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THE EFFECT OF PARTIAL SLIP ON THE SURFACE PRESSURE
DISTRIBUTION IN ASLIGHTLY COMPRESIBLE FLOW DEVELOPMENT
REGION IN THE BOUNDARY LAYER
The study of laminar incompressible fluid flow in the boundary layer revealed, even
earlier, that the condition of complete adhesion of fluid particles to the surface (non-slip
condition) of the moving body (half-plane) is not met in the flow development (formation)
region. The assumption of constancy of the fluid velocity on the surface of a moving body,
hence non-slip, leads, in the flow development region, to the complete absence of the
normal component of the velocity field. And this contradicts the very concept of the flow
development region, where there should be two velocity components - longitudinal
(primary) and normal (secondary) ones. In the previous works of the authors, analytical
solutions were obtained for the velocity field in the region of development of
incompressible fluid flow in the boundary layer. Since the use of the incompressible fluid
flow model is restricted by the Mach number, to further expand the speed range, the
problem of the of slightly compressible fluid flow development region in the boundary
layer was considered. It is analytically proven that all considerations regarding the
impossibility of complete non-slip in the flow development region can be applied to a
slightly compressible flow. Slight compressibility at the same time means the subsonic
nature of the flow and the neglect of temperature effects due to friction. On the basis of a
critical analysis of the existing approaches, which consider the flow of a fluid around a
immobile plate in the framework of non-gradient flow (which is just impossible due to the
lack of a mechanism for creating the motion of the fluid), it is shown that the system of
equations is actually non-closed. For the region of flow development, where the
longitudinal pressure gradient is not a constant value, one equation is missing. This
equation, as in previous works, is obtained from the necessary condition for the extreme
of the fluid rate functional. And although the complete solution for the longitudinal
component of the velocity contains four constants of integration, to obtain the asymptotics
near the solid surface it is sufficient to know only two quantities - the velocity and its first
derivative (gradient). These values, as it turns out from the asymptotic solution, coincide
with the case of incompressible flow, which allows us to expand the scope of the
previously obtained results for a wider domain of Mach numbers, for example

Ma$(0.5—0.6). And such values already correspond to the speeds of modern civil
aircraft. The dimensionless distribution of pressure in the slightly compressible flow

development region is presented and its significant heterogeneity is shown, which, in turn,
indicates the importance of the obtained results.

Keywords: slightly compressible flow, flow development region, boundary layer, pressure
distribution, fatigue stresses and surface deformation, Navier-Stokes equations

Introduction. In modern aviation, the speeds of airplanes and helicopters exceed
the limit of 0.2-0.3 Ma, and the flow of fluid (air) caused by friction between the
surface of the aircraft and the air should be considered compressible. We will show
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that, as in the case of an incompressible flow [1], all conclusions remain valid for a
slightly compressible flow. So, consider an infinite plate moving at a constant
velocity directed along the plane of this plate [1]. A boundary layer is formed in the
region of flow development, in which there are two velocity components: longitudinal
and transverse. At the same time, it is essential that by the end of the flow
development region (in dimensionless coordinates, see [1])
V, >0, x—>-1.
Since the discovery of the phenomenon of partial slippage [1] is based on the use

of the continuity equation (conservation of mass), let us consider this equation for the
case of a compressible flow as well. We have

0 o(pV
(pVX)+ (p V)ZO,
OX oy
or, in expanded form
oV
Py . %+a—pv +p—L=0. (1)

ox X P x oy o
In (1) V,, V,, p stand, respectively, for longitudinal and transverse velocities, density.

Let's assume, as everyone does, that fluid particles (in this case, air) instantly
stick to the surface of a moving half-plane (or body). Then, for all points of the half-
plane, the so-called non-slip condition is met

Vx\y:o = Const=V,), Vy‘y:O =0. 2)
It immediately follows from condition (2):
oV, o @)
aX ‘y:O

Equation (1) on the surface of the half-plane simplifies to:

oV
{a—pvx + p—y:| =0. (4)
OX oy y=0

Condition (2) also implies the condition of constancy of pressure on the surface
of the half-plane:

Py-o =Const. (5)

As a result, the constancy of the density follows from relation (5).
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Py-o =Const. (6)

It turns out that the continuity equation on the surface of the half-plane is
equivalent to this one

v, }
p— =0. (7)
|: ay y:O

Due to the finite value of the density, it turns out that (7) is equivalent

o ®
ay ‘y:O .

From relations (2) and (8), as well as on the basis of the Stokes model of a
viscous flow which does not allow the formulation of a boundary condition

o,
> #0,
ay ‘y:O
we come to an unambiguous conclusion:

vy

0. )

The identity sign instead of equality in (9) means that the normal component of
the velocity can be, according to the Stokes theory, only equal to zero everywhere. It
is obvious that identity (9) does not hold in the flow development region. And if so,
then we can conclude that in the flow development region:

oV, ap M o
— 20— =0.=V,=V,(X), p=p(x),V, =0, —=0; -1<x<0. (10)
8X ‘y:O GX‘y:o ay

Allow me, opponents will say, but what about the problem of fluid flowing
around the surface of semi-infinite stationary plate? That the non-slip condition is not
met there? The thing is that at the initial moments of time when the flow is created
(the wind tunnel is turned on), the flow development region has a finite size. But, as it
reaches the stationary mode (within hundredths of a second), the flow development
region decreases and, ultimately, shrinks to a point at half-plane. And before the
beginning of the half-plane, a stagnant zone is formed. Nothing similar, from a
physical point of view, happens with a body moving in a stationary fluid: at each
subsequent moment of time, new and new fluid particles are involved in the motion
and are accelerated from a state of rest to a finite speed in a fraction of a second. There
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can be no instantaneous acceleration, because there is nowhere to get an infinitely
large force.

Problem state. Until recently, it was believed that in the boundary layer of an
incompressible fluid flow, molecular viscosity is a constant value that does not depend
on spatial coordinates, but can only be a function of temperature. Studies of the
laminar boundary layer revealed interesting features. The problem of the motion of an
infinite plane was solved only after assuming the variability in space of the molecular
diffusion of a fluid [2]. At the same time, the longitudinal velocity distributions in the
gradient and non-gradient boundary layers have, as it turned out, completely different
functional dependencies: in the non-gradient boundary layer, it is an exponential
decrease down to zero [3], while in the gradient boundary layer, it is the well-known
parabolic distribution [4-9]. Stokes [10] and Rayleigh [11] obtained a solution to the
problem of boosting of a plane with subsequent constant speed of motion, according to
which friction stresses disappear after the boosting of the plane. Assumptions of
variability, both in space and in time, of molecular diffusion made it possible to obtain
a physical solution to the problem, according to which the frictional stress reaches its
asymptotics immediately after the boosting is stopped [12]. Since infinite bodies do
not exist, the so-called Blasius problem was considered [1]. As it turned out (and it
was shown above in this work also for a slightly compressible fluid flow), in the flow
development region, it is impossible to meet the non-slip boundary condition exactly,
because this is equivalent, within the framework of the Navier-Stokes equations, to the
absence of the second component of the velocity. Instead of the non-slip condition in
the flow development region, it is necessary to use the partial slip condition [1].

Problem formulation. Extend the concept of the of flow development region to
the class of slightly compressible flows, when the compressibility of the flow cannot
be neglected, but the effects associated with heating due to the friction of the fluid
against the solid surface are still insignificant.

The purpose of the work. The purpose of this work is to obtain, based on an
analytical approach, an estimate of the field of the longitudinal component of the
velocity near the surface of the moving half-plane. Based on this estimate, obtain the
asymptotic distribution of the pressure field near the surface of the half-plane in the
slightly compressible flow development region and point to the importance of this
distribution both for the lifting force of the wing and for the calculation of stresses
arising on the surface of the wing.

Asymptotics of the velocity field in the slightly compressible flow
development region in the boundary layer. Consider a plane compressible flow on
the surface of an infinite plane. This flow is described by the following dimensionless
equations (formulae (51) paragraph 144 [13])
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v, N1 op, o

AVy Yy +pV, &y - KME ox ay[/l Y J (11)
8(pVX)+6(pVy):O (12)

ox oy '

ch, o, dh_ k-1, o , (VY 1a( on

PV, 8x+ Ny — 8y I 8x+(k HM? Layj +08y(ﬂ8yj' (13)
P=ph, (14)
u=f(h. (15)

In system (11-15) p, h, # are pressure, enthalpy and viscosity, respectively;

k, o, M2 are constants.

As can be seen from (11)-(15), this system of equations is not closed: six
unknown functions are matched by only five equations. Assuming the mistake of
Blasius, who considered the flow around the plate to be non-gradient, Dorodnitsyn et
al. [14] also made an error by rejecting the pressure gradient in the momentum
conservation equation in the longitudinal direction. How can a fluid flow if the plane
is immobile and the pressure gradient is zero? No way for it flow. Using the
experience of studying the boundary layer in an incompressible flow, as well as its
development region in the boundary layer, we will perform a similar procedure for a
slightly compressible flow.

It is possible to use the momentum conservation equation for the fluid flow
functional over cross-section

J=[V,ds > ext. (16)
S
The operand has the form
F:VX :VX Vy, ,%, ﬂ ﬂ 82\/2 , ,a_'u . (17)
dx' ox ' oy oy oy

Euler's equation, which corresponds to the necessary condition for the extreme of
the functional (16) under condition (17) (this is one of the conditions: there are many
more conditions, but one is enough for us), has the form:

%(Fux)zsy—zz(ﬁw)—%(ﬁy). (18)
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Following the works [1, 12], we present
F=V,=X(X)-Y(y). (19)

Substituting (19) into (18) turns (18) into equation

ddx (d?x)" ddy (d® )" dy (dav )"
Y%[&.[dﬁ] J_X%WWJ o[ J 20

After dividing equation (21) by the right-hand side of equation (20), we obtain:

1odfdx (@°X V7)1 dfdy (d¥)Todv (av))
X (x) dx| dx | dx? Y(y)dy| dy | dy® dy | dy? '
Equation (21) is a differential equation with separable variables. From the

asymptotic condition, which consists in the tendency of a slightly compressible flow
to an incompressible one, we assume, based on the work [1], that

2y V1 3, )1 2y V1
1 d|dX (d°X 1 d|dy [d¥ dy (d@y
| —— —2 :0, | /- —3 —_— —2 =O. (22)
X (x) dx| dx | dx Y(y)dy| dy { dy dy | dy

The solution of the first equation (22) is already known [1], the second solution
has yet to be found. We will write it in a form convenient for solving

3y, \ ! 2y \ !
aY ey dY Y const. (23)
dy (dy dy { dy

An arbitrary integration constant can be chosen differently, but, as the research
has shown, Const =0 entirely corresponds to the physics of the problem. Thus, for
Const =0 we obtain an asymptotics in the form

Y(¥)=Y(0)+D(¥)(O0)-y,

with Y(©=Y(y=0), D(v) = &

ly=0

Since the value of the dimensionless velocity on the surface is equal to one, and
the dimensionless first derivative is equal to -1, we obtain:

Y(y)=1-y. (24)
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Therefore, for the sub-region wherey’ <0.1, with an accuracy of 1%, it turns out

that the vertical velocity distribution near the plane is described by (24). This
completely coincides with the solution for the case of incompressible fluid flow [2],
since

exp(-=y)=1-y+...

Thus, the previously obtained solution for the case of incompressible flow can be
used as asymptotics for compressible flow - in the immediate vicinity (that is, at
y'<0.1 ) to a solid wall.

Distribution of surface pressure in the slightly compressible flow
development region in the boundary layer. The distributions of the velocity
components in the flow development region have the following form [6]:

Vy (X, Y) = (1- exp(ax))exp(—ay), Vy =exp(ax) (1-exp(-ay)) . (25)

According to formulas (25), neglecting the small normal component of the
velocity, as well as taking into account the scale of the longitudinal velocity, we obtain
for the pressure field:

p(X,y)

0

1=V Y) 1 (2p0) =1V (L-exp(ax))exp(-2ay) / (2p0) - (26)

The distribution of the pressure field is presented in Fig. 1. As one can see, the
pressure field in the region of the flow development is heterogeneous. And at velocity
of the order of 100 m/s, pressure deviations can be of the same order as atmospheric
pressure, which affects both the lifting force and the distribution of stresses on the
surface of the wing. The heterogeneity of stresses leads to the appearance of additional
deformations, which, under the condition of frequent changes in flight speed, can lead
to fatigue stresses, accelerating the wear of the aircraft.

Conclusions. As it turned out during the theoretical analysis, the non-slipping
condition on the surface of a body moving in a immobile fluid is also not physical in
the a slightly compressible fluid flow development region in the boundary layer. So,
the idea appeared to expand the new concept of partial slip also at speeds at which air
is already a slightly compressible fluid (80-200 m/s). Based on the use of the
analytical method, which consists in the application of calculus of variations, it was
found that for a slightly compressible flow, the region of its development can also be
described, in close proximity to the surface of a solid body, by previously obtained
functional dependencies for an incompressible flow. This affords to expand the
concept of partial slip in the flow development region to the range of velocities
exceeding 100 m/s. And most importantly, for this flow, the spatial distribution of
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pressure in the flow development region in the boundary layer should be taken into
account.

0.4

>
-1 -0.8 -0.8 -04 -0.2 @]

Fig.1. Dimensionless pressure distribution according to formula (26), for velocity V0 =100 m/s.

As a future study, it is reasonable to obtain high order asymptotic for a slightly
compressible flow development region in a boundary layer.
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JI. CVH, I1.B. JIVK’IHOB, B.M. BAJJAX, T.B. TAPACEHKO

BIIVIMB YACTKOBOTI'O ITPOKOB3YBAHHSI HA PO3IIOALJI IOBEPXHEBOI'O
THUCKY B OBJIACTI PO3BUTKY 3JIETKA CTUCJIHUBOI TEYII B
INPUMEKOBOMY HIAPI

JlocnimKkeHHsT JaMiHapHOT HECTUCIHMBOI Tedil piAMHM y TNPHUMEXOBOMY IIapi BHSBHIIO, IIE
paHime, oo yMOBa IMOBHOTO NPWIHAINAHHA YaCTHHOK PIAWHU 110 TOBEPXHI PyXOMOTO Tinla
(WBIJIOIIMHN) HE BHUKOHYEThCA B o00macTi po3BUTKY ((opmyBanHs) Tteuii. [IpumymenHs
CTaJIOCTI MIBHIKOCTI PiIMHU Ha TOBEPXHI PyXOMOTO Tila, OT)KE TOBHE NPWIHIAHHSI, BEIE, B
00racTi po3BUTKY Tedii, 10 MOBHOI BiICYTHOCTI HOPMAaJIBHOI CKJIAIOBO] ITOJIS IIBUIKOCTI. A TIe
CyNepeYnTh CaMOMy IIOHATTIO OOJIACTI PO3BHUTKY Tedil, ¢ MOBMHHI OyTH JBi CKIIaJOBI
IIBUIKOCTI — TIOB3JOBXKHS (OCHOBHA) Ta HOpMaibHa (IpyropsmgHa). Y MOImepenHiXx poboTax
aBTOpIB Oy/NM OTpPHUMaHi aHAJITUYHI PO3B’A3KH IIOJO IIOJISI IIBUAKOCTI y 00JNACTi PO3BUTKY
HecTUCAMBOI Tewil piAMHU Yy mnpuMekoBoMy Inapi. OCKUIBKM BUKOPHUCTAHHS MOJENI
HeCTUCIUBOI Teuil pimuHu 0OMexyeTbes umcioM Maxa Ma<0.2, to gus momanbmioro
PO3IIUPEHHSI Tiara30Hy MBUAKOCTSH OYJI0 PO3MIISHYTO 3a/1a4y Ipo 00JacTh PO3BUTKY CIIA0KO
CTHCJIMBOI Tedii PIAMHU y NMPUMEKOBOMY MIapi. AHAJIITUYHO JOBEICHO, IO BCI MipKYBaHHS
1110/10 HEMOYKJIMBOCTI MOBHOT'O MPWJIMIIAHHS B 00JIaCTI PO3BUTKY Teuil MOXKHA 3aCTOCOBYBATH 1
JUIsl cl1abKo CTUCIUBOI pianHu. Criabka CTUCIUBICTB NTPY IIbOMY O3HAYa€ JI03BYKOBHUI XapakTep
Tedii 1 HEXTYBaHHS TeMIlepaTypHUMHU e(deKTaMu BHACHIOK TepTs. Ha migcraBi KpUTHYHOTO
aHaJi3y ICHYIOUHX IiIXOMiB, SIKi PO3MIANAIOTh OOTIKaHHSA PIIMHOI0 HEPYXOMOI IUIACTHHH Y
pamkax ©Oe3 TpamieHTHOI Tedwii (IO MPOCTO HEMOXJIMBO Yepe3 BiJCYTHICTH MEXaHi3My
CTBOPEHHS PYyXY PiAWHM), MOKA3aHO, IO CHCTEMa PIBHAHb € (PAKTUYHO HE3aMKHEHOIo. [lis
o0yacTi PO3BHTKY Tedii, A€ TOB3JOBXKHIM Tpami€eHT THCKY HE € CTaJiOl0 BEIUYHWHOK, HE
BHCTa4ya€ OTHOTO piBHAHHSA. Lle piBHSHHS, 5K 1 paHilIe y momepeaHix podoTaX, OTPUMYETHCS
13 HEOOXiTHOT YMOBH €KCTpeMyMy (DYHKIIIOHATY BTpaTd pinuHu. | X0ua OBHUIT pO3B’SI30K LIS
MOB3/IOBXXHbOI KOMIIOHEHTH UIBHAKOCTI MICTUTh YOTHUPU KOHCTaHTH IHTErpyBaHHS, s
OTPMMaHHSl AaCHMITOTHKU NOOMM3Y TBepAOl MOBEpXHI IJIKOM JIOCUTh 3HATH JIMIIE JIBi
BEIMYMHM — WIBUAKICT, Ta i mepury mnoxiaHy. L{i BenuunmHM, SK BHSBISETBCS 13
ACMMITOTUYHOTO PO3B’S3KY, 30iraloThCsi 13 BHIAJKOM HECTHUCIIMBOI Teyil, 10 J03BOJISIE
PO3LIMPHUTH OOJIaCTh 3aCTOCYBAHHS OTPHMAHMX paHillle Pe3yJbTaTiB s OUIbII HIMPOKOT

00J1acTi, HAMPHUKIA] MaS(O.S—O.G). A Taxki 3HaYeHHSA BXKE BIANOBIZAIOTH MIBUIAKOCTIM
CyJacHHX NHBUIGHUX JiTakiB. HaBomutbcss 0Oe3po3MipHUMA po3mOmil  THCKY B oOmacTi

PO3BUTKY CJIaOKO CTHUCIMBOI Tedii i IOKa3yeThCsi HOro CyTTEBA HEOAHOPIHICTh, LIO, B CBOKO
4epry, BKa3ye Ha BaXJIMBICTh OTPUMAHUX Pe3yJIbTaTIB.

Kaiouosi ciioBa: cmabko crucinuBa Tedis, 00JacTh PO3BHTKY Tedil, NMPUMEXKOBUH IIap,
PO3IIOJIIT TUCKY, BTOMHI HanpyXeHHs Ta Aedopmartis noBepxHi, piBHsHHA Hag'e-Crokca
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