis and monitoring of turbocharger elements

Conclusions

A conceptual model of intelligent monitoring
support for turbocharger elements in SPP has been
developed, aimed at improving the mechanisms of
diagnosis and decision-making based on Markov
chains. An imitation model in the form of a directed
graph (orgaph) has been created, where the nodes
represent the process states and the edges represent
the transitions between them. The novelty of the
model lies in using the diagnostic sequence of states
and the step number, reflecting the discretization
intervals of turbocharger element monitoring in
complex operating conditions, as the diagnostic
parameter instead of time. An distinguishing feature
of the presented orgaph is its adaptability to external
influences.
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Iapxko O., SIneHko A.

MOJAEJIOBAHHS IHTEJIEKTYAJIBHOI'O TIPOI'PAMHOTI'O 3ABE3INEYEHHSA
JIIA JIATHOCTUKH TA MOHITOPUHI'Y KOMIIOHEHTIB CYJIHOBOI
EJEKTPOHHOI YCTAHOBKH 3A JOIIOMOTI' OIO JIAHIIOT'TB MAPKOBA

Haoiiinicme i excnnyamayiiina npuoamuicms  MemanioKOHCMPYKYil  3anexcums 6i0 AKOCMI KOHMpONo 3d
MeXHIYHUM CIMAHOM [ MEXAHIYHUMU 61ACMUBOCMAMU MAMepianie 6i0n08ioHO 00 MidCHapoOHux cmanoapmis. Ilpome 6
npoyeci ekcnayamayii GUHUKAIOMb GIOXUNEHHS. 610 HOPMAMUGHUX 3HAYEHb GIACMUBOCMe Mamepianie uepes
HeBU3HAYEHUU XapaKkmep i 6eIUYUHY HABAHMANCEHb, WO 3YMOBNIOE HeOOXIOHICb NePioOUYHUX BIOKIIOYEHb 0ONAOHAHHS
3 memoro diaenocmuxu. besnepebitina poboma enemenmis enepeemuuno2o 00IAOHAHHA MOPCOKUX CYOEH 3ANeHCUMb 8i0
SAKOCMI KOHMPONIO IX MeXHIuH020 cmaHy QizuyHumu memooamu Oiachocmuku. Haibinew egexmusnum memooom
BHUJICEHHST  eKCNAYyamayiunux eumpam 1 RnioGUWeHHsT HAOIUHOCMI 00JIAOHAHHA € NPOBEOeHHS MEXHIUHO20
00C1Y208Y8AHHS HA OCHOBI IHMEPAKMUBHO20 MOHIMOPUHEY 1020 CMAHY, GUABNIEHHSA HeCNpAeHOCMmell | NPOSHO3YBAHHS
napamempis enepzemuyno2o 06aaonanns. Lle pobums ocobaueo akmyanbHUMU 3a60aHHA KOHMPOTIO, OlA2HOCMUKU MA
NPOSHO3YBAHHS NAPAMEMPIE eHep2emuUtHo20 00NA0HaHHs. Y Mol Jice Yac GUKOPUCTNANHS DIZHUX MemOo0i8 OiaeHOCMUKY
He 00380JA€ 8paxysamu 8cix ocodueocmeil peanvHux ymos excnayamayii. Ocobauso cocmpo ys npodiema nocmae 6
YMOBAX PI3HUX eKCMPEMATbHUX CUmMyayiti ma nikosux HA8AHMAdICEHb, K 6paxysamu Hemoxcauso. IlepcnekmusHum
HanpsimMom 00CIIOJCEHb € IMOBIPHICHI Memoou, 30kpema aanyio2u Mapkosa.

Ilpeocmasnena cucmema iHmeneKmyanoHoi OideHOCMUKU MA MOHIMOPUHEY MYPOOKOMApecopié CyOHOB0I
eHep2emuyHOl YCMAaHO8KU 3 8UKOpUCMAaHHAM 1anyrocie Mapkosa. Hosusna po3pobrenoi memoOouxku noiseae 6 3amiui
OUCKDEemHUX [HMepP8aié uacy OIaecHOCMUYHO20 Npoyecy NOCAIO0BHICMIO CMAHIE MeXHIYHUX 00'ekmis. Y yvomy
Gopmymiosanni  nanyroeu Mapkosa sensoms  coO0I0 CUHMEMUYHY GIACUGICMb, KA AKYMYIIOE PI3HOMAHIMHI
¢axmopu. Panldomizayia npoyecie cmoxacmuyHoi OiA2HOCMUKU ™A MOHIMOPUHZY KOMNHOHEHMI8 CYOHOB801
eHep2emuyHOl YCMAHOBKU 00380JIA€ NIOSUWUMU HAOIUHICMb 00IAOHAHHA Y 8AJNCKUX YMO08ax excniayamayii. Haseoeno
pe3yibmamuy  pO3pAxyHKie Ooyu@dposKu eKCnepuMeHmAanbHux OAaHUuX, pPO3PAXyHKIE Mampuyb nepexodie i nobyodosu
opepadgha, wo 00360711€ OOCTIONHCYBAMU KIHEMUK)Y HAKONUYEHHS YUIKOONCEHb 8 PealbHOM)Y HAC.

Knio4yoBi cnoBa: mogentoBaHHs; naHutorn MapkoBa; CyAHOBI €HepreTUYHi yCTaHOBKM; OiarHOCTWKa; MOHITOPUHT.

Sharko O., Yanenko A.
MODELING OF INTELIGENT SOFTWARE FOR THE DIAGNOSIS AND MONITORING
OF SHIP POWER PLANT COMPONENTS USING MARKOV CHAINS

The reliability and serviceability of metal structures depends on the quality of control over the technical condition
and mechanical properties of materials in accordance with international standards. However, in the course of
operation, deviations from the normative values of material properties occur due to the uncertain nature and magnitude
of the loads, which necessitates periodic shutdowns of the equipment for the purpose of diagnostics. Uninterrupted
operation of elements of power equipment of marine vessels depends on the quality of control of their technical
condition by physical diagnostic methods. The most effective method of reducing operating costs and increasing the
reliability of equipment is maintenance based on interactive monitoring of its condition, detection of malfunctions and
forecasting of energy equipment parameters. This makes the tasks of control, diagnosis and forecasting of energy
equipment parameters particularly relevant. At the same time, the use of various diagnostic methods does not allow
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taking into account all the features of real operating conditions. This problem is especially acute in conditions of
various extreme situations and peak loads, which cannot be taken into account. Probabilistic methods, in particular
Markov chains, are a promising area of research. The system of intelligent diagnostics and monitoring of ship power
plant turbochargers using Markov chains is presented. The novelty of the developed methodology lies in replacing
discrete time intervals of the diagnostic process with a sequence of states of technical objects. In this formulation,
Markov chains represent a synthetic property that accumulates diverse factors. Randomization of stochastic diagnostic
and monitoring processes of ship power plant components enables an increase in reliability of equipment under severe
operating conditions. The results of calculations of digitalization of experimental data, calculations of transition
matrices and construction of an orgraph allowing to study the kinetics of damage accumulation in real time are
presented.

Keywords: Modeling; Markov chains; ship power plants; diagnostics; monitoring.
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