DEVELOPMENT OF THERMAL SHIELD COATINGS FROM POLYMER COMPOSITES FOR ROCKET AND SPACE APPLICATIONS

Authors

  • Махмуд Мохамед Реда Эльсаед Элькади
  • Петр Иванович Лобода
  • Ирина Мирановна Гурия
  • Ирина Юрьевна Тросникова

DOI:

https://doi.org/10.18372/0370-2197.1(90).15249

Keywords:

polymer composite materials, ceramic hollow microspheres, thermal shield coating, solid propellant rocket motor, thermal conductivity, heat resistance

Abstract

The technological foundations of molding materials for thermal shield coatings with a programmed structure, physical and mechanical characteristics have been developed. A char-forming type of internal heat shield coating material with a controlled density has been created, which increases the ablation resistance during the solid propellant rocket motor operation. It was found that the introduction of 30 wt.% сeramic hollow microspheres into a composite with carbon fibers and a phenol-formaldehyde matrix reduces the thermal conductivity by more than 50%. The heat resistance according to Martens is 130 °C. The paper carried out tests for thermal-oxidative resistance and fire tests.

As a result, the char residue of the composite with 30 wt.% сeramic hollow microspheres is ~ 75 ... 80% when it was heated to 1000 ± 50 °C/115 ... 240 s. The developed thermal shield coating material has been applied to metal and rubber substrates for thermal degradation protection.

Author Biographies

Махмуд Мохамед Реда Эльсаед Элькади

аспирант кафедры «Технологии производства» Днепровского национального университетаимени Олеся Гончара; младший научный сотрудник кафедры «Высокотемпературных материалов и порошковой металургии» Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского»

Петр Иванович Лобода

д-р техн. наук, профессор кафедры «Высокотемпературных материалов и порошковой металургии» Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского»

Ирина Мирановна Гурия

канд. техн. наук, доцент кафедры литейного производства черных и цветных металлов Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского»

Ирина Юрьевна Тросникова

канд. техн. наук, доцент кафедры «Высокотемпературных материалов и порошковой металургии» Национального технического университета Украины «Киевский политехнический институт имени Игоря Сикорского»

References

Фахрутдинов, И. Х. (1981). Ракетные двигатели твердого топлива. Рипол Классик.

Тепловая защита элементов конструкции ракетных двигателей на твердом топ-ливе: учебное пособие / В.П. Белов; Балт. гос. техн. ун-т. – СПб., 2010.

Saghar, A., Khan, M., Sadiq, I., & Subhani, T. (2018). Effect of carbon nanotubes and silicon carbide particles on ablative properties of carbon fiber phenolic matrix composites. Vacuum, 148, 124-126. https://doi.org/10.1016/j.vacuum.2017.11.013

George, K., Panda, B. P., Biswal, M., Mohanty, S., & Nayak, S. K. (2020). Ethylene propylene diene monomer rubber‐based heat shielding materials for solid rocket motor: Impact of Kevlar fiber reinforcement on the thermal and mechanical properties. Polymers for Advanced Technologies, 31(6), 1280-1290. https://doi.org/10.1002/pat.4857

Yang, X. H., Li, K. Z., Bai, L. T., Zhao, Z. G., & Wang, Y. (2018). Thermal ablation behavior of SiC coating for 3D braided carbon fiber reinforced ZrC-SiC composites in differ-ent heat fluxes. Vacuum, 156, 334-344. https://doi.org/10.1016/j.vacuum.2018.07.035

Patrick, T. J. (1981). Space environment and vacuum properties of spacecraft materi-als. Vacuum, 31(8-9), 351-357. https://doi.org/10.1016/S0042-207X(81)80042-5

Natali, M., Kenny, J. M., & Torre, L. (2018). Thermoset Nanocomposites as ablative materials for rocket and military applications. In Thermosets (pp. 477-509). Elsevier. https://doi.org/10.1016/B978-0-08-101021-1.00015-0

Bahramian, A. R., & Kokabi, M. (2014). Polymer nanocomposites as ablative materi-als. In Polymer green flame retardants (pp. 461-502). Elsevier. https://doi.org/10.1016/B978-0-444-53808-6.00015-9

Bassyouni, M., Iqbal, N., Iqbal, S. S., Abdel-Hamid, S. S., Abdel-Aziz, M. H., Javaid, U., & Khan, M. B. (2014). Ablation and thermo-mechanical investigation of short carbon fiber impregnated elastomeric ablatives for ultrahigh temperature applications. Polymer degradation and stability, 110, 195-202. https://doi.org/10.1016/j.polymdegradstab.2014.08.032

Natali, M., Rallini, M., Kenny, J., & Torre, L. (2016). Effect of Wollastonite on the ablation resistance of EPDM based elastomeric heat shielding materials for solid rocket mo-tors. Polymer Degradation and Stability, 130, 47-57. https://doi.org/10.1016/j.polymdegradstab.2016.05.019

Koo, J. H., & Langston, J. (2019). Polymer Nanocomposite Ablative Technologies for Solid Rocket Motors. In Nanomaterials in Rocket Propulsion Systems (pp. 423-493). Elsevier. https://doi.org/10.1016/B978-0-12-813908-0.00012-5

Ling, Y., Luo, J., Heng, Z., Chen, Y., Zou, H., & Liang, M. (2020). Synthesis of a comb-like silicone-epoxy co-polymer with high thermal stability and mechanical properties for ablative materials. Reactive and Functional Polymers, 157, 104742. https://doi.org/10.1016/j.reactfunctpolym.2020.104742

Rallini, M., Natali, M., & Torre, L. (2019). An Introduction to Ablative Materials and High-Temperature Testing Protocols. In Nanomaterials in Rocket Propulsion Systems (pp. 529-549). Elsevier. https://doi.org/10.1016/B978-0-12-813908-0.00014-9

Asaro, L., Manfredi, L. B., Pellice, S., Procaccini, R., & Rodriguez, E. S. (2017). In-novative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles. Polymer Degradation and Stability, 144, 7-16. https://doi.org/10.1016/j.polymdegradstab.2017.07.023

Caiying, B., Zhongyu, S., Hu, L., Pan, Z., Hu, Y., Yang, X., ... & Zhou, Y. (2020). Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam. Scientific Reports (Nature Publisher Group), 10(1). https://doi.org/10.1038/s41598-020-68910-6

Sun, Y., & Sun, Y. (2020). Strong effect of process parameters on the properties of boron-containing phenolic resins with high char yield. Applied Sciences, 10(4), 1408. https://doi.org/10.3390/app10041408

Liu, Z., Hao, A., Zhang, S., Dessureault, Y. S., & Liang, R. (2019). Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites. carbon, 153, 320-329. https://doi.org/10.1016/j.carbon.2019.07.018

Элькади, М. М., Хорольский, М. С., & Санин, А. Ф. (2018). Нанотехнологии—одно из перспективных направлений создания новых конструкционных эластомерных материалов. Астрономія й астрофізика, 71. https://doi.org/10.15407/knit2018.01.071

Manakari, V., Parande, G., Doddamani, M., & Gupta, M. (2017). Enhancing the igni-tion, hardness and compressive response of magnesium by reinforcing with hollow glass mi-croballoons. Materials, 10(9), 997. https://doi:10.3390/ma10090997

Chen, R., Xu, X., Zhang, Y. et al. Characterization of ignition and combustion char-acteristics of phenolic fiber-reinforced plastic with different thicknesses. J Therm Anal Calorim 140, 645–655 (2020). https://doi.org/10.1007/s10973-019-08903-4

Rallini, M., Puri, I., Torre, L., & Natali, M. (2018). Thermal and ablation properties of EPDM based heat shielding materials modified with density reducer fillers. Composites Part A: Applied Science and Manufacturing, 112, 71-80.

https://doi.org/10.1016/j.compositesa.2018.05.031

Sun, Y., & Sun, Y. (2020). Strong effect of process parameters on the properties of boron-containing phenolic resins with high char yield. Applied Sciences, 10(4), 1408. https://doi.org/10.1016/j.compscitech.2020.108494

Elkady, M., Loboda, P., Ponomarchuk, S. (2020). Creation of a thermal shield coating for work in extremely high temperatures. Problems of Friction & Wear, 88(3). https://doi.org/10.18372/0370-2197.3(88).14927

М.М. Элькади, П.И. Лобода, И.М. Гурия, И.Ю. Тросникова. Влияние наполни-телей из углеродных волокон и керамических микросфер на физико-механические свой-ства композиционных материалов теплозащитных покрытий. Міжвузівський збірник «НАУКОВІ НОТАТКИ», Луцьк, 2020, №69, стр.29-36. https://doi.org/10.36910/6775.24153966.2020.69.5

Issue

Section

Проблеми тертя та зношування