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OPTIMAL CHARACTER AND DIFFERENT NATURE OF FLOWS IN  

LAMINAR BOUNDARY LAYERS OF INCOMPRESSIBLE FLUID FLOW 

The paper presents an original approach to the study of the problem of internal friction 

arising from the motion of a rigid body in an incompressible fluid. This approach takes 

into account the spatial variability of molecular viscosity in the boundary layer region, 

and the solution of the problem is based on the use of an extreme for the fluid flow rate 

functional. The spatial variability of molecular viscosity in the boundary layer, by a 

well-known analogy with the theory of heat conduction, is based on the absence of a 

spatial isotropy of the medium. It is shown that molecular viscosity depends on the 

nature of the flow - on how many forces act on the fluid. So, if the flow is unsteady and 

non-gradient or steady and gradient, then both of these flows are subject to the action 

of two forces. In such flows, the molecular viscosity due to the extreme of the fluid flow 

rate is a constant value. It has been fond that the distribution of velocity in a gradient 

stationary boundary layer has a parabolic distribution law, and all existing theories 

are described by this law quite accurately, with an error of maximum 5%. At the same 

time, in a laminar non-gradient boundary layer, only the force of internal friction acts 

on the fluid. This causes the spatial variability of molecular viscosity: shear stress can 

be constant not only due to the linearity of the velocity distribution, which is not 

observed in the boundary layer, but also due to the variability of molecular viscosity. 

The resulting exponential velocity distribution in a non-gradient boundary layer is in 

complete agreement with those in the problems solved by Stokes, and is also confirmed 

experimentally. The paper also points out that the exponential law is consistent with 

modern data obtained by direct numerical simulation (DNS) for flows with Low 

Reynolds numbers – both single-phase and two-phase, in the presence of particles 

inside the fluid. 

Keywords: internal friction, boundary layer, incompressible flow, variable molecular 

viscosity, Low Reynolds numbers, analytical solutions, calculus of variations. 

Introduction. When a body moves in a fluid, two phases interact, which causes the 

formation of a laminar or turbulent boundary layer, a domain of fluid adjacent to the 

moving body. In aviation and astronautics, the characteristics of the boundary layer play 

an important role, since they determine the drag force in flight and are partly responsible 

for the lift force. When studying the turbulent boundary layer, it turned out that not only 

the turbulence closure problem has not yet been solved, but there is also no clear theory 

of the laminar boundary layer, which would be directly based on the Navier-Stokes 

equations [1]. This work is devoted precisely to the development of a unified approach 

to the description of a laminar boundary layer of an incompressible flow. Before a brief 

review of the existing theories, we note that in modern numerical studies, flows are not 

divided into laminar and turbulent, and laminar flows are classified as Low- Reynolds 

number ones. If for a turbulent flow it is a priori assumed that the eddy viscosity is not 

constant, then we assume, by analogy with the DNS, that the molecular viscosity can 

also be variable. This is a physical assumption based on the absence of spatial isotropy 

in the boundary layer. For interest in this work, we cite a well-known fact: the laminar 

boundary layers on a rotating disk and when a rotating fluid flows around an immobile 

disk are completely different. Firstly, they are described by different self-similar 

solutions, and secondly, the thickness of the boundary layers differs by about a factor 
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of two [2] (immediately after formula 11.8). Now it is easy to understand that the 

problem of the motion of a body in a fluid at rest at infinity and the problem of fluid 

flow past an immobile body also have a different nature and are irreversible. In the first 

case, when the fluid flow is entirely due to and determined by the velocity shear (internal 

friction), a non-gradient boundary layer is formed. In the second case, the fluid flows 

past an immobile body and there are two forces: the force of the longitudinal pressure 

gradient and the force of viscous shear stresses. 

Problem state. Stokes [3] considered the problem of the forced motion of a fluid 

under the action of harmonic oscillations of a plane. An exponential dependence of the 

decrease in velocity with distance from the oscillating plane is obtained. Stokes, in order 

to convince everyone that he is right, refers to experiments, where this dependence is 

confirmed. This problem is presented as the first one in [3]. A quite reasonable question 

arises: why Stokes did not consider as the first and simplest problem the steady motion 

of a plane, which, according to Stokes, has a linear solution with respect to the fluid 

velocity. The answer is that, as is known [4], the laminar boundary layer has a nonlinear 

character. The exponential dependence as a good approximation for viscous and 

intermediate sub-layers of a turbulent boundary layer is mentioned in the work of Van 

Drist [5]. The mistake of Van Drist, however, like everyone else, was the belief in the 

reversibility of flows (problems), the impossibility of which has already been mentioned 

above. One conclusion can be drawn from the above: in a non-gradient boundary layer 

caused by pure shear, there is an exponential decrease in velocity with distance from the 

moving wall. Then what about  the well-known theories of the boundary layer by Prandtl 

[6], Blasius [7], Karman [8], Pohlhausen [9], as well as the lesser known theories of 

Sohrab [10], Weyburn [11], [12] Abdul-Gafor [13]? As will be shown further, all 

theories are consistent. The answer lies in the different structure of laminar non-gradient 

and gradient boundary layers. All existing theories have been influenced by the 

erroneous opinion about the reversibility of flows - gradient and non-gradient. Further, 

using the calculus of variations, it is shown that under experimental conditions, when a 

gradient shear flow is created, the molecular viscosity has a constant value. And this is 

not a hypothesis, but a result obtained from an analytical solution for the velocity field. 

What, the constancy of viscosity, cannot be said about a purely shear flow in a non-

gradient boundary layer. There, inside the boundary layer, the viscosity increases from 

a minimum value at the moving plane to a maximum value at the outer, even if blurred, 

boundary of the laminar boundary layer. 

Formulation of the problem. The paper considers the optimal character and 

different nature of incompressible flows in laminar boundary layers:  

– non-gradient boundary layer formed during the steady motion of an infinite plane; 

– gradient boundary layer in the flow past an immobile plane. 

The purpose of the work is to obtain analytical dependences for the distribution of 

the velocity field in gradient and non-gradient laminar boundary layers of an 

incompressible fluid flow, as well as to reveal their common nature and differences in 

properties. 

Non-gradient laminar boundary layer caused by the steady motion of an 
infinite plane. In order to understand and compare the results obtained below, we 
present solutions to related problems considered by Stokes. As already mentioned in the 
introduction, Stokes [3] solved the problem of oscillations of an infinite plane with 
frequency n  and amplitude c in a viscous fluid. If we denote, according to Stokes, for 
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x direction of the normal to the plane, then we obtain for the problem the corresponding 

Navier-Stokes equations (in Cartesian coordinates) and the boundary condition 
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In Stokes' paper [3], these are equations (8) and (9), respectively. v  is longitudinal 

velocity, and 
' =  are various designations for the coefficient of molecular viscosity. 

The solution obtained by Stokes is 

                   
( ) ( )' 'n / 2 n / 2cexp sin nxV t x −= − .                                 (3) 

The solution in the form (3) does not allow one to pass to the limit to a steady 

motion corresponding to n 0→ , since in this case it is equal to zero. Apparently, 

therefore, Schlichting (see 5.25 in [1]) gives another boundary condition in the form 
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and the corresponding to (4) solution ([2], 5.26) 

                    
( ) ( )' 'n / 2 cos n / 2cexp nxV t x −= − .                             (5) 

Now, in the limit n 0→ from (5), it turns out that the entire space must move at a 

constant velocity equal to the velocity of the plane. Stokes, apparently, understood the 
impossibility, from the point of view of conservation laws in physics, to force the entire 
half-space to acquire the velocity of a moving plane, and even more so to keep moving 
at this velocity. Trying to save the situation when the theory does not provide 
experimental confirmation of the solution of the simplest problem, Stokes obtained a 
self-similar solution to the problem of instantaneously setting the plane in motion. The 
boundary condition is now expressed as a Heaviside function 
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By analogy with heat conduction, using the self-similar coordinate in the form 

                                  
/ 2y t =                                                          (7) 

Stokes [3] obtained the corresponding self-similar solution 

                               
( )( )c 1 erfVx = − .                                                   (8) 

For subsequent comparison with the solution obtained below, it is important to note 
that the introduction into (1) of the scales of quantities 

                                         
'[ ] c;   [ ] 1/ n;   [ ] 2 / nV t x = = =  

leads to the following representation of dimensionless solutions (3) and (5) 

         
( ) ( ),    cos .exp( )sin exp( )VV x t x x t x= − − = − −

                        
(9) 

In the course of work, we logically approached the emerging question about the 
nature of the solution in the case of the simplest problem 
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In relations (10), the coordinates x and y are swapped and index x is added to the 
velocity. Problem (10) corresponds, according to Stokes, to the steady motion of the 
plane along the axis x . What is wrong? Why is it impossible to obtain an experimentally 

confirmed exponential law from the formulation and solution of a simple problem (10)? 
To understand the reason for this discrepancy, it is necessary to find out what laws of 
physics the Navier-Stokes equations are based on. In deriving his equations, Stokes used 
an analogy with the laws of heat conduction. This analogy is based on the mathematical 
equivalence of the following equations 
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In (11) ( )y and ( )k y  are molecular diffusion and thermal conductivity, 

respectively. As is known, the constancy of thermal conductivity ( )k y in (11) is based 

on the spatial isotropy of the medium, which just does not take place in the boundary 
layer, the domain of influence of one phase (body) on another (fluid). 

Consider a plane moving at a constant velocity in an infinite domain of an 
incompressible fluid. Let us assume that the molecular viscosity of an incompressible 
fluid is a variable, at least within the boundary layer. We will consider it as a function 
of the distance to the solid plane 

                                           ( )y = .                                                (12) 

The Navier-Stokes equation for this problem in accordance with (12) has the form 
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Let be      ,    ,     max
0

y V Ux   = = = = the scales of the values of this 

problem. If they are taken out as factors on the right side of equation (13) and divided 
by a common constant factor (product), then the equation will not change. Therefore, 
hereafter we will consider dimensionless quantities, and we will leave their designations 

the same. Equation (13) now contains two unknown functions: ( )y as well as ( )V yx . 

To close the problem, we assume that the fluid flow rate extreme condition is satisfied. 
In other words, among all possible incompressible fluid flows, caused by the friction of 
the plane with a dimensionless velocity 
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we will consider realizing only that flow for which 
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Expression (15) agrees with the original interpretation of the Pierre Maupertuis 
principle [14]. According to Maupertuis, if denoted by , ,m V S mass, speed and distance 

respectively, then the action in the form 

                                                      I mVs=  

reaches the minimum value for the true trajectory. This is the first formulated variation 
principle of least action. If for a steady motion and an infinite plane, as well as for a 
homogeneous fluid m const,  s const= = , then formula (15) will mean the minimum 

flow rate in the boundary layer. A good overview of the applications of the calculus of 
variations for fluid flows is given in [15]. To the boundary condition (14) one should 
add the second, obvious condition 
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To find the unknown function ( )y , when ( )V yx is already defined, it is sufficient, 

according to (13), to formulate one boundary condition. As will be shown further, it is 
reasonable to put 
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In equation (17)   is an approximate value of the boundary layer thickness at 

which the velocity decreases by about 100 times. Thus, the problem is determined by 
relations (13)–(17). Since any viscosity of a fluid appears only in the presence of a 
velocity gradient, it is possible assuredly to write 

                           
( )( ) /y f dV dyx =                                               (18) 

where f  means certain  function . On the other hand, we use an equation similar to the 

turbulent flow equation, where viscosity is a function of coordinate. By analogy, we 
assume that viscosity is a function of velocity 

                         
( )( ) ( )y V yx = .                                                  (19) 

Comparing relations (18) and (19), it is easy to conclude that 

       ( ) ( )( ) ( )1 1( ) ( ) / /V y V f dV dy g dV dyx x x x  − −= = = .           (20) 

The Euler equation for the extreme of the functional according to (15) and (20) has 
the form
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From (21) it immediately follows that 
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Using the invariance property of the first differential and replacing the function g
 

by the  Vx  
we obtain from (22) 
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The general solution of equation (23) is 

                         
( )( ) A Bexp / C

1
V y yx = + .                                           (24) 

For the case of the considered motion of the plane, according to the boundary 
conditions (14) and (16), the velocity distribution has the form 

                               
( )( ) exp / C

1
V y yx = .                                     (25) 

The value of the constant C
1

is determined from the condition of meeting  the 

Stokes solution (9). This meeting gives C -1
1
= and therefore 

                                      
exp( ).V yx = −

                                               
(26) 

Solution (26) testifies to the correctness of using the calculus of variations approach 
for the problem under consideration. Moreover, a comparison with the experimental and 
theoretical distributions (see Fig. 1, a) shows that, for the dimensionless value 5y =

 
a 
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decrease in the velocity value by about 100 is obtained (see [2,4]). To obtain the velocity 
profile given in all sources for the inverse problem for the considered problem of flow 
past an immobile plane, it is sufficient to subtract the right side of equality (26) from 
unity: 

                                    1 exp( )u y= − − .                                                    (27) 

For convenience of comparison with other results, expression (27) is shown in Fig. 

1, b-c). The value 11/C 0.0175= − used in fig. 1, b-c) to match with the internal scales 

of the boundary layer. We point to one non-trivial detail. According to (26), the viscosity 
of a fluid can increase to infinity, since it must be determined by an exponential function 
with a positive argument tending to infinity. However, in such cases, one resorts to 
describing the solution in other, initial quantities. The Navier-Stokes equations are 
derived in stresses that maintain across boundary layer. And this condition is just 
fulfilled. A similar example in fluid mechanics would be the point vortex model, where 
the velocity on the axis goes to infinity, but in this case circulation is used, which is a 
constant. 
 

        
                          a                                             b                                             c  
Fig.1. Distribution of the longitudinal component of the velocity: comparison of the solution. a 
– (26) (III) with known close solutions: amplitude of solution (9) (I), self-similar solution (8) 

(II) [3]; b – c – (27) with solutions at low Reynolds numbers obtained using DNS [16] 

It should be noted that the exponential solution in the form (27) can also 
approximate two-phase low-Reynolds turbulent flows [17]. In this case, in the formula 

(27) 11/C 0.05= − . 

Gradient laminar boundary layer: fluid flow past an immobile plane caused 
by a pressure gradient. The above studies cause natural bewilderment, since 
measurements in wind tunnels, as well as the theory of a laminar boundary layer, 
confirm the constancy of molecular viscosity in the boundary layer, and in the flow 
domain as a whole. To study this situation, it is necessary to turn to the physics of flows. 
Let's answer the main question: what forces cause the fluid to flow in each case? In the 
case of non-gradient flow, this is internal friction, which is entirely determined by the 
velocity gradient. Therefore, for the flow, functional integrand depends only on the 
derivative of the velocity. Otherwise, the situation is in the case of gradient flow. 
Obviously, now the flow is created by two forces (as in the non-steady problems solved 
by Stokes [3]): the pressure gradient and internal friction. The pressure gradient creates 
a velocity field which is perturbed by the experimental object (body) that forms the 
boundary layer. Blasius' mistake is that in the problem of fluid flow past an immobile 
plate, he excluded the force of the longitudinal pressure gradient ([2], see formulas 7.5). 
It turns out that the flow of the fluid is not caused by anything: there is no force that 
would make the fluid flow. Since everyone was interested in the inverse problem of the 
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motion of a plate (wing), where there really is no longitudinal pressure gradient, then, 
believing in the reversibility of phenomena, everyone agreed with Blasius. If we now 
assume that in the fluid flow rate functional the integrand formally depends not only on 
the derivative of the velocity, but also on the velocity itself (determined by the 
longitudinal pressure gradient), then, as will be shown now, the value of the molecular 
viscosity turns out to be constant. So, consider the gradient flow described by the 
equation 

                                     

( )
dVp d xy

x dy dy
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 
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 


=


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with conditions (14), (15), (17). Instead of condition (14), we use the condition 

                                            
( 1) 1V yx = = .                                                (29) 

Condition (29) means reaching the outer boundary (here, the thickness of the 
boundary layer is taken as the scale) of the gradient boundary layer. Of course, this is 
approximate, since there is no strict outer boundary for the boundary layer. Now 
suppose, due to the changed physics of the phenomenon (two forces instead of one), 
that 

                          
( )( ) , /V y g V dV dyx x x= .                                                 (30) 

Relation (30) allows us to obtain, instead of (23), the corresponding Euler equation 
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The solution of equation (31), taking into account the no-slip conditions and 
condition (29), has the form 

                                      
( ) (2 ).V y y yx = −

                                                
(32) 

Substitution (32) into the dimensionless Navier-Stokes equation corresponding to 
the gradient flow 

1 ( )
dVd xy

dy dy

 
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 

− = , 

leads to 

                                 ( )*
1 ( ) 2 2y C y y+ = − .                                     (33) 

From expression (33) it follows that at
*
1 1C = −  viscosity is constant 

                           1/ 2 Const = = .                                                     (34) 

Hence, the main part of the gradient boundary layer is described by a parabolic 
profile, and in this case the molecular viscosity is constant there. Fig. 2 shows the results 
of known theories. All solutions, as well as experimental data [4], are quite close to the 
parabolic law (32). This explains the desire of all cited authors to bring their solutions 
closer to the parabolic law. 

Conclusions. An original approach to the analytical description of a steady laminar 
boundary layer of an incompressible fluid is proposed, due to the lack of a physically 
confirmed solution to the simplest problem of the steady motion of an infinite plane in a 
fluid at rest at infinity. As shown above, Stokes, trying to close the system of equations, 
assumed a constant value of molecular viscosity in his model. Careful investigation revealed 
the cause of the discrepancy. Stokes used the analogy with Fourier's second law, where the 
thermal conductivity is a constant. But the constancy of thermal conductivity does not take 
place in the boundary layer, since the spatial isotropy of the medium is violated there. With 
the constancy of viscosity, the situation is much more complicated. As it turned out in the 
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course of the above studies, for a non-gradient boundary layer, the viscosity really, by 
analogy with thermal conductivity, must be variable in order to obtain an experimentally 
confirmed dependence of the exponential decrease. And for a gradient boundary layer, due 
to a different physics of the phenomenon (the presence of a longitudinal pressure gradient), 
it was possible, on the basis of the calculus of variations, to show that the viscosity inside 
the boundary layer is constant, and the velocity distribution is described by a well-known 
parabolic law, which with high accuracy (5%) correspond to all known boundary layer 
theories and experimental data. The solutions of non-stationary problems of plane 
oscillations and instantaneous setting of the plane in motion, obtained by Stokes, based on 
the constancy of viscosity and have the same property as the gradient steady boundary layer, 
namely: not one, but two forces act on the fluid - internal friction and inertia. Thus, to 
describe the laminar boundary layer of an incompressible fluid, in general, one should use 
the variable viscosity in the Navier-Stokes equations, as is done in direct numerical 
simulation (DNS). For the mathematical closure of the system of equations, the extreme 
condition of the fluid flow rate functional can be used. 

 
Fig. 2. Longitudinal velocity in a stationary laminar-gradient boundary layer of an 

incompressible fluid. • [7], diamond [8], □ is [4], ∆ is [9],  is [10], + is [13], -- is (32). 

As a further study, it is reasonable to apply the used approach to the analytical 
description of the turbulent boundary layer. 
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П. В. ЛУК’ЯНОВ, Л. СУН 

ОПТИМАЛЬНА ПРИРОДА ТА РІЗНІ ВЛАСТИВОСТІ ПРИМЕЖОВИХ 
ЛАМІНАРНИХ ШАРІВ НЕСТИСЛИВОЇ ТЕЧІЇ РІДИНИ 

Наведено новий підхід щодо аналітичного опису стаціонарного ламінарного 
примежового шару нестисливої рідини на нескінченій площині. Цей підхід базується на 
відмові, в загальному випадку, від припущення про сталість молекулярної в’язкості усюди 
в області течії. Новизна полягає у використанні варіаційного числення для замикання 
рівняння Нав’є-Стокса, в якому вже присутня нова невідома функція — молекулярна 
в’язкість. Для замикання використовується умова екстремуму втрати рідини крізь переріз 
примежового шару. Ця умова корелює із першим в історії варіаційним принципом 
(найменшої дії) П’єра Моперт’юі. В залежності від типу течії, - градієнтної чи без-
градієнтної, -- вдалось показати, що при градієнтній течії рідини в’язкість є сталою усюди,  
а в без-градієнтній течії змінюється по всій товщі примежового шару. Ця відмінність 
пояснюється різною кількістю сил, що створюють течію рідини в без-градієнтному та 
градієнтному примежових шарах. Це відповідно одна та дві сили. Наявність другої сили, 
а саме повздовжнього градієнту тиску, відповідає за сталість молекулярної в’язкості. 
Відсутність інших, крім сили внутрішнього тертя, сил дозволяє молекулярній в’язкості, 
за умови сталості дотичних напружень, бути змінною величиною, а профілю 
повздовжньої швидкості відрізнятись від лінійної функції, яка не спостерігається у 
примежовому шарі. Наведено порівняння із існуючими класичними та сучасними 
теоріями ламінарного примежового шару. Згідно із цими теоріями, профіль швидкості має 
разючу схожість (відхилення не перевищує 5%) із параболічним законом, отриманим у 
даній роботі, а також забезпечує сталість молекулярної в’язкості в середині примежового 
градієнтного ламінарного шару нестисливої рідини. В цілому в роботі робиться висновок 
про відсутність аналогії між градієнтним та без-градієнтним стаціонарними примежовими 
шарами нестисливої рідини. Течії у цих шарах описується зовсім різними 
функціональними розподілами – параболічним і експоненціальним.   

Ключові слова: внутрішнє тертя, примежовий шар, нестислива течія, змінна 
молекулярна в’язкість,  малі числа Рейнольдса, аналітичні розв’язки, варіаційне числення 
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