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INFORMATION TECHNOLOGIES FOR MANAGING AVIATION SYSTEMS

Introduction

One of the promising categories of information
technologies is the methods of processing and appli-
cation of statistical and mathematical methods for
decision-making. The use of information technolo-
gies in decision-making methods is of particular
importance in areas for which the preservation of
life is critically important. One of these industries is
aviation. Its feature is rapid development and con-
stant expansion, which requires an effective security
system. Ensuring the safety of the aviation industry
is a priority task for Ukraine.

The implementation of effective aviation safety
control systems, the development of improved safety
control systems including preventive risk manage-
ment, is the basis of the global plan to ensure the
safety of civil aviation.

ICAO Annex 19 contributes to the establishment
of a uniform approach to flight safety management
and flight safety oversight in all areas of the aviation
industry. A general approach to evaluating the effec-
tiveness of flight safety management systems re-
quires approaches to determining the methods and
means when an be used to make decisions related to
aviation activities [1].

Problem statement

The implementation of a proactive approach to
the aviation safety management system requires a
systematic approach using modern information tech-
nologies to measure key parameters for the ability to
make adequate decisions [2].

In accordance with a proactive approach to avia-
tion safety management, it is necessary to use infor-
mation technologies to assess the parameters of trig-
gers (causes that can lead to the occurrence of a
dangerous event) to make a decision about their
condition. In the work, the human factor is consid-
ered as a trigger, in particular, the stability of the
functional state of the operator, which is analyzed by
known methods [2]. It is proposed to increase the
reliability of the assessment of the functional state of
the operator using existing information parameters
based on the processing of secondary information to
reduce uncertainty.

Therefore, the relevance of the work is aimed at
analyzing the problem of assessing the impact of the
human factor as one of the risk factors determined
by the flight safety management methodology and
determining its place in the flight safety manage-
ment system.
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Analysis of the latest research and publication

Today, more and more attention is paid to the
implementation of the safety culture and the human
factor in the flight safety management system [3]. In
2019, EASA (European Union Aviation Safety
Agency) started implementing a new strategy to
promote aviation safety for the period 2020-2024.
The basis of this strategy is the use of a proactive
approach in the field of aviation security. The EASA
Safety Promotion program is a leader in safety pro-
motion in Europe and around the world [4]. Particu-
lar attention is paid to issues of a proactive approach
in the Manual of Air Safety (MAS) regulatory doc-
uments of the Air Safety Management of Military
Aviation, where it is noted that air safety manage-
ment is a key issue that contributes to ensuring a
safe and effective operational capability and is nec-
essary to ensure a comprehensive, systematic and
proactive approach to air transport safety [5].
Ukrainian scientists have always paid attention to
issues of aviation safety, but the strategy for ensur-
ing it was reactive in nature, i.e. identifying danger-
ous factors (risks for flight safety), analyzing them
and taking the necessary measures already after the
occurrence of a dangerous event (refusals or viola-
tions that led to an aviation event, a serious incident)
[6]. The latest requirements of the ICAO require the
implementation of a proactive approach, which will
allow predicting the occurrence of a dangerous
event, and the development of approaches to identi-
fy, assess and predict risks that lead to aviation
events [7].

The purpose of the article

The paper proposes the use of nonlinear dynam-
ics methods to increase the reliability of decision-
making based on secondary measurement infor-
mation for predicting the occurrence of a dangerous
factor, a malfunction of the operator's cardiovascular
system, as one of the component risks of the influ-
ence of the human factor in the general system of
risks for flight safety, which can lead to an aviation
event. Thus, the purpose of this publication is to use
information technologies to implement ways of us-
ing a proactive approach to flight safety systems.

Presentation of the main research material

When implementing a proactive safety manage-
ment system, special attention is paid to the identifi-
cation and elimination of triggers (causes of hazards
and dangerous factors) in all aviation components
involved in the work.

A proactive approach involves the creation of a
safety management system in an airline that detects
actual and potential hazards and their factors, guar-
antees the use of corrective measures necessary to
reduce operational risks and provides continuous
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monitoring and regular assessment of the achieved
safety level [2].

Therefore, the flight safety management system
in the ideology of a proactive approach requires a set
of measures carried out by the aviation system to
detect and identify actual and potential dangers and
their factors for its activity, assess the risk of their
manifestation, develop and use corrective measures
necessary to maintain an acceptable level of safety
[8]. It is within the framework of this approach that
the methodology for evaluating the flight safety
management system was developed [§].

The authors in [2] proposed the use of functional
modeling to determine the location of risk factors,
particularly human risk factors. But as can be seen
from Fig. 1, the decision-making process regarding
the identification of hazards related to human and
organizational factors remains an urgent task.

In turn, the phased implementation of the follow-
ing processes: management of safety policy and
objectives, management of flight safety risks, ensur-
ing flight safety and promotion of flight safety is-
sues, commitment to continuous improvement, en-
suring compliance with all applicable legal require-
ments and standards, takes into account best practic-
es. Therefore, making a decision about the danger of
a dangerous event based on the human factor is
closely related to the task of reducing uncertainty in
obtaining primary information about changes in the
properties of the diagnostic object.

In turn, the phased implementation of the follow-
ing processes: management of safety policy and
objectives, management of flight safety risks, ensur-
ing flight safety and promotion of flight safety is-
sues, commitment to continuous improvement, en-
suring compliance with all applicable legal require-
ments and standards, takes into account best practic-
es.

Since within the framework of a proactive ap-
proach there is a need to reduce to a minimum avia-
tion accident due to human fault related to aviation.

Therefore, finding ways to identify hazards (trig-
gers) related to the human factor in advance is an
important task of the ideology of risk management.
Assessing the risks associated with the human factor
has the difficulty of promptly identifying the hazard.

Therefore, the evaluation of the current function-
al state of the operator will make it possible to re-
duce the development of a negative event involving
a person with a predicted probability.

Therefore, making a decision about the danger of
a dangerous event based on the human factor is
closely related to the task of reducing uncertainty in
obtaining primary information about changes in the
properties of the diagnostic object.
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Fig. 1. Functional model to determine the location of risk factors

A peculiarity of decision-making based on in-
formation parameters by which the functional state
of the operator can be assessed is the need to take
into account the stochastic influence of random pro-
cesses with different types of non-stationarity, which
does not allow to assess qualitative changes in the
state of a biological object with a given reliability.

If we consider a complex biological object,
which is characterized by a number of parameters 7Y,
then Xj,..., Xi. These parameters are measurable
physical quantities that reflect the properties of a
physical object. Traditionally, to assess the state of a
biological object, the parameters of the cardiovascu-
lar system are used as the most informative in terms
of response to the action of destabilizing factors. In
turn, Y (the functional state of the operator as a bio-
logical object) has to be considered as, in a certain
sense, a random variable, which is due to the lack of
the possibility of an accurate, metrologically justi-
fied reproduction of its given value in the range Ay
of all its possible changes. However, the variance of
the Y value is a constant value 6%,= const.

At the functional level, there is an a priori un-
known relationship between the mean Y and {X;}:

M[Y] = F(IM[X1], ..., M[Xi]).
For each parameter of the cardiovascular system,
there is a conditional density f (X,-‘Yj, X ,f LA #D),

which reflects the stochastic relationship between
the value of X; and the rest of the controlled values,
provided that (Y = ¥; =const, j = 1, 2...). The gener-
alized decision-making structure based on the trans-
formation of the measurement information about the
Y value based on the measurement of the values of

controlled quantities can be represented as follows.
To make a decision about the state of a complex
object, it is necessary at the first stage to obtain the
value Xi",..., Xi" by primary converters, which at the
second stage are converted into an estimate Y* of the
value of the parameter Y. When making a decision,

one y{a,, b}/ from the set {y} of decisions
about the value of Y according to the decision selec-
tion rule

VY*[Y*e(a,b)>Y*eY,]

Estimation of the amount of information about
the Y parameter (assuming that the width A of the
tolerance intervals a;, b, j = (1, k) is the same, and
their total number is equal to k) is determined by the
expression the difference between the initial H(Y)
and the conditional entropy H (Y | ) [9]:

I=HY-HY|Y,

b, b,
where HY =—/Z Ifydy]lnjfydy .

Jj =l a;
And f' y — the distribution density f{y) of the ¥

value in the range A4y.
In turn, the conditional entropy can be defined in
terms of the conditional probability PY | Y;: of the

value M Y=Y if the solution y; gives the value Y=Y;:
k
HY ==Y PY,|[\,InPY7,.
=l

If the variance 7, of the deviation of Y* from the
value M[Y] = const is, then:
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In turn, the amount of information is written in
the form:

A
[=In—*—.
c, 2me

If the variance is presented in the form:
k
2 _ A2 2|, -1
o, = AW [1 +—N ijn ,

2 . . .
where o, — variance of controlled information

parameters Xi'\., Xi5 N — number of measure-
ment; y — factors influencing the correct choice of
the transformation model [10].

So:

A
I=In y n (1)

2 k-
A |2me l+G—X
v k N

Equation (1) can be considered as the amount of
expected information about the controlled infor-
mation parameter with an unremovable dispersion
o%y of the input measured parameters Xi, ..., Xi. of
the cardiovascular system. The existence of this
dispersion does not prevent us from increasing the
amount of measured information by increasing k£ of
these parameters. However, in this case, the ratio of
the learning nipple »n to the number k of the input
information must remain constant or also increase
[11]. It is possible to increase the reliability of deci-
sion-making by increasing the amount of infor-
mation only by increasing the size of the training
sample n. Increasing only the number N of multiple
measurements does not eliminate the negative ef-
fects of y factors. Therefore, finding approaches that
allow increasing the amount of information based on
existing measurement results significantly increase
the reliability of decision making [12]. As such an
approach, non-linear dynamics methods are pro-
posed, which make it possible to assess the non-
stationarity of the measured biological signals [13].

The use of nonlinear dynamics methods to the al-
ready measured parameters of the cardiovascular
system can provide an increase in the amount of
information about the state of the operator and pro-
vide a new understanding of changes in the parame-
ters of the cardiovascular system in hidden physio-
logical states, providing additional prognostic in-
formation and complementing the traditional analy-
sis in the time and frequency domains [14]. The
methods of nonlinear dynamics provide additional
and independent information about the physiologi-
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cal, as well as about the hidden physiological
response to the destabilizing factors [15].

In the paper, as an example for processing al-
ready existing informational parameters of RR inter-
vals of the electrocardiogram (ECG), their projection
in phase space was carried out using Poincre maps to
increase the informativeness of heart rate variability
(HRV). RR intervals are presented as a time series,
and a Poincaré map (Pplot), also known as a return
or delay map, allows the estimation of heartbeat
dynamics based on a simplified phase space embed-
ding. Pplot is a two-dimensional scatterplot in which
each RR interval, RR(i), is plotted as a function of
the previous interval RR (i — 1). Pplot analysis is a
new quantitative visual technique that uses a map
shape to provide summary information about the
heart's behavior. For a healthy heart, the cloud of
points represents the shape of a comet oriented along
the line of identity; the dynamics of heart failure is
characterized by a stretched elliptical cloud of points
also along the line of identity. In the case of atrial
fibrillation (AF), the point cloud has a more circular
shape, similar to what happens with a white noise
time series [16].

The use of Poincaré maps is one of the simplest
forms of presenting the phase space of a system, but
they can provide important information about the
dynamics, this method can be applied to any time
series of sufficient length. A Poincaré map is also
called a Lorentz plot, a delay map, or a return map
[17].

Compared to a histogram, Poincaré maps provide
additional information about the variability of a time
series because it displays the correlation between
successive readings of the data. However, standard
(“black and white”’) Poincaré maps have a signifi-
cant limitation: they do not provide information
about the density of data points. The paper proposes
to overcome this limitation by modifying the stand-
ard Poincaré map, which displays the relative fre-
quency of pairs of consecutive data points, by con-
structing a 3D histogram RR(n), RR (n + 1) [18].
Examples of 3D Poincaré maps are given in the be-
low.

However, such 3D Poincaré maps for the entire
time series do not contain information about the
evolution of the system's dynamics over time, and
do not record the time sequence of state changes.
This limitation becomes especially significant when
studying the dynamics of physiological systems,
which are usually non-stationary [16].

The signal files of the operator database are used
in the work. The output heart rate variability is in
binary files. The data files reflect the duration of the
current RR interval (in ms) of the ECG signal.
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This database includes RR interval files for 54
long-term ECG recordings of subjects with normal
sinus rhythm. The original ECG recordings were
obtained with a sampling frequency of 128 Hz, RR
intervals were obtained using automatic analysis
with manual verification and correction.

A standard Poincaré map overcomes one of the
limitations of histograms, namely that a histogram
does not represent correlations between data points.

When constructing a Poincaré map (scat-
terogram), a collection of points (cloud of points or
Poincaré¢ spots) appears, the center of which is locat-
ed on the bisector. Usually, the Poincaré map for RR
intervals has the shape of an ellipse. The distance
from the center to the origin of the coordinate axes
corresponds to the most expected duration of the
cardiac cycle (mode MO0). The deviation of the point
from the bisector shows how much the nth RR inter-
val is shorter or longer than the (r» + 1)th RR interval
[17].

To construct a standard Poincaré map, the fol-
lowing code (Listing 1) was developed in the
MATLAB software environment

Listing 1. Code for constructing a Poincaré map

x1 = RR(1:end-1);

x2 = RR(2:end);
scatter(x1,x2,10,'filled"), grid on
xlabel(RR(n)),
ylabel('RR(n-1)')

title(['Signal ' name])

Examples of the Poincaré map for HRV signals
are shown in Fig. 2.

As can be seen from the images, standard Poin-
caré maps (one color, “black and white”) have a
significant limitation: they do not store information
about the density of data points. With a large num-
ber of data points (up to 10.000 or more), parts of
the image may become completely black and it will
be difficult to get an idea of the density of the distri-
bution of points.

To overcome this limitation, it is advisable to in-
clude the relative frequency of pairs of consecutive
data points in the standard Poincaré map, that is, to
move from the construction of individual points to
the presentation of their empirical distribution in the
form of a three-dimensional histogram.

To construct 3D Poincaré maps, a modified ver-
sion of the dscatter2 function [18] was used, which
returns smoothed data (scatter diagram) for Poincaré
map construction. The input parameters of the func-
tion dscatter2 1 are given by the vectors X and Y
(they must be of the same size). The output parame-
ters of the function are the midpoints of the data
grouping intervals (ctrs1, ctrs2) and the matrix of the
number of data counts () in the grouping intervals.
Program code of the function (Listing 2).

Signal nsr001

RR(n-1)

07 08 09 1 1.1 12 13 14
RR(n)

Signal nsr001

08 |

[

RR(n)

Fig. 2. Examples of Poincaré¢ maps:
on the left n = 10000, on the right n = 60000

Listing 2. Code for constructing a 3D Poincaré maps
function [ctrs1, ctrs2, F] = dscatter2_1(X, Y)
nbins = [40 40];
minx = RRmin; maxx = RRmax;
miny = RRmin; maxy = RRmax;
edges1 = linspace(minx, maxx, nbins(1)+1);
ctrs1 = edges1(1:end-1) + 0.5*diff(edges1);
edges1 = [-Inf edges1(2:end-1) Inf];
edges?2 = linspace(miny, maxy, nbins(2)+1);
ctrs2 = edges2(1:end-1) + 0.5*diff(edges2);
edges? = [-Inf edges2(2:end-1) Inf];

[n, ~] = size(X); bin = zeros(n,2);

[~,~, bin(:,2)] = histcounts(X, edges1);
[~,~, bin(:,1)] = histcounts(Y, edges2);
H = accumarray(bin, 1, nbins([2 1])) ./ n;
G = expsm (H, nbins(2)/lambda);

F = expsm (G', nbins(1)/lambda)’;

The last three lines of the dscatter2 1 function
smooth the histogram using the method and code of
the smoothing function. The color of the Poincaré
map depends on the density of points in the scatter
diagram. Basic calculations and visualization of
heart rate variability dynamics are performed by the
Poincare3D 2Dmap() function. The function re-
ceives a signal consisting of two columns of data: a
vector of time counts, a vector of RR interval counts.
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The subplot command, which creates two sepa-
rate windows, is used for graphical output of the
created figure. The first window with a three-
dimensional coordinate system is intended for dis-
playing the image of a single frame of the Poincaré
map. The second window is designed to display a
fragment of the RR interval signal corresponding to
the specified frame (Listing 3).

Listing 3. The code of the main cycle is the formation
of video frames

k1=1; k2 =find(t>=T,1);

while t(k2)<=t(end)
t1 = t(k1); t2 = t(k2);
t_disp = t(k1:k2); rr_disp = rr(k1:k2);
y1 =rr_disp(1:end-1); y2 = rr_disp(2:end);
[ctrs1, ctrs2,F] = dscatter2_1(y1,y2,nbins);

surf(ctrs1,ctrs2,F,'FaceColor','interp’,'EdgeColor','none");
plot(t_disp, rr_disp, 'r",'LineWidth', 1)
Fr1 = getframe(fig);

writeVideo(vidObj, Fr1);
k1 = find(t >= t1 + Tshift,1); k2 = find(t >= t2 +
Tshift,1);
end
close(vidObj);

The main cycle — the formation of video frames
is carried out as follows: the first lines of the main
cycle calculate the coordinates of the beginning k1
and end k2 counts of the selected data segment. Vec-
tors y1 and y2 form the data for calculating the scat-
tergram.

The Poincaré map is calculated by the function
dscatter2 1().

The output parameters of this function (vectors
ctrsl, ctrs2 and matrix F) are used to construct a
three-dimensional surface by the surf function. The
function getframe getframe (Fig. 3) captures the
internal part of the graphic figure with the identifier
fig, together with the title of the axes, labels and
divisions.

Signal: nsr001 Frame #: 253 time: 53.7 min

0.9

Fig. 3. Three-dimensional Poincaré map

The function write Video(vidObj, Frl) writes da-
ta from the array Frl to the file associated with vid-
Ob;.

At the end of the cycle, the line calculates the
coordinates of the beginning k1l and the end k2 of
the new allocated data segment [18].

The results of the program with one of the sig-
nals are shown below.
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In Fig. 3 the last frame of the video file showing
the 3D Poincaré map is presented.

The dynamical images presented here demon-
strate the type of nonstationarity characterized by
relatively sharp state transitions typically observed
in the output of “free” physiological signals [19].

Dynamic visualization of heart rate variability al-
lows you to observe changes in this parameter over
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time. The perception of visualization results depends
on several values: the number of histogram digits
when constructing a Poincaré map, the angle of vis-
ualization of the Poincaré map, the duration of the
data segment and the degree of their overlap, the
choice of color map.

Conclusion

According to the proactive approach of the new
concept of safety management, an analysis of the
features of the components of the risk management
methodology in the aviation industry was carried out
to identify the human factor component. The human
factor is identified as a source of danger that has a
stochastic component. To increase the reliability of
decision-making regarding the functional state of the
operator as one of the triggers for the occurrence of
a dangerous event in aviation, it is necessary to de-
velop methods that, based on the existing measured
information parameters, will allow to increase their
informativeness without resorting to increasing the
number of measurements. As such methods, the use of
nonlinear dynamics methods is proposed, which allow
to increase the informativeness of the existing cardio
signals due to their processing. Visualization of the
evolution in time of the signals of a complex dynamic
system was developed in the work. Animations based
on density delay maps provide visualization of dynam-
ic properties of complex systems not visible in time
series plots or standard Poincaré maps.

The use of Poincaré maps, as one of the methods
of nonlinear dynamics, allows qualitative and quan-
titative analysis of cardiac signals, which reflects
data variability. For the quantitative study of the
data, it is necessary to match the ellipse to the shape
of the graph by defining the SD1, SD2 descriptors
and the SD1/SD2 ratio. Too low or too high values
of the SD1/SD2 ratio for a biomedical signal have
been suggested to be associated with disease, but
this requires further study.

With the help of Poincaré maps, you can study
not only R-R intervals, but also other signals; thanks
to such studies of biomedical signals, a new interpre-
tation of this method may appear.

Such easy-to-build graphs (“3D —maps™) ob-
tained in the work have an advantage in the imple-
mentation of their construction and can be used to
illustrate such properties as non-stationarity and
multistability, which are important for understanding
the dynamics of physiological control systems in the
presence of destabilizing factors. In addition, anima-
tion can reveal unexpected patterns in the data struc-
ture, which makes this technique useful for explora-
tory research, simplifying hypothesis formation,
developing and testing mathematical/physiological
models.
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Jyubkuii M. I'., XpameBcbkuii P. B., IBanens O. b., Hectepenko K. C.
BUKOPUCTAHHS IHOOPMALIMHUX TEXHOJIOI'TH B CHCTEMAX YIIPABJIIHHS
B ABIAIII

Y sanponornosaniii pobomi ananizyromocst 0CoOMUE0CHI BNPOBAOICEHHSL NPOAKMUBHO20 NIOX00Y 8 asiayii. Y pamkax yboeo
nioxody J0OCLKULL (PAKMOp po32Na0aembCs sIK NPUUUHA BUHUKHEHHsl Hebesneunoi nodii. Ilposedeno ananiz ocobnusocmell
NPULHAMMSL PIUUeHb 3 MEMOK BUSHAYEHHS! MOJICIUBOCHEN NIOGUIEHHS HAOIIHOCMIE NPULIHAMMSL piuiensb 6 asiayii. Ivogipnicmo
BUHUKHEHHsL Hebe3neuHoi nooil, mpueepom Kol € I0OCbKULL (PaKmop, 3anponoHOBAHO BUHAYAMU HA OCHOBI OYIHKU (DYHKYIOHA-
JILHO20 CMAHY ONepamopa 3a iHopmayiiHuMy napamempamu cepyeso-cyOuntoi cucmemu. Y pobomi 3anponoHo8aHo nioxio
00 UBHAYEHHS THOPMAMUBHOCTIE NApaMempis, AKull Oe3n0cepeoHbO 3anexHCUMb 6I0 KUIbKOCHI BUMIPIOSAHb YUX napamvempis.
TTiosuwumu 0ocmogipricms nputiHAMMS pieHb Wooo CMaHy 00 €Kma NPONOHYEMbCA He UWIAXOM 30LIbUIEeHHS KibKOCi
BUMIDIOBAHb, A ULTAXOM 000AMK080I 0OPOOKU 8Xce BUMIDAHUX THEHOPMAYIIHUX napamempis, Mmobmo OmpUMaHHs MOPUHHOT
inpopmayii. Ax npuknad obpobreno pesyrvmamu 8umiptosansb RR-inmepeanie enexmpokapoiozpamu Memooamu HemiHiuHoT
ounamixu, a came kapmamu Ilyankape.

3acmocysanisi MemoOis HeniHIHOT OUHAMIKU 00 6diCe BUMIPSIHUX NAPAMEMPI6 cepyeo-CYOUHHOL cucmemu Moice 3a0e3ne-
yumu 30LbUeHHs 00cs2y tHghopmayii npo cman onepamopa ma 0amu Ho8e PO3YMIHHS 3MiH NAPAMEmpI8 cepyeso-CyOUHHOT
cucmemi npuU NPUXOBAHUX DIZIONOIUHUX CIMAHAX, 3a0e3neuyiouu 000amKo6a NPOCHOCIMUYHA THhopmayis ma OONOBHEHHsL 00
MpaouyitiHo2o auaizy 8 4acoegii ma yacmomuiti oonacmsix. Memoou HeniHiiHOl OUHAMIKU 0aromb 000aMKO8Y | He3AIEHCHY
iHopmayiro npo izionociuny, a MaKodic NPo NPUXoEary Qizionoeiuny 6ionosios Ha decmabinizyoui hakmopu. ¥ pobomi na
npuKnadi 0bpobku edxce icHyrOuUX iHopmayitinux napamempie RR-inmepeanie enekmporapoioepamu 30iCHEHO IX NPOeKyiio y
gazosomy npocmopi 3a donomoecoro kapm Ilyankpe Ons nidguwjerHs IHPOPMAMUBHOCME 6apPIAOETLHOCE CepYedoeo PUMMSY.
Inmepeanu RR npedcmasneni y suenadi uacosux paoie, a kapma Ilyankape 0036073€ oyiHumu OUHAMIKY cepyesux CKOpo4eHsb Ha
OCHOGI cnpoujeno2o 60y008y8anHs haz068020 NPOCMOPY.

Buxopucmannua kapm Ilyankape, sik 00H020 3 MemoOi6 HeMHIUHOI OUHAMIKY, 003607I5€ NPOBOOUMU AKICHUL | KUTbKICHULL
auaniz cepyesux cueHais, wo eidoopasicae minmueicms oanux. Ompumani 8 pobomi «3D xkapmu [lyauxapey maroms nepesazy 8
peanizayii ix no6y0o8u i Moxcyms 6ymu 6UKOPUCMAHi OISl iNIOCMpayii MaKux 61acmugocmeli, K HeCMAayioHaApHICMb i MyTomi-
CMABILHICIb, BANCIUBUX ONSL PO3YMIHHSL OUHAMIKU cucmemu Qizionociunol pe2yisyii 3a HasigHocmi decmabinizyloul hakxmopu.
Kpim moeo, moocna euagumu Hecnodigami 3aKOHOMIPHOCII 8 CIPYKMYPI OGHUX, WO poOUmb yell Memoo KOPUCHUM O O0CTIO-
HUYBKUX OOCTIONCEHD, CIPOWYIOUU (POPMYBAHHSL 2INOMe3, PO3pPOOKY Ma NepesipKy MAmemMamuiHUX/Qi3ionoiunux mooenet

KntouoBi cnoBa: 6e3neka NonboTiB, pU3NKK, MOACHKIN dakTop, GioMeanyHi NOKa3HWMKK, MPOLLEC BUMIPIOBAHHS, Kiflb-
KiCHe OLliHIOBaHHS.
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Lutskyi M., Hraschevskiy R., Ivanets O., Nesrernko K.
INFORMATION TECHNOLOGIES FOR MANAGING AVIATION SYSTEMS

The proposed work analyzes the peculiarities of implementing a proactive approach in aviation. Within the frame-
work of this approach, the human factor is considered as the cause of the occurrence of a dangerous event. An analysis
of decision-making features was carried out to determine the possibilities of increasing the reliability of decision-
making in aviation. The probability of occurrence of a dangerous event, the trigger of which is the human factor, is
proposed to be determined based on the assessment of the functional state of the operator based on the information
parameters of the cardiovascular system. The paper proposes an approach to determining the informativeness of pa-
rameters that directly depend on the number of measurements of these parameters. It is proposed to increase the relia-
bility of decision-making regarding the state of the object not by increasing the number of measurements, but by addi-
tional processing of already measured information parameters, i.e. obtaining secondary information. As an example,
the results of measurements of the RR intervals of the electrocardiogram by methods of nonlinear dynamics, namely
Poincare maps, were processed. The use of nonlinear dynamics methods to the already measured parameters of the
cardiovascular system can provide an increase in the amount of information about the state of the operator and provide
a new understanding of changes in the parameters of the cardiovascular system in hidden physiological states, provid-
ing additional prognostic information and complementing the traditional analysis in the time and frequency domains.
The methods of nonlinear dynamics provide additional and independent information about the physiological, as well as
about the hidden physiological response to the destabilizing factors. In the paper, as an example for processing already
existing informational parameters of RR intervals of the electrocardiogram, their projection in phase space was carried
out using Poincre maps to increase the informativeness of heart rate variability \. RR intervals are presented as a time
series, and a Poincaré map allows the estimation of heartbeat dynamics based on a simplified phase space embedding.
The use of Poincaré maps, as one of the methods of nonlinear dynamics, allows qualitative and quantitative analysis of
cardiac signals, which reflects data variability. The “3D Poincaré map” obtained in the work have an advantage in the
implementation of their construction and can be used to illustrate such properties as non-stationarity and multistability,
which are important for understanding the dynamics of the physiological regulation system in the presence of destabi-
lizing factors. In addition, it is possible to reveal unexpected regularities in the structure of the data, which makes this
method useful for research studies, simplifying the formation of hypotheses, the development and verification of mathe-
matical/physiological models.

Keywords: flight safety, risks, human factor, biomedical indicators, measurement process, quantitative assessment.
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