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Introduction

Structural analysis and identification of the
dynamic parameters of structures and signal sources
whose spectral characteristics lie in the seismic and
lower acoustic ranges are extremely important in
their monitoring to predict significant changes in
dynamic characteristics. By their nature, these are
man-made and natural objects. The dynamic
identification method provides the ability to
investigate the dynamic behavior of a given structure
through non-destructive testing and therefore allows
an assessment of the state of the structure and the
possible need for more detailed monitoring.
A methodology is proposed for identifying the main
structural parameters, such as the main natural
frequencies and the quality factor of the structure at
these frequencies. The method of examining the
response of a structure to a dynamic load is
analyzed, which can be any: environmental (wind,
sea waves, traffic, and so on) or artificially caused
by testing impulses. For the creation model of a
seismic signal, we took into account the fundamental
empirical research of seismic signals, and
mathematical models were used for their
approximation [1,2]. Also, we used the streaming
nature of the seismic process and considered that the
seismic signal must be a wave, as was noticed in [3].

Analysis of recent research and publications

Of particular interest is the passive monitoring of
objects with sources of emission signals, the
parameters of which are to be determined and are
characteristic of the structure. The issue can be both
irregular and regular. In the latter case, it can be
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modeled as a flow with probabilistic characteristics
to be determined [4—6]. This behavior is typical for
geological faults as a source of seismic signal
emission. Such a flow, if it is modeled as binomial,
may have, in contrast to the model in active
monitoring, a greater probability of the source “not
triggering” i.e., the integral of the partial probability
density of the signal occurrence at a given quantity
of moments on a set of moments, appearing on the
given interval, It can be much less than unity. While
active monitoring can be organized so that the value
of this integral will be close to unity. The dispersion
of the distribution of the moments of the start of the
emission of individual signals is significantly larger
than in the case of active monitoring.

The significant differences between the two types
of monitoring do not end there. In active monitoring,
the researcher also has at his disposal a probing
signal. This means that the result of the analysis of
data obtained in passive monitoring of this type of
signal is reduced to estimating the parameters of the
emission signal, which fluctuate from signal to
signal, and the distribution of parameter fluctuations
is a priori unknown. A particularly important
emission modeling case is “short” i.e., well-resolved
signals. Note that the physical realizability of the
signal is to satisfy two conditions. These conditions
have causality and stability [7]

Problem Statement

Mathematical model of physically realizable
seismic signals

A superposition of oscillators well approximates
a physically realizable signal, but for real physical
systems with a mnarrow spectral band and,
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accordingly, as a consequence, wavefront damping,
it is natural to model by a superposition of Berlage
pulses [1] as a generalization of an oscillator.

(1) =(t)te”* sin(wr). (1)

For model (1), the following generalization is
natural. For the Berlage momentum, which entered
at the moment of time t

y(t)=An(t—1)(t—1)exp {—oc(t - r)} x
sinf o(1—1)].

In (2) n(z—7) —is the Heaviside function.

The following natural generalization of the model
(generalized Berlage function):

y()= At —1)(1—1)" x
exp {—oc(t - r)} sin [m(l‘ - ‘E)J
In formulas (1-3) y(¢) -

{A,r,oc,(o,B} — vector of free parameters of the

)

3)

observed data,

model, where 4 — oscillation amplitude, t — signal
arrival time, a — parameter characterizing signal
attenuation (decrement), ® — signal frequency, B —
is the parameter that characterizes the velocity of the
beginning of the signal..

At B=1 we have the Berlage momentum; at

B =0 we have an oscillator,at =0V [3#1 we have
the generalized Berlage momentum; at oo ==0
we have the first Fourier harmonic on the interval

(‘c,r+ﬁj. In what follows, we consider the
()

general case, fixing the free parameters o and P,
proceed to particular cases of the generalized
Berlage momentum.

A model consisting of K submodels and
representing a superposition of impulses, each of
which is given by formula (1-b) and enters the
model as a row vector of physically meaningful free
parameters of the generalized Berlage impulse, each
of the impulses is completely determined by a row
vector:

P<k>:{Ak’Tk’a‘k’mk7Bk}‘ (4)
And the model takes the form:

M(P)=3 An(—7, )i,

exp{—ot, (¢ =, )} sin| o, (1=7,) |+ n(0).

In (5), the model's free parameters matrix P is
given. The row vector P< 0 of this matrix completely

)

determines of the k -th submodel, and the column

vector P which determines the related parameters
of the submodels, n(z) is the additive noise. In (1.6)

there are five related parameters:

P={P |.k=1K,s=15. (4-a)
S — is the number of free parameters in the
submodel (the number of columns in the matrix
is P), K —is the number of submodels (the number
of rows in the matrix is P). Thus a rectangular
matrix of free parameters of model with dimensions
K xS in (4) defines the model (5).

If we combine related vectors into the matrix,
then:

b > b b (6)
In (6) are given vectors of the form,
4 T
Pl =A=]4 PP =r={1 |;
Ay Tk
o o
P<3>:u: o ,P<4>=0): B
(6-a)
g Og
By
P<5> =p= Bk
P

Thus, the model in terms of the matrix of free
parameters takes the form:

s pl) (2) (2)\p?
M(taP):ZPk n—=P7 )t -P7)* X

eXp{—Pf;(zl—PfB}sin{p]§4>(t_l,£2>)}‘ (5-a)

Here vectors are A,T,d,®,f column vectors

consisting of K rows K — is the number of
submodels. The matrix P is formed as a union of

vectors Pk’ssz,és> (6). In the given model
s=1,85;5§=5.2) For model (6) and field
observations V' (¢f) on the interval (0,7), we
construct the objective function Q(P) in the metric
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L,(0,T). T=At-S1, here At is the time quantum,
S1 is the number of sampling points in the interva 1.

OP)=|V,, ~M(@,.P)|,_ . k=LK; (7)

_ 1 Sl
Q(P)—stlzzo(ml—M(tsl,P))z, e

t,=sl-AtT=tg-At.

To find the extrema of the function Q(P), you

need to solve the system of equations for all
elements of the matrix P :

%:Q k=1,K;s=1,8. 8)
s,k
Given the similarity of related submodels, we can

sequentially consider derivatives in the vectors' pi)
direction and related parameters of different

submodels.
aQ(<I>’)
P 0
%: oo b20=4 b k=K (8-a)
o0(P) 0
op.’

Of the set of extrema, it is necessary to single out
the global minimum.

But working with such kind of model for the flow
of signals are associated with the difficulties of
using the variation approach [8] to the problem of
estimating the parameters of the flow. Taking into
consideration that the process is accompanied by
microseismic background [9], we cannot accurately
estimate the parameters of the signal in the stream.

Optimal estimation of the vector of free
parameters of the model

So we find the global minimum of the functional
O(P,) on the set of admissible, with a priori, known

distribution, vectors P, from the set A, [10].

Hl}in{Q(Pk)}QkZL_KQ Py e %Ay

The results of calculations for the model of three
damped harmonics are reduced to vectors of
dimension 4, with a fixed vector of arrival time
parameters, combining one-dimensional parameters,
i.e., a 12-parametric model is considered.

Fig. 1 shows the dependence of the goodness of
fit criterion of the model on such nonlinear
parameters entering the model as the oscillation
frequency of the object. Here, the dependence of the
criterion (7-a) on two of the twelve free parameters
of the selected model, namely the frequencies of the
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first and second harmonics, is given, with the
remaining parameters of the 12-dimensional vector
fixed. These parameters enter the model non-
linearly. As a result, we see a complex, gully-like
surface topography with many local extrema. This
type of criterion determined the approach to the
search for the global minimum adopted in this work,
namely the method of random search by a priori
distributions [11].

20
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30

10 20
frequency 2

Fig. 1. Dependence of the criterion of fit of the model
on the parameters nonlinearly included in the model:
the frequencies of the first (along the abscissa) and second
(along the ordinate) harmonics of the object oscillations
with other fixed parameters

Fig. 2. Topography of the criterion presented in Fig. 1

The topography of the criterion is given in Fig. 2,
where it is easy to trace local extrema in the range of
possible values of these parameters accepted for
calculation. In the Fig., along the abscissa axis, the
first, and along the ordinate axis, the second
harmonic of the object's oscillations are plotted.

These Fig. show how close in the parameter
space you need to get to the global minimum point
in the Monte Carlo method to avoid reaching a local
minimum and getting a non-optimal solution.

The situation is much simpler for the parameters
linearly included in the model since for these
parameters, the functional (7-a) (for fixed nonlinear
parameters) is concave, and the extremum point is
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unique. This can be seen by analyzing Fig. 3 and 4.
As two independent variables of the criterion
(7-a), the values of the amplitudes of the first and
second harmonics are selected, while the remaining
parameters are fixed (Fig. 3, 4).

i A f.'np]- Hdﬁﬂl 1'}"'\In]:],“_] —

Fig. 3. Dependence of the criterion of fit of the model
on the parameters linearly included in the model:
the amplitudes of the first (along the abscissa)
and second (along the ordinate) harmonics of the plant
oscillations (with other fixed parameters)
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Fig. 4. Topography of the criterion presented in Fig. 3

If, for example, the amplitudes of the first and
second harmonics are chosen as two independent
variables of criterion (7-a), and while the remaining
parameters are fixed, then in this case, in three-
dimensional space, the criterion looks like it is
shown in Fig. 3.

The nature of the nonlinearity of the parameters
included in the model makes it possible to make
predictions about the behavior of the criterion when
one or another of them changes.

Since the parameters that determine the phase of
the corresponding harmonics, which are included in
the model nonlinearly, have a period, prior
distributions in the Monte Carlo method are

considered on the interval [-n,n]. This can be traced
by analyzing Fig. 5 and 6, where the criterion is

presented as a function of the phase shift and the
circular frequency of the first harmonic with other

parameters fixed. Here, as before, Fig. 5 is the
criterion, in Fig. 6 is the topography of the criterion
(7-a) of the free parameters of the phase and
frequency of the first harmonic, with the remaining
fixed parameters of the criterion.

Fig. 5. Criterion as a function of phase shift and circular
frequency of the first harmonic with other fixed
parameters

50

] Aouanbauy

20 40 0
frequency 2
Fig. 6. Topography of the criterion presented in Fig. 5,
where the abscissa is the frequency, and the ordinate
is the phase shift
If the values of the exponent of the damped
exponent of the third harmonic and its frequency are
chosen as two independent variables of the criterion
(7-a) while the remaining parameters are fixed, then
in this case, in three-dimensional space, the criterion
looks like it is shown in Fig. 7 and 8.

20

fioquency '-ae?n}f%

Fig. 7. Criterion as a function of the exponent of the
decaying exponent of the third harmonic and its frequency
with other fixed parameters
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Fig. 8. Topography of the criterion shown in Fig. 7,

where the abscissa is the frequency, and the ordinate
is the exponent

The topography of the criterion is shown in Fig. 9,
where the abscissa is the frequency, and the ordinate
is the exponent. Sections of this criterion by planes,
one of which is perpendicular to the abscissa axis
and passing through the global minimum point
(Fig. 9), and the other — to the ordinate axis (Fig. 10).

ﬂ'cquéﬂcﬁ dem}m}_g

Fig. 9. Criterion as a function of the exponent
of the first harmonic and its frequency with
other fixed parameters
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Fig. 10. Topography of the criterion presented in Fig. 9,
the dependence of criterion (7-a) on the parameters
of the exponent of the first harmonic and its frequency
with other fixed parameters
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linear & nonlinear parameters

Fig. 11. Criterion as a function of the frequency of the
first harmonic and the amplitude parameter of the first
harmonic with other fixed parameters
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Fig. 12. Topography of the criterion presented in Fig. 11,
criterion (7-a) as a function of the first harmonic
frequency and amplitude parameter of the first harmonic

Processing of field observations

Let us consider an optimized procedure for
estimating the dynamic parameters of mortar
explosion signals with characteristics in the seismo-
acoustic frequency range using the example of the
data obtained from the monitoring study and allowed
signals of mortar explosions.
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]

Fig. 13. Fragment of a mortar explosion signal
recording against background noise
The abscissa shows the time in milliseconds; the
ordinate indicates the amplitude of the oscillation
velocity in relative units.
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Fig. 14. Model approximating the signal shown in Fig.
13, the free parameters of which are obtained as a result
of estimating the optimal parameters of the criterion (7-a)
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The abscissa shows the time in seconds; the
ordinate indicates the amplitude of the oscillation
velocity in relative units.

Let us proceed to the analysis of the quality of
the optimal model. Consider a model with twelve
free parameters. The criterion's value assesses the
model's quality at the global minimum point. Fig. 15
represents, from the authors' point of view, the most
important characteristics of the object, namely the
quality factor of the system at natural frequencies.
Fig. 15 shows the decay exponents of the energy
dissipation process at natural frequencies for the 12-
parametric model (three natural frequencies are
considered here).

104

0412 0492 0571 0.65

Fig. 15. Damping the energy dissipation process
exponents at natural frequencies for the
12-parametric model

Fig. 16 shows each of the three submodels of the
12" parametric model (5). The intersection of each
of the harmonics of the y-axis gives an idea of the
estimate of its phase shift. We can see a significant
difference in the object's state in the energy sense at
different harmonics.

0.4 0.5 0.6

%
Fig. 16. Each of the three submodels of the 12"
parametric model (17). The abscissa shows time

in seconds; the ordinate indicates the values of the

exponents that modulate the corresponding
harmonics (in relative units)

Fig. 17 is the green curve model and the observed
data (blue curve).
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Fig. 17. Model (5) (green curve) and data obtained
from the experiment (signal, blue curve)

The above calculations show the entire chain in
the computerized technology for estimating free
parameters in models and are provided only for one
of the components of the oscillation velocity record.

First, the frequencies' values and logarithmic
decrement of the object of study have a physically
meaningful value. The latter is significant since they
give an idea of the quality factor of the system, its
ability to accumulate and retain for a while the
energy of external disturbances. A high-quality
factor (small decrement) at some frequencies in the
model characterizes the particular sensitivity of the
object to external disturbances at these frequencies.
For example, dynamic changes in the decrement in
the direction of decrease are a sign of the object's
readiness for destruction from a weak external
influence. Unfortunately, the Monte Carlo method
used in the article gives convergence to the solution
only in probability. Therefore, the number of
calculation cycles should be large enough to ensure
the correctness of the result, which becomes difficult
with a large model dimension. Or it would be best if
you had good a priori ideas about the expected
result. In conclusion, we'd like to present the best
parameters for the studied object.

Transposed vector of natural angular frequencies

o ={3.024 8.734 19.985)7%4

S€C

Transposed model amplitude vector (5).
Al = {9.850 0.598 0.319}.

Transposed decrement vector at eigen frequencies
a = {0.019 2.124 0.197}

Transposed vector of phase shifts in radians
vy = {3.138 3.035 7.851E-3}rad

Conclusions

A practical method for analyzing natural and
man-made objects, whose natural frequencies lie in
the seismic and lower part of the acoustic frequency
ranges, based on monitoring their dynamics, is
proposed. A new approach 1is proposed for
identifying the state of such objects. A non-
traditional model of the natural background of the
monitored object is proposed in the form of a
superposition of Berlage impulses. Such a model
makes it possible to estimate such an essential
parameter in the description of an object as its
quality factor, the dynamics of which can give an
idea of its structural changes. To predict the
behavior of natural and engineering objects to
prevent undesirable consequences of the behavior of
the object under study, seismo-acoustic monitoring
systems are used. The mathematical model and
algorithm proposed by the authors can be integrated
into the system of seismo-acoustic monitoring of
natural and man-made objects.
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118 HaykoemHi TexHonorii Ne 2(58), 2023

REFERENS [6] Lebedich I. N., Mostovoy S. V., Mostovoy V. S.
Modern approaches to the analysis of the dynamic
stability of natural and man-made objects on the
example of monitoring a column-type monument.

[1] Michael J. Bianco, Peter Gerstoft, James Traer,
Emma Ozanich. Tachine learning in acoustics:

Theory and applications. The Journal of the Gefiz. Journal. 2004. Vol. 24, No. 6. P. 132-138.

Acoustical - Society of America. Vol. 5(146).  [7] Robinson E. Predictive decomposition of time

p-p- 3590-3628 (2019). . series with application to seismic exploration. /bid.
[2] Lengyel Karoly, Ovidiu Stan, Liviu Miclea. 2017. 32, No 3. P. 418484,

Seismic Model Parameter Optimization for Building [8] Kirkpatrick S., Gelatt C., Vecchi M. Optimization

Structures. 2020 Apr. 20(7). p. 567-592. by simulated annealing. Science. 1983. 220.
[3] Addison Paul S. The illustrated wavelet transform P. 671-680. ,

handbook. IOP Publishing Ltd 2002. 353 p. [9] Mostovoy V. S., Mostovyi S. V., Panchenko M. V.

Seismic signal and microseismic background
phone (mathematical models and estimations).
Geoinformatic. 2008. No 1, p. 28-38.

[4] Mostovoy S., Mostovoi V. Active Monitoring and
decision making problem. ZJ IT4. Vol. 12, Number 4,

Sofia, 2003, p. 127-135. [10] Plessix R.-E. A review of the adjoint-state method

[5] Mostovoy S.V., Mostovoy V.S. Osadchuk A.E. for computing the gradient of a functional with
Model of active seismic monitoring. Gefiz. geophysical applications. Geophys. J. Int. 2006.
Journal. 2005. Vol. 24, No. 6. P. 132-138. 167, 495.

MoctoBuii B., Toarona C., IlleBueHko A.
ONTUMIBALISI JTMUHAMIYHUX ITAPAMETPIB OB’€KTA TA MATEMATUYHA MO/JIEJ/Ib
CEUCMO-AKYCTHYHOI'O MOHITOPUHI'Y NIPUPOJHUX TA IHHKEHEPHUX OB'EKTIB

Cmammsa npucesuena nioxXooy MamemMamuyHo20 MOOENO8AHHS CEUCMOAKYCMUYHO20 MOHIMOPUHEY 00 €Kmig i
CROPYO PO3MIpIB, GIACHI 4ACTMOMU MA CUSHANU BUNPOMIHIOBAHHS SKUX € CEUCMIYHUMU MA HUICHBLOIO HACTMUHAMU
akycmuynozo Oiana3onie. CMpYyKmMypHUii awaniz ma 6USHAYEHHA OUHAMIYHUX napamempie makux KOHCMpPYKYil
HAO38UYALIHO 8ANCIUGE NPU IX MOHIMOPUHZY Ol NPOSHO3VBAHHA ICTMOMHUX 3MIH OUHAMIYHUX Xapakmepucmuk. Kpim
moeo, mMemoo OUHamiuHoi i0eHmugikayii 0ae MOHCIUBICMb OOCTIONHCY8AMU OUHAMIYUHY NOBEOIHKY OAHOI CIMpYyKmypu
abo Odxcepena NOXOONCEHHS CUSHATY WINAXOM OOCHIONCEHHA O0O0CNiONHCY8aHUX 00'ckmie 3 Memorw 6UUeHHs
inghopmamuenux xapaxmepucmux. Y cmammi Hasedeno Memooonoiio I0eHMu@IiKayii OCHOBHUX CHPYKMYPHUX
napamempis, MmaxKux AK OCHOGHI 61ACHI uyacmomu, i Oekpemenm yux udacmom. Ocobruguii iHmepec npeocmasnie
CeUCMOaKyCmuyHUll MOHIMOpuUHe 00'€kmig 3 Odceperamu CUSHANIE SUNPOMIHIOBAHHS, NAPAMEMPU SAKUX NIOASA2AI0Mb
BUBHAYEHHIO MA € XAPAKMEPUCMUKAMU CMPYKMYpU abo NOX00duCeHHs: cucHany. Buxuou moocymv nocumu sk
HepeeynsipHul, max [ peeyiapuuti xapakmep. OcmaHHIU 6UNAOOK Modce Oymu 3MO0eIbO8aHULl AK NOMIK 3
npasoonodioHUMU XAPAKMEPUCMUKAMYU MA 6USHAYEHHAMU npeomema. Pesynbmam auanizy Oanux, ompumaHux npu
CeUCMOaKyCMUYHOMY MOHIMOPUHSY MAKUX CUSHATIB, 3600UMbCA 00 OYIHKU NApAMempi8 CUSHATY GUNPOMIHIOBAHHS,
SAKULL KOMUBAEMBCA 810 CUSHANY 00 cueHany. Takum YuHoOM 3anponoHO8aHO NPAKMUYHUL MemoO AHANI3Y NPUPOOHUX ma
MexXHO2eHHUX 00 '€KMI8, BNACHI YACMOMU AKUX JIeHCambd V CeUCMIYHOMY MA HUNCHIT YACMUHI Oiana3oHié aKyCmuyHux
uacmom, 3ACHOBAHULL HA MOHIMOPUH2Y IX OUHAMIKU. 3anponoHO8aHO HOBULL NIOXI0 00 GUSHAYEHHS CMAHY MAKUX
00'exmis. 3anpononosano HempaouyiliHy Mooeib NPUpooOHo20 QOHY 00'ckma MOHIMOpuHey y 6uenadi cynepnosuyii
imnynecie bepnaze. Taxka modenv Oac 3mo2y oyiHumu mMaxui cymmesui napamemp 8 onuci o0'ekma, AK 11020
Odobpomuicmb, OUHAMIKA AKOI ModHce O0amu YAGNeHHA NPO 1020 CIMPYKMYPHI 3MiHU. [l NPOSHO3VBAHHA NOBEOIiHKU
NPUPOOHUX MA [HIICEHEPHUX 00'ckmie 3 Memoio 3anobieanHHs HeOaNCaAHUX HACTIOKIE NOBEOIHKU O00CHIOANCYBAHO20
00'exma 8UKOPUCIOBYIOMBCS CUCEMU CELICMOAKYCIMUYHO20 MOHIMOPUHZEY. 3anponoHo6ani asmopamu Mamemamudna
MoOenb I aneopumm Modcymv Oymu iHmMezpo8aHi 8 CUCmeMy CeucMOAKYCMUYHO20 MOHIMOPUHEY NPUPOOHUX |
MexXHO2eHHUX 00 €KMis.

KnroyoBi cnoBa: cuctema MOHITOPUHIY, CEACMIYHWUIA CUrHan, ceMcMiyHa XBWUNSA, CENCMOAaKYyCTUYHWA MOHITOPUHT,
MaTeMaTuyHa MOAENb.

Mostovyy V., Toliupa S., Shevchenko A.

OPTIMIZATION OF THE DYNAMIC PARAMETERS OF AN OBJECT IN A MATHEMATICAL
MODEL OF SEISMO-ACOUSTIC MONITORING OF NATURAL AND ENGINEERING
OBJECTS

The article is devoted to the mathematical modeling approach of seismo-acoustic monitoring of objects and
structures of sizes whose own frequencies and emission signals are from seismic and the bottom part of acoustic
ranges. The structural analysis and identification of dynamic parameters of such structures are extremely important in
their monitoring to predict essential changes in dynamic characteristics. Moreover, the method of dynamic
identification provides an opportunity to investigate the dynamic behavior of the given structure or source of signal
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origin by researching investigated objects' to study informative characteristics. The article enters methodology for
identifying the main structural parameters, such as main intrinsic frequencies, and the decrement in these frequencies.
Particular interest represents seismo-acoustic monitoring of objects with sources of emission signals whose parameters
are subject to definition and are characteristic of structure or signal origin. Emissions can carry both irregular and
regular character. The latter case can be modeled as a flow with the likelihood characteristics and subject definitions.
The result of the analysis of the data received in seismo-acustic monitoring of such signals is reduced to an estimation
of parameters of an emission signal, which fluctuates from a signal to a signal. A practical method for analyzing
natural and man-made objects, whose natural frequencies lie in the seismic and lower part of the acoustic frequency
ranges, based on monitoring their dynamics, is proposed. A new approach is proposed for identifying the state of such
objects. A non-traditional model of the natural background of the monitored object is proposed in the form of a
superposition of Berlage impulses. Such a model makes it possible to estimate such an essential parameter in the
description of an object as its quality factor, the dynamics of which can give an idea of its structural changes. To
predict the behavior of natural and engineering objects to prevent undesirable consequences of the behavior of the
object under study, seismo-acoustic monitoring systems are used. The mathematical model and algorithm proposed by
the authors can be integrated into the system of seismo-acoustic monitoring of natural and man-made objects.

Keywords: monitoring system, seismic signal, seismic wave, seismo-acoustic monitoring, mathematical model.
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