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MODELING OF INTELIGENT SOFTWARE FOR THE DIAGNOSIS AND MONITORING  
OF SHIP POWER PLANT COMPONENTS USING MARKOV CHAINS 

Introduction 

The cost of maritime vessels reaches tens of 
millions of US dollars. Ship power plant systems 
(SPPs) account for 10 to 30% of this cost. The 
construction period of a single vessel lasts over a 
year, with a normative service life of 20 to 25 years. 
Throughout the entire service life, the power plant is 
usually not replaced but undergoes continuous 
maintenance and periodic repairs. 

The reliability and operational suitability of metal 
structures depend on the quality of monitoring the 
technical condition and mechanical properties of 
materials in accordance with international standards. 
However, during operation, deviations from the 
normative values of material properties occur due to 
the uncertain nature and magnitude of loads, 
necessitating periodic equipment shutdowns for 
diagnostic purposes. 

The execution of diagnostic work in 
transportation is determined by technical conditions 
and regulations. To forecast diagnostic results in the 
short term, regression models, discriminant models, 
cluster analysis, and taxonomy are used. These 
methods require prior knowledge of past situations 
and operating parameters, which are practically 
impossible to determine in transportation conditions. 
Simultaneously, during the intervals between 
diagnostic processes, there may be emergency peak 
loads on the turbocharger material during operation. 

In all four-stroke internal combustion engines, air 
compression is achieved using a compressor ν2, 
which is powered by a gas turbine. The combination 
of the compressor and gas turbine is called a 
turbocharger. The gas section of the turbocharger 
consists of a radial-axial wheel located in a housing. 
Sealing along the gas section aims to prevent gas 
leakage from the working chamber of the gas 
section. The structural properties of turbocharger 

components deteriorate not only with increasing 
operating time but also with intensified power loads. 

The smooth operation of marine vessel power 
equipment elements depends on the quality of 
monitoring their technical condition through 
physical diagnostic methods. The most effective 
method to reduce operational costs and enhance 
equipment reliability is to conduct maintenance 
based on interactive monitoring of its condition, 
detection of malfunctions, and prediction of power 
equipment parameters. This makes the tasks of 
control, diagnostics, and prediction of power 
equipment parameters particularly relevant. 

In the operating conditions of ship power plant 
(SPP) elements, the effects of unpredictable and often 
extreme loads are probabilistic in nature. Since there is 
no historical record of the reasons for changes in 
mechanical properties, their magnitude, and duration, 
the diagnostic process starts without considering or 
making any adjustments based on the current situation. 
It consists of a sequential determination of structural 
properties according to existing regulations. After 
obtaining information related to the quantitative 
assessment of one of the factors at the start of the 
diagnostic process, the reference point for the 
beginning of the diagnosis shifts towards shortening 
the diagnostic process. Thus, the process of changing 
the position of the reference point is random, 
characterized by the arbitrary selection of the initial 
adjustable factor with discrete time characteristics for 
the duration of the first and subsequent steps and a 
finite or countable set of states. Such a process will be 
Markovian since subsequent states of the initial point 
in the diagnostic process are independent of past states. 

The objective of this work is to mathematically 
model the diagnostic processes during the 
monitoring of the technical condition of 
turbocharger elements in ship power plant systems 
(SPPs) using Markov chains. 
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The purpose of the work is the practical use of 
Markov chains to assess the quality of diagnostics of 
elements of ship power plants during their operation 

Problem Statement 

Methods for assessing the reliability of 
equipment in the absence of information about peak 
and extreme loads during the period between repair 
cycles during the operation of products, when used, 
have a number of limitations and inaccurate 
assessments caused by dynamic changes in the 
external environment and stochasticity of processes, 
i.e., there is a situation of uncertainty and risk. Broad 
prospects open up when using probabilistic methods, 
including Markov chains. 

Analysis of recent research and publications 

Markov chains characterize a stochastic process 
in which the conditional probability distribution of 
future states depends only on the current state of the 
process. 

Markov chains make it possible to improve the 
mechanism for making decisions and diagnosing the 
situation at various levels of processes [1, 2]. The 
use of information technologies for assessing the 
suitability of enterprises for innovative transfor-
mations using Markov chains is presented in [3]. 
Information support for managing complex 
organizational and technical objects based on 
Markov chains is presented in [4]. Models of 
Markov processes of logical transitions, taking into 
account probabilistic estimates of the states of 
methods, are presented in [5, 6]. In [7], the main 
methodological provisions for constructing a 
homogeneous Markov network with a fixed number 
of states and a discontinuous period are presented in 
detail. Markov chains with discrete time are used 
[8, 9]. An intelligent forecasting model for a 
hydrological water system is described in [10]. The 
connection between control and the human factor in 
mathematical models of complex systems based on 
the Markov chain is presented in [11]. In [12], the 
possibility of checking the asymptotic distribution of 
transition probabilities of the Markov sequence of a 
parametric family was studied. In [13], stochastic 
interception using filtering and smoothing is 
described, in [14] stochastic estimation of the 
efficiency of transport materials. The scenario-based 
stochastic optimization model is described in [15]. 
The information-entropy model of the basis for 
making managerial decisions under conditions of 
uncertainty is presented in [16], the analysis of delay 
in constructing the hierarchy of Bayesian networks 
in [17]. The use of information technology to 
identify uncertainty parameters in statistical 
estimates is presented in [18, 19]. Mathematical 

support for excluding the human factor's influence 
on navigation equipment systems under uncertainty 
and risk is presented in [20-22]. A quantitative 
assessment the uncertainty forecasts is presented in 
[23], in [24] a review of the fate of the characte-
ristics of mechanical tests is given. The origin and 
destination matrix based on Markov chains is 
presented in [25]. Intelligent charging of connecting 
electric vehicles under driving behavior uncertainty 
is shown in [26]. Evolutionary trends in building a 
business management system are presented in 
[27, 28]. The application of the Monte Carlo method 
in the construction of Markov chains is described in 
[29–31]. This review shows that the practical 
applications of Markov chains are wide and varied. 
Separate fragments of the presented experience were 
used to develop the research methodology. 

As evident from the provided overview, Markov 
chains have specific applications characterized by a 
general methodology for changing the dynamics of 
probabilities within their respective domains. 
However, the characteristic features of the 
diagnostic modeling process for elements of SPP do 
not allow for the complete utilization and transfer of 
accumulated experience in solving loosely-
structured problems. This is due to the need to 
transition from discrete time of operation for SPP to 
a continuous sequence of states characterized by 
diagnostic intervals during the monitoring process. 
The construction of transition probability matrices 
and corresponding directed graphs aimed at ranking 
the elements of the SPP in terms of their failures 
during operation is also essential in this context. 

Materials and methods 

The study utilized diagnostic parameters of 
turbocharger elements such as the casing, 
compressor, turbine, seals, rotor, bearings, oil 
pumps, and probabilistic estimates of their failures. 
These estimates were obtained based on a larger 
statistical dataset of ship operation in conditions of 
uncertain external influences. Markov chains were 
employed as the research method. 

In the context of diagnosing in conditions of 
uncertain external influences characterized by elements 
of randomness, the goal of Markov chains is to search 
for a combination of characteristics and parameters that 
improve the mechanisms of diagnosis and decision-
making in a visual form. If the system transitions from 
one state to another at predetermined time intervals 
with the accumulation of corresponding informational 
resources, it represents a discrete-time sequential 
Markov process. 

Input information about failures of turbocharger 
elements in terms of conditional probabilities is 
presented in Table 1. 



Наукоємні технології № 3(59), 2023   
 

© Oleksandr Sharko, Artem Yanenko, 2023 

253

Table 1 
Current State of Turbocharger Element Diagnostic System 

№ Controlled parameter Weight ratio Designation 
1 Frame 0.090 ν1 
2 Compressor 0.005 ν2 
3 Turbine 0.048 ν3 
4 Seal 0.167 ν4 
5 Rotor 0.152 ν5 
6 Bearing 0.438 ν6 
7 Oil pumps 0.1 ν7 

Markov chains enable the generation of events. 
Technical solutions for evaluating the sequence of 
using diagnostic procedures for specific 
turbocharger elements in shipboard power systems 
within the framework of Markov theory postulate 
the selection of the best alternative, which can be 
facilitated by the apparatus of probability theory. 

Methodology 

Reliability of equipment is a comprehensive 
property that refers to its ability to perform the 
assigned functions while maintaining its characteristics 
under specific operating conditions within defined 
limits or for a required period of time. Markov chains 
are used as a mathematical model to study the behavior 
of certain stochastic systems. 

When modeling complex technical objects or 
organizational-technical systems, an essential aspect 
is representing the structure of interactions and 
transitions. Independent trials are a special case of 
Markov chains. Events are considered as the states 
of the system, and the trials themselves represent 
changes in the system's state. 

Transition probabilities jiP  do not depend on the 
moment of time, but depend only on j and i 
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Here n – is the number of system components. 
A Markov chain is said to be homogeneous when 

the transition probability jiP  of the system moving 
from state i to state j does not depend on the trial 
number. The probability jiP  is referred to as the 
transitional probability. 

The probability ( )jiP n  can be found using the 
formula known as the Markov equality: 

( ) ( ) ( ),jiP n P m P n m= −∑       (2) 

where m – the number of steps in which the 
diagnostic system can go from state i to state j. 

Any state jS  can be reached from any other state 
within a finite number of transitions. 

The probability of transitioning from one state to 
another is the same regardless of the number of 
intermediate states that need to be passed through to 
reach the intended target. 

A characteristic feature of modeling the 
intelligent support for diagnostics and monitoring of 
ship power plant elements is that the conditional 
probability ( )jiP S  does not depend on the current 
state, i.e., ( )ji jiP S P= . Here, i represents the 
previous state number, and j represents the 
subsequent state number. 

The transition probabilities can be represented by 
the following equation 

0 0( ) ( ) ,S EP x S q S ∈= = ∀   (3) 

where ∀  – is the universal quantifier, S – represents 
discrete states, q0 – is the probability of finding the 
system at time t0 = 0, is the reference point.  

The variable E represents a finite number of 
states 

{ }1 2, ,..., nE e e e= .     (4) 

The probability of the system transition is 
expressed through the stages of diagnosing the 
elements of the SPP turbochargers 

1 1 1 1( ) ( , ) ( , ).n n n n n n n nP x S x S P S S S S+ + + += = = ∀  (5) 

The use of Markov chains for determining the 
processes of intelligent diagnosis and monitoring of 
turbocharger elements in shipboard power plants 
(SPP) is based on the following principles. The 
diagnostic system operates in states . 
Transitions are only possible at the time points that 
correspond to monitoring stages, which are 
considered as steps. The argument of the Markov 
chain is the step number. 
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At any given time, the Markov chain can be 
characterized by row vectors of the transition 
probability matrix (1). By multiplying the row 
vector that describes the probability distribution at a 
certain diagnostic stage by the transition probability 
matrix, we obtain the probability distribution at the 

next stage in a visual form and at different 
monitoring levels. The conceptual model of 
intelligent diagnosis and monitoring of SPP 
elements using Markov chains can be represented as 
fig. 1. 

 

 
Fig. 1. Conceptual model of diagnostics and monitoring of transportation equipment elements using Markov chains 

 
Experiment 

By selecting reliability and fitness for operation 
as the primary parameters for diagnosing the 
turbocharger elements in shipboard power plants 
(SPP) in terms of their failure probabilities, we 
construct a transition probability matrix (Table 2). 

According to Tables 1 and 2, the diagnostic 
system can be in one of the seven states. If the SPP 
elements are operating under extreme load 
conditions, the probability of turbocharger housing 
failure, as per Table 2, will be 0.09. The probability 
of compressor ν2 failure is 0.005, turbine failure is 
0.048, seal failure is 0.167, rotor failure is 0.152, 
bearing failure is 0.438, and oil pump failure is 0.1. 

If there are emergency changes in equipment 
operation during the service, the state of the 
diagnostic system will be characterized by the 
second row of the transition matrix. Therefore, the 
probability of housing failure remains at the same 
level of 0.09. However, the probability of 
compressor ν2 failure increases to 0.008, turbine 
failure increases to 0.051, seal failure increases to 
0.18, and bearing failure increases to 0.431. The 
probability of oil pump failure decreases to 0.09.  

Similar transformations of conditional 
probabilities can occur in the monitoring process 
through other rows of the transition matrix in 
subsequent stages of priority use of diagnostic 
parameters. 

 

Table 2 
Conditional probabilities of the monitoring process for turbocharger elements in SPP 

 Frame Compressor Turbine Seal Rotor Bearing Oil pumps 
Frame 0.09 0.005 0.048 0.167 0.152 0.438 0.1 
Compressor 0.09 0.008 0.051 0.15 0.18 0.431 0.09 
Turbine 0.08 0.006 0.068 0.169 0.151 0.446 0.08 
Seal 0.08 0.007 0.054 0.152 0.163 0.474 0.07 
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End of table 2 

 Frame Compressor Turbine Seal Rotor Bearing Oil pumps 
Rotor 0.07 0.005 0.062 0.141 0.172 0.44 0.11 
Bearing 0.09 0.007 0.056 0.15 0.166 0.421 0.11 
Oil pumps 0.08 0.006 0.064 0.159 0.161 0.43 0.1 

 
If we multiply the initial state probability distribution vector by the transition probability matrix, we will 

obtain the probability distribution for the next diagnostic step. The probability of the diagnostic system 
transitioning from state 0S  to state 1S  on the first step will be equal to 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  
Р(1)=(0.09 0.005 0.048 0.167 0.152 0.438 0.1) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 =
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.076115 0.005932 0.0530915 0.138106 0.150879 0.3990015 0.091375) 

The probability that at the second step the system will switch to the state 2S  under the influence of 
ongoing changes in operating conditions and the influence of the environment will be equal to 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  

Р(2)=(0.076 0.0059 0.0531 0.138 0.151 0.399 0.091) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 = 
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.07646161 0.005808971 0.052570518 0.13921821 0.150061988 0.398693323 0.09168438) 
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In conditions of unstable operation of turbochargers in ship energy installations (SEU), experimental 
environmental influences, and alternating loads, the probability of the diagnostic system transitioning from 
state 2S  to state 3S  is equal to 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  
Р(3)=(0.076 0.0058 0.0525 0.139 0.1501 0.398 0.0916) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 = 
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.07646861 0.005809975 0.052557234 0.13922596 0.15005277 0.398729431 0.09165102) 

The probability of transition from state 2S  to state 4S  is 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  
Р(4)=(0.0765 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 =
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.07646882 0.005809998 0.052556461 0.13922503 0.150052307 0.398727454 0.09165093) 

The probability of transition from state 4S  to state 5S  is 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  
Р(5)=(0.0765 0.00581 0.0525 0.1392 0.15005 0.3987 0.0916) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 = 
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.07646857 0.00580998 0.052556268 0.139224552 0.150051843 0.398726167 0.09165062) 

The probability of transition from state 5S  to state 6S  is 

 0.09 0.005 0.048 0.167 0.152 0.438 0.1  
 0.09 0.008 0.051 0.15 0.18 0.431 0.09  
 0.08 0.006 0.068 0.169 0.151 0.446 0.08  
Р(6)=(0.0765 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916) × 0.08 0.007 0.054 0.152 0.163 0.474 0.07 = 
 0.07 0.005 0.062 0.141 0.172 0.44 0.11  
 0.09 0.007 0.056 0.15 0.166 0.421 0.11  
 0.08 0.006 0.064 0.159 0.161 0.43 0.1  

= (0.07646824 0.005809953 0.052556045 0.139223959 0.150051162 0.398724401 0.09165024) 

The probability of transition from state 6S  to state 7S  is 

 0.09 0,05 0.048 0.167 0.152 0.438 0.1  
 0.05 0,008 0.051 0.15 0.18 0.431 0.09  
 0,08 0,006 0.068 0.0169 0.161 0.436 0.08  
Р(7)=(0.076 0.0058 0.0525 0.1392 0.15005 0.3987 0.0916) × 0,08 0,007 0.054 0.0152 0.153 0.421 0.07 = 
 0,07 0,005 0.062 0.141 0.172 0.44 0.11  
 0,09 0,007 0.052 0.15 0.166 0.421 0.11  
 0,08 0,006 0.064 0.159 0.161 0.43 0.1  

= (0.07646798 0.005809932 0.052555879 0.139223507 0.150050667 0.398723085 0.09164995). 

The overall probability of the diagnostic and monitoring system for turbochargers in ship energy 
installations can be represented as a system of inequalities, which shows that the probability of failures and 
the system's failure to detect them decreases at each step: P(1) > P(2) > P(3) > P(4) > P(5) > P(6) > P(7). 
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Results and Discussion 

The formalization of the main activities for the 
development of intelligent diagnostic and 
monitoring software for ship energy installation 
elements, as presented in Figure 1, has allowed 
establishing the degree of reliability of the 
interconnections between individual diagnostic 
system characteristics. This serves as the basis for 
predicting failures of the ship energy installation 
elements before and after the diagnostic process. 

A key feature of the presented model is the 
consideration of possible deviations from normal 
functioning of the turbocharger elements in ship 
energy installations and a consistent level of risk in 
making management decisions regarding their 
further operation under challenging conditions. 

When making management decisions regarding 
the implementation or abandonment of intelligent 
diagnostic and monitoring software for ship energy 
installation elements, the only error-free assessment 
lies in evaluating the current situation regarding the 
condition of the turbocharger elements in the ship 
energy installation. The monitoring results are 
influenced by numerous factors, some of which are 
difficult to account for and can be represented as 
associative probabilities. 

The probability of a selected state in the 
subsequent time interval, denoted as ijP , will be 

determined based on the existing situation without 
their simultaneity. By combining all the transition 
probabilities from these states, we obtain a 
probability matrix, the visualization of which can be 
reflected in a directed graph or a network diagram. 

Each transition from state i to state j is 
characterized by a transition probability, which 
indicates how often the system will transition from 
state i to state j. If we measure the transition 
frequencies over a sufficiently long period of time, 
they will coincide with the transition probabilities. 

To implement the proposed conceptual model of 
intelligent diagnostic and monitoring software for 
ship energy installation elements using Markov 
chains, a simulation model in the form of a directed 
graph or a network diagram has been created. 

In the directed graph, the vertices represent the 
states of the process, while the edges represent the 
transitions between them. The flexibility of the 
simulation model implemented using the directed 
graph lies in its adaptability to the external 
environment in which diagnostic volumes are 

operated. The key factors of simulation models are 
the input variables, which are determined by 
reactions to external stimuli. 

Since the graph is directed, it is not possible to 
transition to another state from every state when 
each state has its own probability. The transition 
from one node to another can occur after a random 
time interval. It is proposed to consider the step 
number as the argument that determines the process, 
rather than time. In this case, the random process 
will be characterized by a sequence of states. 

When the initial probability distribution and the 
transition probability matrix are known, the overall 
probabilistic dynamics of the process can be 
determined and calculated cyclically. 

As an example of constructing a Markov chain 
graph that reflects the modeling of intelligent 
diagnostic and monitoring systems for marine power 
plants using Markov chains, states were selected 
based on the priority of parameter placement, 
characterized by the most significant probabilities of 
failure. These parameters include bearings, seals, 
rotor, oil pumps, casing, turbine, and compressor ν2. 
Transitions between these states are represented as 
edges or arcs of the graph components. 

The weights of the edges, expressed in terms of 
empirically determined probabilities, are based on 
the synthesis of information published in statistical 
compilations. Based on the calculations performed, 
the priority, main content, methodologies, and level 
of the diagnostic process are determined. A step-by-
step plan is developed, strategies are formulated, and 
necessary resources are mobilized. 

The goal of using Markov chains in this study is 
to find a combination of diagnostic system 
characteristics and parameters that enables the 
improvement of the monitoring mechanism and 
decision-making process in a visual form. The 
visualization of Markov chains in a finite-
dimensional state space for modeling the intelligent 
diagnosis and monitoring of ship power plant 
turbocharger elements using Markov chains is 
presented in Fig. 2. 

An advantage of the information management 
system for intelligent diagnosis and monitoring of 
SPP using Markov chains is the ability to customize 
the system for any information situation. It is 
possible to change the priority of the first monitored 
element, which in our scheme is the bearing, and the 
sequence of subsequent steps.  
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Fig. 2. Directed graph of Markov chains for the diagnosis and monitoring of turbocharger elements 

Conclusions 

A conceptual model of intelligent monitoring 
support for turbocharger elements in SPP has been 
developed, aimed at improving the mechanisms of 
diagnosis and decision-making based on Markov 
chains. An imitation model in the form of a directed 
graph (orgaph) has been created, where the nodes 
represent the process states and the edges represent 
the transitions between them. The novelty of the 
model lies in using the diagnostic sequence of states 
and the step number, reflecting the discretization 
intervals of turbocharger element monitoring in 
complex operating conditions, as the diagnostic 
parameter instead of time. An distinguishing feature 
of the presented orgaph is its adaptability to external 
influences. 
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Шарко О., Яненко А. 
МОДЕЛЮВАННЯ ІНТЕЛЕКТУАЛЬНОГО ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ  
ДЛЯ ДІАГНОСТИКИ ТА МОНІТОРИНГУ КОМПОНЕНТІВ СУДНОВОЇ  
ЕЛЕКТРОННОЇ УСТАНОВКИ ЗА ДОПОМОГОЮ ЛАНЦЮГІВ МАРКОВА  

Надійність і експлуатаційна придатність металоконструкцій залежить від якості контролю за 
технічним станом і механічними властивостями матеріалів відповідно до міжнародних стандартів. Проте в 
процесі експлуатації виникають відхилення від нормативних значень властивостей матеріалів через 
невизначений характер і величину навантажень, що зумовлює необхідність періодичних відключень обладнання 
з метою діагностики. Безперебійна робота елементів енергетичного обладнання морських суден залежить від 
якості контролю їх технічного стану фізичними методами діагностики. Найбільш ефективним методом 
зниження експлуатаційних витрат і підвищення надійності обладнання є проведення технічного 
обслуговування на основі інтерактивного моніторингу його стану, виявлення несправностей і прогнозування 
параметрів енергетичного обладнання. Це робить особливо актуальними завдання контролю, діагностики та 
прогнозування параметрів енергетичного обладнання. У той же час використання різних методів діагностики 
не дозволяє врахувати всіх особливостей  реальних умов експлуатації.  Особливо гостро ця проблема постає в 
умовах різних екстремальних ситуацій та пікових навантажень,  які врахувати неможливо. Перспективним 
напрямом досліджень є імовірнісні методи, зокрема ланцюги Маркова. 

Представлена система інтелектуальної діагностики та моніторингу турбокомпресорів суднової 
енергетичної установки з використанням ланцюгів Маркова. Новизна розробленої методики полягає в заміні 
дискретних інтервалів часу діагностичного процесу послідовністю станів технічних об'єктів. У цьому 
формулюванні ланцюги Маркова являють собою синтетичну властивість, яка акумулює різноманітні 
фактори. Рандомізація процесів стохастичної діагностики та моніторингу компонентів суднової 
енергетичної установки дозволяє підвищити надійність обладнання у важких умовах експлуатації. Наведено 
результати розрахунків оцифровки експериментальних даних, розрахунків матриць переходів і побудови 
орграфа, що дозволяє досліджувати кінетику накопичення ушкоджень в реальному часі.  

Ключові слова: моделювання; ланцюги Маркова; суднові енергетичні установки; діагностика; моніторинг. 

 

Sharko O., Yanenko A. 
MODELING OF INTELIGENT SOFTWARE FOR THE DIAGNOSIS AND MONITORING  
OF SHIP POWER PLANT COMPONENTS USING MARKOV CHAINS 

The reliability and serviceability of metal structures depends on the quality of control over the technical condition 
and mechanical properties of materials in accordance with international standards. However, in the course of 
operation, deviations from the normative values of material properties occur due to the uncertain nature and magnitude 
of the loads, which necessitates periodic shutdowns of the equipment for the purpose of diagnostics. Uninterrupted 
operation of elements of power equipment of marine vessels depends on the quality of control of their technical 
condition by physical diagnostic methods. The most effective method of reducing operating costs and increasing the 
reliability of equipment is maintenance based on interactive monitoring of its condition, detection of malfunctions and 
forecasting of energy equipment parameters. This makes the tasks of control, diagnosis and forecasting of energy 
equipment parameters particularly relevant. At the same time, the use of various diagnostic methods does not allow 
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taking into account all the features of real operating conditions. This problem is especially acute in conditions of 
various extreme situations and peak loads, which cannot be taken into account. Probabilistic methods, in particular 
Markov chains, are a promising area of research. The system of intelligent diagnostics and monitoring of ship power 
plant turbochargers using Markov chains is presented. The novelty of the developed methodology lies in replacing 
discrete time intervals of the diagnostic process with a sequence of states of technical objects. In this formulation, 
Markov chains represent a synthetic property that accumulates diverse factors. Randomization of stochastic diagnostic 
and monitoring processes of ship power plant components enables an increase in reliability of equipment under severe 
operating conditions. The results of calculations of digitalization of experimental data, calculations of transition 
matrices and construction of an orgraph allowing to study the kinetics of damage accumulation in real time are 
presented.  

Keywords: Modeling; Markov chains; ship power plants; diagnostics; monitoring. 
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