312
Наукоємні технології № 4(52), 2021
311
Наукоємні технології № 4(52), 2021

Інформаційні технології, кібербезпека
[image: image1.wmf]
DOI: 10.18372/2310-5461.52.16385
УДК 004.658

Anna Dadonova, Postgraduate student

National Aviation University

orcid.org/0000-0002-6995-8300

e-mail: anna.dadonova@ukr.net;

Ivan Yakoviv, Postgraduate student
National Aviation University

orcid.org/0000-0003-1455-5747

e-mail: yakoviviv@gmail.com;

Valerii Kozlovskyi,
 Doctor of Technical Sciences, Professor

National Aviation University

orcid.org/0000-0002-8301-5501

e-mail: vvkzeos@gmail.com
METHOD OF PROTECTION OF DATABASE MANAGEMENT
SYSTEMS AGAINST SQL-IDENTIFIER INJECTION ATTACKS
Introduction
 In the 21st century, there has been a significant rise in dependency on the Internet for daily activities. Web applications such as online banking, web-based emails, social networking, and many more services have become an instant means of communication.
These web applications and the data to which they have access are often targeted using malicious attacks, including SQL (Structured Query Language) Injection Attacks (from now on referenced as SQLIAs), which may cause serious damage. In particular, attackers use SQLIAs to target interactive web applications that incorporate database services. In a SQLIA, an attacker can insert malicious SQL code as an input to perform unauthorized database operations, which could potentially jeopardize the privacy, integrity, and security of the users.
The aim of the work

The purpose of this work is to develop an unconventional approach for solving SQL vulnerabilities and thwarting SQLIAs. Specifically, we are presenting a new method of protecting the database management system from SQL injection attacks.

Analysis of recent research and publications

Since SQL works across multiple database platforms, and is designed to allow people to access information, it is inherently vulnerable. Due to lack of sufficient resources, and knowledge about attacker’s intentions, some companies incorporate security in the source code of web applications.

Some authors used tools such as Static Analysis Framework for detecting SQL injection Vulnerabilities (SAFELI), String constraint solver (SUSHI), Dynamic Candidate Evaluations for Automatic Prevention of SQL Injection attacks (CANDID) in “Preventing SQL Injection Attack Based on Machine Learning”. by Cheon, Eun Hong, Zhongyue Huang, and Yon Sik Lee and “Information the oretic detection of sol injection attacks” by Shahriar, Hossain, and Mohammad Zulkernine. All of the above-mentioned methods were implemented in software and gave good performance, but we also want to explore new solutions for preventing SQL injection Attacks.

Definition of SQL-IAs
SQL (an abbreviation for “Structured Query Language”) is a high-level language, the basis of which is heavily dependent upon relational algebra and relational Calculus [1]. SQL is made up of declarative elements such as queries, expressions, clauses, statements, etc. It is widely known for being a powerful query language.
The basic difference between a query language (QL) and a programming language (PL) is that QLs are not expected to be Turing complete, they are not expected to be used for complex calculations, and they have a very good efficiency for handling large data sets.

A SQL injection attack is a type of code injection attack. This exploit is carried out by adding SQL code in the user’s input to gain access to unauthorized resources. SQLIAs may occur when the query is built by concatenating the user’s input, such as data entered into a web form, with unintended data, including URL (Uniform Resource Locator) data, data obtained from cookies etc., without proper validation [2]. The contributors to Rain Forest Puppy, a black-hat community website, were the first ones to ever publish information about SQLIAs in their paper “NT Web Technology Vulnerabilities”. SQL injection is one of the favorite attacks for many cybercriminals because it can be executed remotely, and the attack surface is obvious. Commercially available vulnerability detection tools are accessible to attackers as well, and with help of these resources, the attacker could find loopholes in a security system and web vulnerabilities in a mere fraction of a second. SQL is a very flexible language, and these attacks can be extremely stealthy and could pass through firewalls and intrusion prevention systems very with little effort [3].
According to the 2016 Vulnerability Statistics Report, by edgescan, 82 % of vulnerability factors arise from the application layer of the network, which is a high-risk target. With respect to databases up to 95 % of the critical risk factors were found in the web application layer. Examples of SQLIAs consist of the 2011 hack of the security firm HB Gray Federal, which allowed attackers to steal passwords for company’s corporate emails and more than 60.000 emails were exposed online [4]. A SQL Injection attack vector was used in hacking the Chinese toy company VTE, in which the information of around 4.9 million people was stolen. The famous Albert Gonzalez attack, including the hacking of
7-Eleven, Hannaford Brothers, and Heartland payment systems included SQL injection as the active attack vector [5]. The ease with which a SQL attack can be conducted and the extent of damage that it causes makes SQL Injection a preferable choice for hackers. Defense against SQLIAs requires knowing how these vulnerabilities prevail in the system and how they are taken advantage of by hackers to gain profit. For a SQLIA to affect a system, the attacker needs to know about the injectable parameters of the system (i.e. he needs to reconnoiter the vulnerabilities present in the 11 web application and look for the injectable location for forming an attack which would yield the most promise). The attacker must then formulate an attack that is stealthy enough to avoid detection from firewalls and protection systems. He must then garner as much data as he can from the affected system so that he can make the most of victim’s data. SQLIAs are caused mainly due to the lack syntax constraints of some programming languages and poor programming practices. Four different categories of SQLIA vectors are described in [6] and summarized below:

1. SQL manipulation: In this attack, the clause following the “where” clause is manipulated to produce behavior not expected by the database programmer (e.g. supplying the where clause with a union statement can provide access to data for which the user should not have access.)

2. Code injection: In this attack, a new SQL statement is concatenated to the previously present SQL statement (e.g. appending an execute statement at the end of a general statement). A limitation of this kind of SQLIA is that the database must support multiple SQL statements per query [7].

3. Function call injection: This is the secondary injection attack wherein the attacker uses the inbuilt functions of the database to cause an SQLIA that manipulates the data according to the needs of the attacker.

4. Buffer overflow attack: In this case, the data entered as input would heavily exceed the memory bounds of the planned storage space. It would overwrite the data pointers and could also be used to point towards an executable causing the system to execute any file of the attacker’s intent.

Definition of SQL-IDIAs

SQL-IDIA-vulnerable applications are applications which could form a valid SQL statement by using concatenating a user-input identifier into the statement.

Definition 1. An application is vulnerable to a SQL-IDIA if the application constructs a SQL statement S with the aid of concatenating an untrusted input i into S and there exists an identifier x such that concatenating x into S in place of i causes S to be a valid SQL statement [8].

For instance, the application excerpted in
fig. 1, a is vulnerable to a SQL-IDIA due to fact it can create a valid SQL statement by concatenating an identifier into the statement, as shown in fig. 1, b.

A SQL-IDIA occurs when a SQL-IDIA-vulnerable application — which would produce a valid SQL statement by concatenating a user-input identifier into the statement — instead concatenates a non-identifier, or an invalid identifier, into the statement in place of a valid identifier.

Definition 2. A SQL-IDIA occurs in a
SQL-IDIA-vulnerable application if the concatenated input i either is not an identifier or is an identifier that, when concatenated into S, makes S an invalid SQL statement [9].
String sql = "SELECT * FROM Contact ORDER BY " + user Input; Statement stmt = conn. create Statement();

Result Set rs = stmt. execute Query (sql);

a — An example Java program vulnerable to SQL-IDIAs
SELECT * FROM Contact ORDER BY first Name

b — The output SQL program when the user Input is a valid column name
(CASE WHEN (SELECT COUNT(*) FROM Demographic WHERE first Name='John' AND last Name

='Doe') > 0 THEN Contact. last Name ELSE Contact. first Name END)

c — A malicious input through the user Input to perform a SQL-IDIA
Fig. 1. An order-by-based SQL-IDIA

For example, a SQL-IDIA occurs when the
SQL-IDIA-vulnerable application excerpted in fig. 1a is provided the input shown in fig. 1c. In this case the untrusted input (Fig. 1, c) is concatenated into the output SQL statement at a position in which an identifier could be valid, yet the untrusted input is not a valid identifier; hence, a SQL-IDIA has
occurred.

Definition 2 also considers invalid-identifier injections to be SQL-IDIAs because such injections can leak sensitive database-schema information. For example, an attacker might input a nonexistent column name into the application shown in fig. 1, a to cause the DBMS (Database Management System) to raise an exception when executing the generated invalid SQL statement. As with traditional SQLIAs, in cases in which the DBMS raises an exception, the application may output information contained in the exception object to leak database schema such as the database name or the SQL statement being executed.

String sql = "SELECT * FROM Customer WHERE " + userInput1 + " BETWEEN ? AND ?"; Prepared Statement stmt = conn. prepare Statement (sql);

stmt. setInt(1, userInput2); stmt. setInt(2, userInput3); Result Set rs = stmt.execute Query();

a — An example Java program vulnerable to SQL-IDIAs
age BETWEEN ? AND ? UNION SELECT * FROM Admin--

b — A malicious input through the userInput1 to perform a SQL-IDIA

SELECT * FROM Customer WHERE age BETWEEN ? AND ? UNION SELECT * FROM Admin –
BETWEEN ? AND ?

c — The output SQL program with the malicious input (b)

Fig. 2. A column-name-based SQL-IDIA

Although this topic focuses on SQL, identifier-injection attacks are possible in other languages such as XML, JavaScript, PHP, and Python.

Additional Examples

To provide additional familiarity with
SQL-IDIAs, we next consider two additional examples, shown in Fig. 2 and 3. Both examples, as well as the example shown in fig. 1, are abbreviated and simplified versions of actual Java applications found by our automated Git Hub analysis tool.

Fig. 2, a shows a program that is vulnerable to a column-name-based SQL-IDIA. In this program, two user-inputs fill placeholders using prepared statements; therefore, SQLIAs are not possible through these inputs. However, a column-name parameter (i.e., userInput1) is concatenated into the SQL statement.
In normal cases, this program expects the concatenated parameter to be a valid column name [10]. However, attackers can perform SQL-IDIAs by injecting carefully crafted SQL statements. For instance, the program (Fig. 2, a) outputs the SQL code shown in fig. 2, c with the malicious input shown in Fig. 2, b. This output program can maliciously return all entries from the Admin table (assuming the Customer and Admin tables have the same attributes). The malicious input is not a valid column in the Customer table, so Definition 2 correctly considers this input to be a SQL-IDIA.
Fig. 3, a shows a program that is vulnerable to a table-name-based SQL-IDIA. This program concatenates a table-name parameter (i.e., user Input) into a SQL statement and executes this statement using the standard JDBC (Java Database Connectivity) execute-update function.
If an attacker injects the malicious input presented in fig. 3, b through the table-name parameter, the program (fig. 3, a) outputs the two consecutive SQL statements shown in fig. 3, c. These statements cause two different attacks. The first attack adds a new user to the Customer table as an administrator by changing the hardcoded admin value. The second attack — an example of piggy-backing attacks — deletes all entries from the Admin table; the malicious input presented in fig. 3, b causes the Java program to execute multiple queries at once.
String sql = "INSERT INTO " + user Input + "(isAdmin) VALUES ('False')"; Statement stmt = conn. create Statement();

stmt.executeUpdate(sql);

a — A SQL-IDIA-vulnerable program through the table name

Customer (name, is Admin) VALUES ('Mallory', 'True'); DELETE FROM Admin; —
b — A malicious input through the user Input to perform SQL-IDIAs

INSERT INTO Customer (name, is Admin) VALUES ('Mallory', 'True'); DELETE FROM Admin; — (is Admin) VALUES ('False')

c — The output SQL program with the malicious input (b)

Fig. 3. A table-name-based SQL-IDIA
The existing JDBC API attempts to mitigate piggy-backing attacks by requiring the execute-update function to only execute one SQL statement at a time. The API provides different functions to execute multiple statements as a batch [11; 12; 13]. However, in practice, some JDBC implementations do not faithfully follow the API specifications. We tested this SQL-IDIA with three different JDBC implementations: H2, SQLite, and MySQL JDBC drivers. Our results showed that these drivers, except the MySQL driver, are vulnerable to this attack. On the other hand, Definition 2 correctly classifies the input shown in fig. 3b as an attack because this input is not a valid table in the database.

To prevent SQL-IDIAs, we introduce the following two functions that can be added to the prepared-statement APIs (e.g., Java JDBC, PHP PDO).

· set Column Name (int parameter Index, String columnName): takes a column name and its index as arguments.
· set Table Name (int parameter Index, String tableName): takes a table name and its index as argument.

A possible implementation of these functions consists of three main steps. First, these functions can be added to the prepared-statement API and its corresponding database driver (e.g., the MySQL JDBC Driver). The implementation of these new functions in this step is like the existing prepared-statement functions, such as setString. Typically, when these new functions are called, their parameters can be stored in an array with parameter indices. These indices indicate the placeholder positions in SQL statements.

Second, the SQL-statement preparation phase for identifiers can be implemented in the DBMS. The standard preparation phase contains two main steps: (1) parsing the SQL statement, and (2) generating an execution plan. The implementation of the parsing step may require changing the SQL syntax of the database in some cases. For example, the syntax does not need to be changed if the databases allow placeholders anywhere in the SQL-statement. The syntax must be modified to allow placeholders for table and columns if the database syntax only allows certain clauses to have placeholders.

The execution-plan-generation step can include schema verification and statement optimization. In the schema verification, the DBMS checks whether the table and column names in the SQL-statements are valid. For example, given the statement SELECT id FROM Customer, the DBMS checks whether the Customer table is in the database and id is an attribute of the Customer table. Although the DBMS can still verify and optimize the non-parameterized table and column names in this step, the verification of parameterized table and column names must be performed while executing the prepared statement.

The last step can involve filling the placeholders with identifiers while executing the pre- pared statement. This step starts by checking whether dynamic identifiers belong to the schema. The checking operation is straightforward in the case of column names because the DBMS only needs to ensure that a given column belongs to an appropriate table. Dynamically checking table names requires further verification including verifying whether the table belongs to the schema as well as ensuring that the already existing attributes in the SQL statement belong to the given table. Once the verification is complete, the DBMS can create an expression for each parameterized identifier and place these expressions into the prepared statement.

We only considered table and column names in our extended API because our GitHub analysis showed that 96 % of the concatenated identifiers were table and column names.
	[image: image2.png]Application

"SELECT * FROM [
WHERE age= [

DBMS

e -]

Prep. Statements

=

1
*SELECT * FROM (2] WHERE age= (=]

7
S—

	[image: image3.png]Application H

"SELECT* FROM " + [
" WHERE age= [

DBMS :

Prep. Statements

"SELECT * FROM ID -- WHERE age=""

I
SR——

	a — SQL-IDIAs with the existing
prepared-statement APIs
	b — Preventing SQL-IDIAs with the extended
prepared-statement API that has identifier
capabilities

Fig. 4. Preventing SQL-IDIAs with the extended prepared- statement API
Benefits of the Extended API

An illustration of the systems that are vulnerable to SQL-IDIAs due to the usage of existing prepared-statement APIs is shown in fig. 4, a. As can be seen, an application (1) takes literals and identifiers as inputs, (2) fills placeholders with literals using prepared statements, and (3) concatenates identifiers to construct SQL statements. The identifier concatenation causes applications to have
SQL-IDIA vulnerabilities.

As illustrated in fig. 1, b, the extended API prevents SQL-IDIAs by filling place- holders with identifiers using prepared statements. Applications can create placeholders for identifiers using the extended prepared-statement API, and the API only allows these place- holders to be filled with valid identifiers. Thus, attackers are not able to perform SQL-IDIAs. The extended API prevents DBMSs from leaking sensitive schema information by per- forming a default operation when the input column or table name does not exist in the database. For example, if a parameterized column name is used in an order-by clause and the column name is invalid, the DBMS will order the results by the first column in the table.

In addition, these extended API functions do not suffer from the drawbacks of input- sanitation-based approaches. For example, incorrect updates to whitelists or blacklists may introduce false positives or false negatives. The extended API functions eliminate such false positives or negatives by dynamically verifying given table and column names in databases before filling placeholders.

Empirical Evaluation

A prototype of the extended prepared-statement API was implemented, and the implementation was compared with an existing equivalent prepared-statement function as well as ad hoc whitelisting solutions.

Implementation

We implemented a prototype of the setColumnName function into the H2 JDBC library. H2 is an open-source relational database management system that is written in Java.

The implementation enables order-by clauses to have column names through the new set Column Name function. In our implementation, we have not modified H2’s SQL syntax because it allows order-by clauses to have placeholders for values; in fact, order-by clauses can take numerical column indices as parameters with prepared statements.
Fig. 5 shows a program that employs the implemented set Column Name function. This program selects entries from a table and orders them by the given column name. At prepare time, when the prepare-statement function is executed, the H2 DBMS parses the SQL statement and creates a query structure having a placeholder for the order-by parameter.
String sql = "SELECT * FROM Test Table WHERE col2 < 100 ORDER BY ? ASC"; Prepared Statement stmt = conn. prepare Statement (sql); stmt. set Column Name 1, userInput);

ResultSet rs = stmt. execute Query();

Fig. 5. Usage of the new set Column Name function
When the set Column Name is executed, the DBMS stores the column name parameter with its index in an array. Once the execute-query function is executed, the DBMS first validates the column name. If the given column name is invalid, i.e., does not belong to the table, the DBMS sorts the results by the first column in the table to prevent information-leakage attacks through error messages. If the column is valid, the DBMS (1) dynamically creates a column expression, (2) appends this expression to the query structure, and (3) executes the query.

Experimental Setup

We compared our set Column Name implementation with three different implementations: an existing prepared-statement function and two different ad hoc implementations. Our implementation executes the query shown in fig. 5, and the three other implementations execute equivalent queries. Hence, all the implementations return the same result-set in the same order when the input is the same.

To establish a baseline, we used the existing prepared-statement API’s setInt function that takes an int-literal as a parameter. By filling the placeholder shown in fig. 5 with a column index using the setInt function, we were able to create an equivalent query with set Column Name. We could not use other existing prepared-statement functions because an equivalent query cannot be created with any other functions. We also compared our implementation with two different ad hoc solutions. The first ad hoc implementation uses a static whitelist (i.e., a hash set that contains all column names in the table). The second ad hoc implementation employs a dynamic-whitelist by first querying whether the given column name exists in the database and then executing the actual query.

The setColumnName and setInt implementations prepare a statement once and execute the statement 100 times. The ad hoc implementations prepare and execute the statement 100 times because column names had to be concatenated into queries. In each execution, we measured the execution time, that is, the real-time.
For the first two prepared-statement implementations, the real-time is measured from beginning to setting placeholders and executing the query until finishing obtaining a result-set from the database. For the ad hoc implementations, the real-time is measured from beginning to preparing a statement and executing the query until finishing obtaining a result-set from the database.

We tested all four implementations using a uniform environment. The testing database has a table that contains 100 columns and 1000 rows. Each cell of the table was filled with a random number between 0 and 1000. These random numbers were generated us ing the standard Java random number library. We used the H2 DBMS to implement the database-relevant operations. All experiments were performed on a Mac Book Pro laptop that runs mac OS Sierra version 10.12.6 with 16 GB of memory and a 2.2GHz Intel quad-core i 7 processor.

We conducted three sets of experiments to test the performance of the implementations. In the first experiment, each implementation was given the same column name or column index. In the second experiment, a randomly chosen valid column name or index was given to each implementation in each run, to eliminate caching. In the last experiment, each implementation was given a “bad” input, meaning a randomly chosen column that is not an attribute of the table.
Table
Average execution times of the implementations over 100 runs

	
	
	Execution Time (ms)
	

	Implementation
	Same Input
	Random Input
	Bad Input

	New setColumnName
	2.11
	2.25
	2.04

	Existing setInt
	2.13
	2.29
	1.11

	Static Whitelist
	2.08
	2.18
	2.29

	Dynamic Whitelist
	2.37
	4.73
	4.07

Experimental Results

Table summarizes the performance results of the four implementations. Our implementation has no extra performance overhead over the existing prepared-statement setInt function when the input is the same or a random input is provided. For the bad inputs, setInt outperformed set Column Name because setInt does not retrieve a result set from the table and instead throws an exception containing sensitive schema information. In contrast, our implementation returns a result set that is sorted by the first column in the table to prevent information-leakage attacks.

Conclusions

In all experiments, the new set Column Name function outperformed the dynamic-whitelist implementation. The static-whitelist implementation slightly outperformed the new set column name function in two experiments. Although this ad hoc approach has a slight performance advantage, whitelisting approaches may introduce nontrivial complexities into application code and may lead to false positives.
To summarize, filling placeholders with column names (1) is practical and efficient as compared to the existing ad hoc approaches, (2) does not introduce extra performance overheads as compared to the existing prepared-statement functions, and (3) is effective against SQL-IDIAs.
ЛІТЕРАТУРА

[1] D. S. Dakun Shen, Ian Markwood and Y. Liu, “Virtual safe: Unauthorized walking behavior detection for mobile devices,” IEEE Transactions on Mobile Computing, 2018 (eng).

[2] OWASP, “Owasp top 10 – 2017 The ten most critical web application security risks.” https://www.owasp.org/index.php/Category: OWASP Top Ten Project, 2017 (eng).

[3] J. A. Ligatti, D. Goldgof, C. Cetin, and J.-B. Subils, “Systems and methods for anonymous authentication using multiple devices,” June 28 2016. US Patent 9,380,058 (eng).

[4] C. Cetin, J. Ligatti, and D. Goldgof, “SQL-Identifier injection attacks,” in 2019 IEEE Conference on Communications and Network Security (CNS) (IEEE CNS 2019), 2019 (eng).
[5] D. Watson, “Web application attacks,” Network Security, vol. 2007, no. 10, pp. 10–14, 2007 (eng).

[6] W. G. Halfond, J. Viegas, A. Orso, et al., “A classification of sql-injection attacks and countermeasures,” in Proceedings of the IEEE International Symposium on Secure Software Engineering, vol. 1, pp. 13–15, IEEE, 2006 (eng).

[7] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection attacks,” in Proceedings of the International Conference on Applied Cryptography and Network Security, pp. 292–302, 2004 (eng).

[8] D. Ray and J. Ligatti, “Defining injection attacks,” in Proceedings of the 17th International Infomation Security Conference, pp. 425–441, 2014 (eng).

[9] J. Grossman, S. Fogie, R. Hansen, A. Rager, and
P. D. Petkov, XSS attacks: cross site scripting
exploits and defense. Syngress, 2007 (eng).

[10] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web vulnerability scanning tools for sql injection and xss attacks,” in 13th Pacific Rim international symposium on dependable computing (PRDC 2007), pp. 365–372, IEEE, 2007 (eng).
[11] B. Eshete, A. Villafiorita, and K. Weldemariam, “Early detection of security misconfiguration vulnerabilities in web applications,” in 2011 Sixth International Conference on Availability, Reliability and Security, pp. 169–174, IEEE, 2011 (eng).
[12] C. Joshi and U. K. Singh, “Security testing and assessment of vulnerability scannersin quest of current information security landscape,” International Journal of Computer Applications, vol. 145, no. 2, pp. 1–7, 2016 (eng).
[13] C. Nagy and A. Cleve, “A static code smell detector for SQL queries embedded in java code,” in Proceedings of the IEEE International Working Conference on Source Code Analysis and Manipulation, pp. 147–152, 2017 (eng).

Дадонова А. Д., Яковів І. В., Козловський В. В.

МЕТОД ЗАХИСТУ СИСТЕМ УПРАВЛІННЯ БАЗАМИ ДАНИХ ВІД АТАКИ SQL-ІН’ЄКЦІЇ НА ІДЕНТИФІКАТОР

У статті проведено огляд атак SQL-ін’єкції та SQL-ін'єкції на ідентифікатор у системах управління базами даних, визначено їх природу, загрози, які вони несуть, а також види цих атак. Також висвітлено новий метод захисту систем управління базами даних від атаки SQL-ін’єкції на ідентифікатор. Запропоноване рішення — функції, які можна додати до підготовлених операторів API: setColumnName: використовує назву стовпця та його індекс як аргументи та setTableName: використовує назву таблиці та його індекс як аргументи. Цей метод дозволяє підготувати оператори для заповнення плейсхолдерів іменами таблиць і стовпців, запобігає SQL-IDIA, не пропускає інформацію про схему, не має обмежень, які мають підходи, засновані на санітації вводу. Ці дві функції допомагають запобіганню системам управлінням бази даних від витоку конфіденційної інформації про базу даних, виконуючи операцію за замовчуванням, коли ім’я вхідного стовпця або таблиці не існує в базі даних. Наприклад, якщо ім’я стовпця використовується в певній функції і ім’я стовпця є недійсним, система управлінням бази даних упорядкуватиме результати за першим стовпцем таблиці. Ми розглядали лише назви таблиць і стовпців у нашому розширеному API, оскільки аналіз GitHub показав, що 96% конкатенованих ідентифікаторів були іменами таблиць і стовпців. У всіх експериментах нова функція setColumnName перевершила реалізацію динамічного білого списку. У двох експериментах реалізація статичного білого списку дещо перевершила функцію імені нового набору стовпців. Хоча цей спеціальний підхід має невелику перевагу в продуктивності, підходи до створення білого списку можуть внести нетривіальні складності в код програми та призвести до помилкових результатів. Нова функція setColumnName успішно запобігла всім цим атакам. Заповнення плейсхолдерів іменами стовпців є практичним та ефективним у порівнянні з існуючими спеціальними підходами, не створює додаткових витрат у порівнянні з існуючими функціями підготовленого оператора, і ефективний проти атак SQL-ін'єкції на ідентифікатор.

Ключові слова: SQL-ін’єкція; SQL-IDIA; СУБД; ідентифікатор; база даних.

Dadonova A., Yakoviv I., Kozlovskyi V.

METHOD OF PROTECTION OF DATABASE MANAGEMENT SYSTEMS AGAINST SQL-IDENTIFIER INJECTION ATTACKS
The article reviews SQL injection and SQL identifier injection attacks in database management systems, identifies their nature, the threats they pose, and the types of these attacks. A new method of protecting database management systems from SQL identifier injection attacks is also covered. Proposed solution are functions that can be added to the prepared API statements: setColumnName: uses the column name and its index as arguments and setTableName: uses the table name and its index as arguments. This method allows you to prepare operators to fill placeholders with table and column names, prevents SQL-IDIA, does not skip schema information, has no restrictions on input-based sanitation approaches. These two features help prevent database management systems from leaking confidential database information by performing a default operation when the input column or table name does not exist in the database. For example, if a column name is used in a particular function and the column name is invalid, the database management system will sort the results by the first column of the table. Only the table and column names in our advanced API were examined, as GitHub analysis showed that 96% of concatenated IDs were table and column names. In all experiments, the new setColumnName feature surpassed the implementation of dynamic whitelisting. In two experiments, the implementation of a static whitelist slightly exceeded the name function of the new set of columns. Although this special approach has little performance advantage, whitelisting approaches can add non-trivial complexity to program code and lead to erroneous results. The new setColumnName feature has successfully prevented all these attacks. Filling placeholders with column names is practical and effective compared to existing special approaches, does not create additional costs compared to the existing functions of the trained operator, and is effective against SQL identifier injection attack.

Keywords: SQL injection; SQL-IDIA; DBMS; identifier; data base.
Стаття надійшла до редакції 01.05.2021 р.

Прийнято до друку 09.06.2021 р.

_1448538162.unknown

