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Introduction

Although automatic speech recognition systems
have dramatically improved in recent decades,
speech recognition accuracy still significantly
degrades in noisy environments. While many algo-
rithms have been developed to deal with this prob-
lem, they tend to be more efective in stationary noise
such as white or pink noise than in the presence of
more realistic degradations such as background mu-
sic, background speech, and reverberation. At the
same time, it is widely observed that the human
auditory system retains relatively good performance
in the same environments.

Problem statement

The goal of this thesis is to use mathematical rep-
resentations that are motivated by human auditory
processing to improve the accuracy of automatic
speech recognition systems. Throughout this work
we propose a number of signal processing algo-
rithms that are motivated by these observations and
can be realized in a computationally efficient fashion
using real-time online processing. We demonstrate
that these approaches are efficient in improving
speech recognition accuracy in the presence of
various types of noisy and reverberant environments.

Comparative Analysis of Speech Recognition
Algorithms in UAV Voice Control System

The Frequency scales describe how the physical
frequency of an incoming signal is related to the rep-
resentation of that frequency by the human auditory
system. In general, the peripheral auditory system
can be modeled as a bank of bandpass filters, of ap-
proximately constant bandwidth at low frequencies
and of a bandwidth that increases in rough propor-
tion to frequency at higher frequencies. Because
dillerent psychoacoustical techniques provide some-

what different estimates of the bandwidth of the
auditory filters, several different frequency scales
have been developed to fit the psychophysical data.
Some of the widely used frequency scales include
the MEL scale, the BARK scale, and the ERB
(Equivalent rectangular bandwidth) scale. The popu-
lar Mel Frequency Cepstral Coefficients (MFCCs)
incorporate the MEL scale, which is represented by
the following equation:

Mel(f)= 259510g(1+7—{;0j.

The MEL scale that was proposed by Stevens de-
scribes how a listener judges the distance between
pitches (Fig. 1).

The reference point is obtained by defining a
1000 Hz tone 40 dB above the listener’s threshold to
be 1000 mels.

Another frequency scale, called the Bark scale,
was proposed by Zwicker:

7 2
Bark( f')=13arctan(0,00076 3.5arctan| —— | .
ar (f) arc an( f)+ arc an(7500J

Frequency relation is based on a similar trans-
formation given by Schroeder:

(Y
Q(f) 611{600{600) J

More recently, Moore and Glasberg proposed the
ERB (Equivalent Rectangular Bandwidth) scale
modifying Zwicker’s loudness model.

The ERB scale is a measure that gives an ap-
proximation to the bandwidth of filters in human
hearing using rectangular bandpass filters; several
different approximations of the ERB scale exist.

The following is one of such approximations re-
lating the ERB and the frequency f:

Lavrynenko O., Konakhovych G., Bakhtiiarov D., 2018



138

HaykoemHi TexHonorii Ne 2(38), 2018

ERB(f):11.17log(1+ 16.065/ )

f+14678.49

Fig. 1 compares the three different frequency
scales in the range between 100 Hz and 8000 Hz. It
can be seen that they describe very similar relation-
ships between frequency and its representation by
the auditory system [1].

Comparison of Three Different Frequency Scalings
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Fig. 1. Comparison of the MEL, Bark,
and ERB frequency scales

Auditory nonlinearity is related to how humans
process intensity and perceive loudness. The most
direct characterization of the auditory nonlinearity is
through the use of physiological measurements of
the the average firing rates of fibers of the auditory
nerve, measured as a function of the intensity of a
pure-tone input signal at a specified frequency. As
shown in Fig. 2, this relationship is characterized by
an auditory threshold and a saturation point. The
curves in Fig. 2 are obtained using the auditory
model developed by Heinz [2].

The rate respense curve in a human
200

180

Another common relationship used to relate in-
tensity to loudness in hearing is the logarithmic
curve, which was originally proposed by Fechner to
relate the intensity-discrimination results of Weber
to a psychophysical transfer function. MFCC fea-
tures, for example, use a logarithmic function to re-
late input intensity to putative loudness, and the
definition of sound pressure level (SPL) is also
based on the logarithmic transformation:

Pre
The commonly-used value for the reference pres-
sure p,. is 20pPa, which was once considered to

be the threshold of human hearing, when the
definition was first established [3].

In Fig. 3, we compare these nonlinearities. In ad-
dition to the nonlinearities we included another
power-law nonlinearity which is an approximation
to the physiological model of Heinz et al. between 0
and 50 dB SPL in the Minimum Mean Square Error
(MMSE) sense. In this approximation, the estimated
power coefficient is around 1/10.
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Fig. 2. The rate-intensity function of the human auditory

system as predicted by the model of Heinz et al. for the
auditory-nerve response to sound

Another way of representing auditory nonlinear-
ity is based on psychophysics. One of the well-
known psychophysical rules is Steven’s power law,
which relates intensity and perceived loudness in a
hearing experiment by fitting data from multiple ob-
servers in a subjective magnitude estimation ex-
periment using a power function:
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Fig. 3. Comparison of the cube-root power law
nonlinearity, the MMSE power-law nonlinearity, and
logarithmic nonlinearity. Plots are shown using two dif-
ferent intensity scales: pressure expressed directly in P,
(upper panel) and pressure after the log transformation in

dB SPL (lower panel)

In Fig. 3, a we compare these curves as a func-
tion of sound pressure directly as measured in P,. In
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this figure, with the exception of the cube power
root, all three curves are very similar.

Nevertheless, if we plot the curves using the
logarithmic scale (dB SPL) to represent sound pres-
sure level, we can observe a significant difference
between the power-law nonlinearity and the loga-
rithmic nonlinearity in the region below the auditory
threshold. This difference plays an important role for
robust speech recognition [4].

The most widely used forms of feature extraction
are Mel Frequency Cepstral Coefficient (MFCC)
and Perceptual Linear Prediction (PLP). MFCC
processing begins with pre-emphasis, typically using
a first-order high-pass filter (Fig. 4).
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Fig. 4. Block diagrams of MFCC
and PLP processing

Short-time Fourier Transform (STFT) analysis is
performed using a hamming window, and triangular
frequency integration is performed for spectral
analysis. The logarithmic nonlinearity stage follows,

and the final features are obtained through the us of
a Discrete Cosine Transform (DCT) [5].

PLP processing, which is similar to MFCC proc-
essing in some ways, begins with STFT analysis
followed by critical-band integration using trapezoi-
dal frequency-weighting functions. In contrast to
MFCC, pre-emphasis is performed based on an
equal-loudness curve after frequency integration.
The nonlinearity in PLP is based on the power-law
nonlinearity proposed by Stevens. After this stage,
Inverse Fast Fourier Transform (IFFT) and Linear
Prediction (LP) analysis are performed in sequence.
Cepstral recursion is also usually performed to ob-
tain the final features from the LP coefficients.

The simplest way of performing normalization is
using CMN or MVN. Histogram normalization (HN)
is a generalization of these approaches. CMN is the
most basic form of noise compensation schemes,
and it can remove the effects of linear filtering if the
impulse response of the filter is shorter then the win-
dow length [6].

By assuming that the mean of each element of the
feature vector from all utterances is the same, CMN
is also helpful for additive noise as well. CMN can
be expressed mathematically as follows:

G =c¢lj]-n,, 0<i<I-1, 0<j<J—1,

where . is the mean of the i" element of the cep-

stral vector. In the above equation, ¢,[/] and ¢ /]
represent the original and normalized cepstral coef-
ficients for the i element of the vector at the ;"
frame index. I denotes the dimensionality of the fea-

ture vector and / denotes the number of frames in
the utterance.
MVN is a natural extension of CMN and is
defined by the following equation:
—T . ci [] ] - }’l'ci
cljl=———=,
1] .

<

0<i</-1 0</<J-1

where p. and o, are the mean and standard devia-

tion of the /™ element of the cepstral vector [7].
Results

Fig. 5 compares the speech recognition accuracy
obtained under various types of noisy conditions.
We used subsets of 1600 utterances for training and
600 utterances for testing from the DARPA Re-
source Management 1 Corpus (RM1). In other ex-
periments, which are shown in Fig. 5, we used the
DARPA Wall Street Journal WSJ0-si84 training set
and WSJO 5k test set. For training the acoustical
models we used SphinxTrain 1.0 and for decoding,
we used Sphinx 3.8. For MFCC processing, we used
sphinxe fe included in sphinxbase 0.4.1.
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Fig. 5. Comparison of MFCC and PLP processing in different environments using the RM1 (WSJ0 5k) test set:

a,, a, — additive white gaussian noise; b,

b, — street noise; ¢;, ¢, — background music;

d,, d, — interfering speaker

For PLP processing, we used both HTK 3.4 and
the MATLAB. Both of the PLP packages show simi-
lar performance, except for the for reverberation and
interfering speaker environments, where the version
of PLP included in HTK provided better perform-
ance. In all these experiments, we used 12"-order
feature vectors including the zeroth coefficient,
along with the corresponding delta and delta-delta
cepstra.

As shown in these figures, MFCC and PLP show
provide speech recognition accuracy. Nevertheless,
in our experiments we found that RASTA process-
ing is not as helpful as conventional Cepstral Mean
Normalization (CMN).

Conclusions

In the work described in later chapters of this the-
sis, we will develop an algorithm that is motivated
by auditory observations, that imposes a smaller
computational burden, and that can be implemented
as an online algorithm that operates in sub-real time
with only a very small delay. Instead of trying to
estimate the environment function and maximizing
the likelihood, which is very computationally costly,
we will simply use the rate of power change or
power distribution of the test utterance.
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While it is generally agreed that a window length
between 20 ms and 30 ms is appropriate for speech
analysis, there is no guarantee that this window
length will remain optimal for the estimation of or
the compensation for additive-noise components.
Since the noise characteristics are usually stationary
compared to speech, it is expected that longer win-
dows might be more helpful for noise compensation
purposes. We note that even though longer duration
windows may be used for noise compensation, we
still need short duration windows for the actual
speech recognition.

The Frequency scales describe how the physical
frequency of an incoming signal is related to the rep-
resentation of that frequency by the human auditory
system. In general, the peripheral auditory system
can be modeled as a bank of bandpass filters, of ap-
proximately constant bandwidth at low frequencies
and of a bandwidth that increases in rough propor-
tion to frequency at higher frequencies.

In addition to the nonlinearities we included an-
other power-law nonlinearity which is an approxi-
mation to the physiological model of Heinz et al.
between 0 and 50 dB SPL in the Minimum Mean
Square Error (MMSE) sense. In this approximation,
the estimated power coefficient is around 1/10.
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PLP processing, which is similar to MFCC proc-
essing in some ways, begins with STFT analysis
followed by critical-band integration using trapezoi-
dal frequency-weighting functions. In contrast to
MFCC, pre-emphasis is performed based on an
equal-loudness curve after frequency integration.

We discussed several different rate-level nonlin-
earities based on different data.

Up until now, there has not been much discussion
or analysis of the type of nonlinearity that is best for
feature extraction.

For a nonlinearity to be appropriate, it should sat-
isfy some of the following characteristics: it should
be robust with respect to the presence of additive
noise and reverberation; it should discriminate each
phone reasonably well; the nonlinearity should be
independent of the absolute input sound pressure
level, or at worst, a simple normalization should be
able to remove the effect of the input sound pressure
level.

In other experiments, which are shown in Fig. 5,
we used the DARPA Wall Street Journal WSJ0-si84
training set and WSJO 5k test set.

For training the acoustical models we used
SphinxTrain 1.0 and for decoding, we used
Sphinx 3.8.

For MFCC processing, we used sphinxe fe in-
cluded in sphinxbase 0.4.1.

For PLP processing, we used both HTK 3.4 and
the MATLAB.

Both of the PLP packages show similar perform-
ance, except for the for reverberation and interfering
speaker environments, where the version of PLP
included in HTK provided better performance.

In all these experiments, we used 12"-order fea-
ture vectors including the zeroth coefficient, along
with the corresponding delta and delta-delta cepstra.

As shown in these figures, MFCC and PLP show
provide speech recognition accuracy.

Nevertheless, in our experiments we found that
RASTA processing is not as helpful as conventional
Cepstral Mean Normalization (CMN)).
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COMPARATIVE ANALYSIS OF SPEECH RECOGNITION ALGORITHMS IN UAV VOICE

CONTROL SYSTEM

The article proposes to perform a comparative analysis of the presented algorithms for processing voice control

signals for an unmanned aerial vehicle, which can be implemented on processors with low computing power using
online processing in real time. It is shown that these approaches are effective in improving the accuracy of speech
recognition in the presence of various types of noise and a sound-reflecting control environment, which is an important
problem in voice control systems for an unmanned aerial vehicle. An algorithm for calculating the mel-frequency
cepstral coefficients, which appear in the role of the main features of speech recognition, is presented. A comparative
analysis of two methods of distinguishing informative features of speech recognition in the voice control system of an
unmanned aerial vehicle was made, namely, mel-frequency cepstral factors and the coefficients obtained with the aid of
a linear prediction algorithm, where as a result of the conducted scientific experiment, under the influence of given
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noise, it was concluded that in these problems, the optimal method of exclusion is the mel-frequency cepstral factors,
since they show the best value for obsalutnomu criterion of speech recognition quality. The expediency of using the
proposed system for recognizing voice commands of an unmanned aerial vehicle based on the cepstral analysis is
substantiated and experimentally proved. The obtained results of the experimental research allow to draw a conclusion
about the advisability of further practical application of the developed system for recognizing voice commands for the
control of an unmanned aerial vehicle on the basis of a cepstral analysis.

Keywords: MEL scale; BARK scale; UAV; speech recognition; MFCC; minimum mean square error.

Jlappunenko O. 0., Konaxosuu I'. @., baxrispos /1. I.
MOPIBHSAJIBHUM AHAJII3 AJITOPUTMIB PO3ITII3BHABAHHS MOBH B CUCTEMI I'0OJIOCO-
BOI'O YIIPABJIIHHS BILJIA

Y emammi npononyemuvcsa nposecmu nopigHAnbHUL AHANIZ NPEOCMABIEHUX AN20PUMMIE 00POOKU CUSHALIE 20]10CO-
6020 YNPAGLIHHA Oe3NIIOMHUM TIMATLHUM ANapamoMm, AKi Modxcyms OYmu peanizo8aHi Ha npoyecopax 3 Maiow obuuc-
JIF08ANILHOIO 30AMHICINIO BUKOPUCMOBYIOUU OHAAUH-00POOKY 8 pexcumi peanvHoco uacy. Ilokasano, wo 3anponoHosami
nioxoou egekmueHi 8 NONINUIEHHT MOYHOCIMI PO3NIZHABAHHS MOBU NPU HAABHOCMI PI3HUX MUNIE WYMI8 i 36YK08I00UsA-
104020 Cepedosua YNpasiiLts, Wo € 8adCIUBOI0 NPOOIEMOIO0 8 CUCMEMAX 20]10C08020 YNPAGHIHHA Oe3NiIOMHUM Ji-
maneHum anapamom. IIpeocmasnenuii aneopumm O0OUUCIEHHS MeN-4ACMOMHUX KENCMPAalbHUX Koepiyicumis, sKi 6u-
cmynaromo 6 pojii OCHOBHUX 03HAK PO3NIZHABAHHS MOBU. Bye nposedenuti nopieHsbHull ananiz 080x Memooié eudileH-
Hsl IHOPMAMUBHUX O3HAK PO3NIZHABAHHS MOGU 6 CUCMEMI 2010C08020 YNPAGIIHHSA Oe3NLIOMHUM TIMATbHUM anapa-
mom, a came Mea-4acmomHi KenCmpaibti Koeghiyienmu i KoeiyicHmu ompumani 3a 00NOMO2010 AnOpUmMMY JIHIIHO20
nepedbauents, 0e 6 pe3yabmami npo8edeHo20 HAYKOBO20 eKCNepUMEHm)y Npu 6RAUSi 3a0anux wymie Oyau 3pooOaeHi
BUCHOBKU, WO 8 OAHUX 3A0aUaX ONMUMALLHUM MemoO0OM 8UOIIEHH € Mel-4aCmMOMmHI KenCmpaivhi Koepiyicumu, max
5K B0HU NOKA3VIOMb HAUKPAWULL NOKA3HUK NO aDOCOTIOMHOMY Kpumepiio aKocmi posnisHaganus mosu. Q6IrpyHmosano
ma excnepumMeHmaibHo 008e0eHO OOYLIbHICIb BUKOPUCIAHHS 3aNPONOHOBAHOI CUCTNeMU PO3NI3HABAHHS 20JI0COBUX
KOMAHO YRPAaGNiHHA 6e3niNomHUM JIMANbHUM anapamom Ha OCHO8I Kencmpanvho2o ananizy. Ompumani pesyrvmamu
eKCNePUMEHMANbHO20 O0CTIONCEHHSA 00380JIAI0Mb 3POOUMU BUCHOBOK PO OOYITbHICMb NOOANLUO20 NPAKMUYHO20 34~
CMOCYBAHHA PO3POONIEHOI cucmeMu PO3NI3HABAHHS 20JI0COBUX KOMAHO YRPABTIHHA 6e3niIOMHUM JIMAalbHUM anapamom
HA OCHOBI KeNcmpanbHO20 aHdalizy.

KnrouoBi cnoBa: wkana MEL; wkana BARK; BINJ1A; posnisHaBaHHA moBu; MFCC; miHiManbHa cepeaHbOKBaapa-
TUYHa noxmnobka.

Jlappunenko A. 10., Konaxosuu I'. ®@., BaxTusipos /1. U.
CPABHUTEJBHBIA AHAJIN3 AJITOPUTMOB PACIIO3HABAHHUA PEUM B CUCTEME TO-
JJOCOBOI'O YIIPABJIEHUA BIIVIA

B cmamve npeonacaemcs npoussecmu cpasHumenvHulil AHAIU3 NPEOCMABICHHbIX AN20PUMMO8 00pabomKu CUeHa-
JI08 20710C08020 YNpaseHust DeCRUIOMHbIM JIeMAMeNbHbIM annapamom, KOmopble Mo2ym Oblmb peanru308anbl Ha Npo-
yeccopax ¢ Manoll 8bIYUCTUMENbHOU CROCOOHOCTIBIO UCHONb3YSL OHAAUH-00pAOOMKY 6 pedicumMe PedaibHO20 6PEeMEeHU.
Tokazano, umo smu no0Xoovl 3pphekmusHvl 8 YIyUueHUY MOYHOCMU PACNO3HABAHUS Pedu NPU HATUYUL DA3TUYHBIX
MUNo8 Wymos U 36yKOOmpaxicarowell cpedsl YNPasieHus, Ymo si6Isaemcst 8adCHOU NPobIeMoll 8 CUCIEMAX 20]I0C08020
ynpaeieHus: becnuiomuulM demameivibim annapamom. ITIpedcmaenen aneopumm 6bI4UCTeHUsT MeN-4aACMOMHbIX Ken-
CMPANbHBIX KOIDPUYUEeHmMOo8, KOmopble 8bICMYNAIOM 8 POJie OCHOBHBIX NPU3HAKOE PACNO3HA8aHUs peuu. bvin nposeden
CPasHUMENbHbLIL AHAU3 08YX MeMO0008 bl0eNIeHUsl UHDOPMAMUBHBIX NPUSHAKOS PACNO3HABAHUS Peyll 8 CUCmeME 2010~
€06020 ynpaeienusi OeCnUuIOmMHbIM J1eMAMelbHbIM annapamoM, d UMEHHO Mel-4aCmomHble KenCmpaibhvle Koepuyu-
eHmbl U Koehuyuennol, NOJYHYeHHbLE ¢ NOMOWIO AI2OPUMMA JUHEUHO020 NPEOCKaA3anUs, 20€ 8 Pe3yibmanie NPo8edeHHO-
20 HAYYHO20 eKChepeMaHma npu 8030elicmeul 3a0AHHbIX WYMO8 ObLIU COeNlaHbL 8bl800bL, YMO 8 OAHHBIX 3A0aYax on-
MUMATbHBIM MEMOOOM GbLOUNICHUSL SI6ISEMCSL Mel-4ACMOMHbLE KeNCMpPaibHble KOeQhuyUenmol, maxk Kax OHU NOKA3bl-
6AIOM HAULYYUWULL NOKA3AMeENb NO 0OCATIOMHOMY Kpumepuio Kkavecmea pacnoznasanus pedu. ODOCHO8AHO U IKCHepu-
MEHMANbHO O0KA3AHO YeNecO0OPA3ZHOCMb UCNOAb308AHUSL NPEOJIONCEHHOU CUCMEMbl PACNO3ZHABAHUSL 20]I0CO8bIX KO-
MAHO YNPAGIeHUs. OeCnUIOMHBIM JeMamelbHblM annapamom Ha OCHOGe Kencmpaivhoeo ananusa. Ilonyuennvie pe-
3YbMamovl  IKCHEPUMEHMAILHO20 UCCIe008aHUSL NO3BOJSIIOM COelAmb 6bl600 0 UYelecO0OPA3HOCMU OaIbHelme20
NPAKMUYeCcKo20 NPUMeHeHUs: paspadomaHHol CUCIeMbl PACRO3HABAHUS 20]I0CO8bIX KOMAHO YIPAGAEHUsL OeCnUIOMHbIM
JlemamenbHbiM annapamom Ha OCHO8e KenCmpaibHO20 AHAU3A.

KnroueBble cnoBa: wkana MEL; wkana BARK; BINJ1A; pacnosHasaHue peun; MFCC; mmHumansHasa cpegHekBagpa-
Tu4yeckas owwmbka.

CratTs Hagidnia no penakii 01.04.2018 p.
[MpwuitasTo mo npyky 04.06.2018 p.
Peniensent — a-p texH. Hayk, mpod. Ciopyk JI. B.

Lavrynenko O., Konakhovych G., Bakhtiiarov D., 2018



