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OPTIMAL CHARACTER AND DIFFERENT NATURE OF FLOWS IN
LAMINAR BOUNDARY LAYERS OF INCOMPRESSIBLE FLUID FLOW

The paper presents an original approach to the study of the problem of internal friction
arising from the motion of a rigid body in an incompressible fluid. This approach takes
into account the spatial variability of molecular viscosity in the boundary layer region,
and the solution of the problem is based on the use of an extreme for the fluid flow rate
functional. The spatial variability of molecular viscosity in the boundary layer, by a
well-known analogy with the theory of heat conduction, is based on the absence of a
spatial isotropy of the medium. It is shown that molecular viscosity depends on the
nature of the flow - on how many forces act on the fluid. So, if the flow is unsteady and
non-gradient or steady and gradient, then both of these flows are subject to the action
of two forces. In such flows, the molecular viscosity due to the extreme of the fluid flow
rate is a constant value. It has been fond that the distribution of velocity in a gradient
stationary boundary layer has a parabolic distribution law, and all existing theories
are described by this law quite accurately, with an error of maximum 5%. At the same
time, in a laminar non-gradient boundary layer, only the force of internal friction acts
on the fluid. This causes the spatial variability of molecular viscosity: shear stress can
be constant not only due to the linearity of the velocity distribution, which is not
observed in the boundary layer, but also due to the variability of molecular viscosity.
The resulting exponential velocity distribution in a non-gradient boundary layer is in
complete agreement with those in the problems solved by Stokes, and is also confirmed
experimentally. The paper also points out that the exponential law is consistent with
modern data obtained by direct numerical simulation (DNS) for flows with Low
Reynolds numbers — both single-phase and two-phase, in the presence of particles
inside the fluid.

Keywords: internal friction, boundary layer, incompressible flow, variable molecular
viscosity, Low Reynolds numbers, analytical solutions, calculus of variations.

Introduction. When a body moves in a fluid, two phases interact, which causes the
formation of a laminar or turbulent boundary layer, a domain of fluid adjacent to the
moving body. In aviation and astronautics, the characteristics of the boundary layer play
an important role, since they determine the drag force in flight and are partly responsible
for the lift force. When studying the turbulent boundary layer, it turned out that not only
the turbulence closure problem has not yet been solved, but there is also no clear theory
of the laminar boundary layer, which would be directly based on the Navier-Stokes
equations [1]. This work is devoted precisely to the development of a unified approach
to the description of a laminar boundary layer of an incompressible flow. Before a brief
review of the existing theories, we note that in modern numerical studies, flows are not
divided into laminar and turbulent, and laminar flows are classified as Low- Reynolds
number ones. If for a turbulent flow it is a priori assumed that the eddy viscosity is not
constant, then we assume, by analogy with the DNS, that the molecular viscosity can
also be variable. This is a physical assumption based on the absence of spatial isotropy
in the boundary layer. For interest in this work, we cite a well-known fact: the laminar
boundary layers on a rotating disk and when a rotating fluid flows around an immobile
disk are completely different. Firstly, they are described by different self-similar
solutions, and secondly, the thickness of the boundary layers differs by about a factor
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of two [2] (immediately after formula 11.8). Now it is easy to understand that the
problem of the motion of a body in a fluid at rest at infinity and the problem of fluid
flow past an immobile body also have a different nature and are irreversible. In the first
case, when the fluid flow is entirely due to and determined by the velocity shear (internal
friction), a non-gradient boundary layer is formed. In the second case, the fluid flows
past an immobile body and there are two forces: the force of the longitudinal pressure
gradient and the force of viscous shear stresses.

Problem state. Stokes [3] considered the problem of the forced motion of a fluid
under the action of harmonic oscillations of a plane. An exponential dependence of the
decrease in velocity with distance from the oscillating plane is obtained. Stokes, in order
to convince everyone that he is right, refers to experiments, where this dependence is
confirmed. This problem is presented as the first one in [3]. A quite reasonable question
arises: why Stokes did not consider as the first and simplest problem the steady motion
of a plane, which, according to Stokes, has a linear solution with respect to the fluid
velocity. The answer is that, as is known [4], the laminar boundary layer has a nonlinear
character. The exponential dependence as a good approximation for viscous and
intermediate sub-layers of a turbulent boundary layer is mentioned in the work of Van
Drist [5]. The mistake of Van Drist, however, like everyone else, was the belief in the
reversibility of flows (problems), the impossibility of which has already been mentioned
above. One conclusion can be drawn from the above: in a non-gradient boundary layer
caused by pure shear, there is an exponential decrease in velocity with distance from the
moving wall. Then what about the well-known theories of the boundary layer by Prandtl
[6], Blasius [7], Karman [8], Pohlhausen [9], as well as the lesser known theories of
Sohrab [10], Weyburn [11], [12] Abdul-Gafor [13]? As will be shown further, all
theories are consistent. The answer lies in the different structure of laminar non-gradient
and gradient boundary layers. All existing theories have been influenced by the
erroneous opinion about the reversibility of flows - gradient and non-gradient. Further,
using the calculus of variations, it is shown that under experimental conditions, when a
gradient shear flow is created, the molecular viscosity has a constant value. And this is
not a hypothesis, but a result obtained from an analytical solution for the velocity field.
What, the constancy of viscosity, cannot be said about a purely shear flow in a non-
gradient boundary layer. There, inside the boundary layer, the viscosity increases from
a minimum value at the moving plane to a maximum value at the outer, even if blurred,
boundary of the laminar boundary layer.

Formulation of the problem. The paper considers the optimal character and
different nature of incompressible flows in laminar boundary layers:

— non-gradient boundary layer formed during the steady motion of an infinite plane;

— gradient boundary layer in the flow past an immobile plane.

The purpose of the work is to obtain analytical dependences for the distribution of
the velocity field in gradient and non-gradient laminar boundary layers of an
incompressible fluid flow, as well as to reveal their common nature and differences in
properties.

Non-gradient laminar boundary layer caused by the steady motion of an
infinite plane. In order to understand and compare the results obtained below, we
present solutions to related problems considered by Stokes. As already mentioned in the
introduction, Stokes [3] solved the problem of oscillations of an infinite plane with
frequency n and amplitude cin a viscous fluid. If we denote, according to Stokes, for
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X direction of the normal to the plane, then we obtain for the problem the corresponding
Navier-Stokes equations (in Cartesian coordinates) and the boundary condition

2 2

op o oV oV
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In Stokes' paper [3], these are equations (8) and (9), respectively. v is longitudinal
velocity, and x =v are various designations for the coefficient of molecular viscosity.
The solution obtained by Stokes is

\% :cexp(—«/n/2y'x)sin(nt—«/n/2y'x). (3)

The solution in the form (3) does not allow one to pass to the limit to a steady
motion corresponding ton —0, since in this case it is equal to zero. Apparently,
therefore, Schlichting (see 5.25 in [1]) gives another boundary condition in the form

V‘x:O =C-cosnt 4)

and the corresponding to (4) solution ([2], 5.26)
\% :cexp(—\/n/2y'x)cos(nt—\/n/Zy'x). (5)

Now, in the limit n — 0 from (5), it turns out that the entire space must move at a
constant velocity equal to the velocity of the plane. Stokes, apparently, understood the
impossibility, from the point of view of conservation laws in physics, to force the entire
half-space to acquire the velocity of a moving plane, and even more so to keep moving
at this velocity. Trying to save the situation when the theory does not provide
experimental confirmation of the solution of the simplest problem, Stokes obtained a
self-similar solution to the problem of instantaneously setting the plane in motion. The
boundary condition is now expressed as a Heaviside function

Vx=o:C'H(t):{g,’:i8j ©
By analogy with heat conduction, using the self-similar coordinate in the form
n=yl ZM @)
Stokes [3] obtained the corresponding self-similar solution
Vy =c(1-erf(n)). (8)

For subsequent comparison with the solution obtained below, it is important to note
that the introduction into (1) of the scales of quantities

Vl=c; [t]=1/n; [X]=x/2,u'/n

leads to the following representation of dimensionless solutions (3) and (5)
V =exp(-x)sin(t—x), V =exp(—x)cos(t—Xx). (9)
In the course of work, we logically approached the emerging question about the
nature of the solution in the case of the simplest problem
2
op 0“Vy
—=0, O=v—2V =C. 10
oy ayz X‘ y=0 (10)
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In relations (10), the coordinates x and y are swapped and index x is added to the
velocity. Problem (10) corresponds, according to Stokes, to the steady motion of the
plane along the axis X . What is wrong? Why is it impossible to obtain an experimentally
confirmed exponential law from the formulation and solution of a simple problem (10)?
To understand the reason for this discrepancy, it is necessary to find out what laws of
physics the Navier-Stokes equations are based on. In deriving his equations, Stokes used
an analogy with the laws of heat conduction. This analogy is based on the mathematical
equivalence of the following equations

% aay[ (y)%] as well as %=%[ (Y)%]- (11)

In (11) v(y)andk(y) are molecular diffusion and thermal conductivity,
respectively. As is known, the constancy of thermal conductivity k(y)in (11) is based

on the spatial isotropy of the medium, which just does not take place in the boundary
layer, the domain of influence of one phase (body) on another (fluid).

Consider a plane moving at a constant velocity in an infinite domain of an
incompressible fluid. Let us assume that the molecular viscosity of an incompressible
fluid is a variable, at least within the boundary layer. We will consider it as a function
of the distance to the solid plane

= u(y). 12)

The Navier-Stokes equation for this problem in accordance with (12) has the form
dv

( (y) XJ (13)

Let be [y]=35, [Vx]=U, [,u]z,uo =max u the scales of the values of this

problem. If they are taken out as factors on the right side of equation (13) and divided
by a common constant factor (product), then the equation will not change. Therefore,
hereafter we will consider dimensionless quantities, and we will leave their designations
the same. Equation (13) now contains two unknown functions: (y) as well asVy (y) .
To close the problem, we assume that the fluid flow rate extreme condition is satisfied.

In other words, among all possible incompressible fluid flows, caused by the friction of
the plane with a dimensionless velocity

Vx‘yzo :1 (14)
we will consider realizing only that flow for which
Q0
J = [ Vydy = ext. (15)
0

Expression (15) agrees with the original interpretation of the Pierre Maupertuis
principle [14]. According to Maupertuis, if denoted by m,V,S mass, speed and distance
respectively, then the action in the form

I =mVs
reaches the minimum value for the true trajectory. This is the first formulated variation
principle of least action. If for a steady motion and an infinite plane, as well as for a
homogeneous fluid m=const, s=const, then formula (15) will mean the minimum
flow rate in the boundary layer. A good overview of the applications of the calculus of
variations for fluid flows is given in [15]. To the boundary condition (14) one should
add the second, obvious condition
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Vx(y) >0, y—+om. (16)

To find the unknown function u(y) , when Vy () is already defined, it is sufficient,

according to (13), to formulate one boundary condition. As will be shown further, it is
reasonable to put

'”‘yzg =1. a7

In equation (17) o is an approximate value of the boundary layer thickness at
which the velocity decreases by about 100 times. Thus, the problem is determined by
relations (13)—(17). Since any viscosity of a fluid appears only in the presence of a
velocity gradient, it is possible assuredly to write

u(y) = f(dvy/dy) (18)
where f means certain function . On the other hand, we use an equation similar to the

turbulent flow equation, where viscosity is a function of coordinate. By analogy, we
assume that viscosity is a function of velocity

u(y)=u(Vx(y)). (19)
Comparing relations (18) and (19), it is easy to conclude that
Va(y) =2 (V) = 1L (F (dVy fdy)) =g (dVy /dy).  (20)
The Euler equation for the extreme of the functional according to (15) and (20) has
the form
d dv
——lag/o] =X ||=0. 21
dy[ ) [ dy B )
From (21) it immediately follows that
a9
=C,. 22
"G (22)
dy

Using the invariance property of the first differential and replacing the function ¢
by the Vy we obtain from (22)

2
dVy d“Vy
=C . 23
dy 1 g2 &
The general solution of equation (23) is
Vy(y)=A+ Bexp(y/Cl). (24)

For the case of the considered motion of the plane, according to the boundary
conditions (14) and (16), the velocity distribution has the form

Vx(y)=exp(y/Cy). (25)

The value of the constant Clis determined from the condition of meeting the
Stokes solution (9). This meeting gives Cl =-1and therefore

Vx =exp(-y). (26)

Solution (26) testifies to the correctness of using the calculus of variations approach

for the problem under consideration. Moreover, a comparison with the experimental and
theoretical distributions (see Fig. 1, a) shows that, for the dimensionless value y=5 a
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decrease in the velocity value by about 100 is obtained (see [2,4]). To obtain the velocity

profile given in all sources for the inverse problem for the considered problem of flow

past an immobile plane, it is sufficient to subtract the right side of equality (26) from
unity:

u=1-exp(-y). (27)

For convenience of comparison with other results, expression (27) is shown in Fig.

1, b-c). The value 1/C, =-0.0175used in fig. 1, b-c) to match with the internal scales

of the boundary layer. We point to one non-trivial detail. According to (26), the viscosity
of a fluid can increase to infinity, since it must be determined by an exponential function
with a positive argument tending to infinity. However, in such cases, one resorts to
describing the solution in other, initial quantities. The Navier-Stokes equations are
derived in stresses that maintain across boundary layer. And this condition is just
fulfilled. A similar example in fluid mechanics would be the point vortex model, where
the velocity on the axis goes to infinity, but in this case circulation is used, which is a
constant.

Fig.1. Distribution of the longitudinal component of the velocity: comparison of the solution. a
— (26) (111) with known close solutions: amplitude of solution (9) (1), self-similar solution (8)
(1) [3]; b — ¢ — (27) with solutions at low Reynolds numbers obtained using DNS [16]

It should be noted that the exponential solution in the form (27) can also
approximate two-phase low-Reynolds turbulent flows [17]. In this case, in the formula
(27)1/C, =-0.05.

Gradient laminar boundary layer: fluid flow past an immobile plane caused
by a pressure gradient. The above studies cause natural bewilderment, since
measurements in wind tunnels, as well as the theory of a laminar boundary layer,
confirm the constancy of molecular viscosity in the boundary layer, and in the flow
domain as a whole. To study this situation, it is necessary to turn to the physics of flows.
Let's answer the main question: what forces cause the fluid to flow in each case? In the
case of non-gradient flow, this is internal friction, which is entirely determined by the
velocity gradient. Therefore, for the flow, functional integrand depends only on the
derivative of the velocity. Otherwise, the situation is in the case of gradient flow.
Obviously, now the flow is created by two forces (as in the non-steady problems solved
by Stokes [3]): the pressure gradient and internal friction. The pressure gradient creates
a velocity field which is perturbed by the experimental object (body) that forms the
boundary layer. Blasius' mistake is that in the problem of fluid flow past an immobile
plate, he excluded the force of the longitudinal pressure gradient ([2], see formulas 7.5).
It turns out that the flow of the fluid is not caused by anything: there is no force that
would make the fluid flow. Since everyone was interested in the inverse problem of the
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motion of a plate (wing), where there really is no longitudinal pressure gradient, then,
believing in the reversibility of phenomena, everyone agreed with Blasius. If we now
assume that in the fluid flow rate functional the integrand formally depends not only on
the derivative of the velocity, but also on the velocity itself (determined by the
longitudinal pressure gradient), then, as will be shown now, the value of the molecular
viscosity turns out to be constant. So, consider the gradient flow described by the

equation
op _d dVX
h 28
x dy[ )—= (28)
with conditions (14), (15), (17). Instead of condltlon (14), we use the condition
Vx(y=1)=L1. (29)

Condition (29) means reaching the outer boundary (here, the thickness of the
boundary layer is taken as the scale) of the gradient boundary layer. Of course, this is
approximate, since there is no strict outer boundary for the boundary layer. Now
suppose, due to the changed physics of the phenomenon (two forces instead of one),

that
Vy (y)=g(Vyx,dVy /dy). (30)
Relation (30) allows us to obtain, instead of (23), the corresponding Euler equation

_4a aVx |
1 dy[ag/a( y D_o. (31)

The solution of equation (31), taking into account the no-slip conditions and
condition (29), has the form
Vx(y)=y(2-Y). (32)

Substitution (32) into the dimensionless Navier-Stokes equation corresponding to

the gradient flow
dv
1= o w0 G,

leads to
y+C = u(y)(2-2y). (33)
From expression (33) it follows that at C, = —1 viscosity is constant
u=1/2=_Const. (34)

Hence, the main part of the gradient boundary layer is described by a parabolic
profile, and in this case the molecular viscosity is constant there. Fig. 2 shows the results
of known theories. All solutions, as well as experimental data [4], are quite close to the
parabolic law (32). This explains the desire of all cited authors to bring their solutions
closer to the parabolic law.

Conclusions. An original approach to the analytical description of a steady laminar
boundary layer of an incompressible fluid is proposed, due to the lack of a physically
confirmed solution to the simplest problem of the steady motion of an infinite plane in a
fluid at rest at infinity. As shown above, Stokes, trying to close the system of equations,
assumed a constant value of molecular viscosity in his model. Careful investigation revealed
the cause of the discrepancy. Stokes used the analogy with Fourier's second law, where the
thermal conductivity is a constant. But the constancy of thermal conductivity does not take
place in the boundary layer, since the spatial isotropy of the medium is violated there. With
the constancy of viscosity, the situation is much more complicated. As it turned out in the
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course of the above studies, for a non-gradient boundary layer, the viscosity really, by
analogy with thermal conductivity, must be variable in order to obtain an experimentally
confirmed dependence of the exponential decrease. And for a gradient boundary layer, due
to a different physics of the phenomenon (the presence of a longitudinal pressure gradient),
it was possible, on the basis of the calculus of variations, to show that the viscosity inside
the boundary layer is constant, and the velocity distribution is described by a well-known
parabolic law, which with high accuracy (5%) correspond to all known boundary layer
theories and experimental data. The solutions of non-stationary problems of plane
oscillations and instantaneous setting of the plane in motion, obtained by Stokes, based on
the constancy of viscosity and have the same property as the gradient steady boundary layer,
namely: not one, but two forces act on the fluid - internal friction and inertia. Thus, to
describe the laminar boundary layer of an incompressible fluid, in general, one should use
the variable viscosity in the Navier-Stokes equations, as is done in direct numerical
simulation (DNS). For the mathematical closure of the system of equations, the extreme
condition of the fluid flow rate functional can be used.

i
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Fig. 2. Longitudinal velocity in a stationary laminar-gradient boundary layer of an
incompressible fluid. e [7], diamond [8], o is [4], A is [9], = is [10], + is [13], -- is (32).

As a further study, it is reasonable to apply the used approach to the analytical
description of the turbulent boundary layer.
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I1. B. IVK’SIHOB, JI. CYH
OIITUMAJIBHA ITPUPOJA TA PI3HI BNACTHBOCTI IPUMEXKOBHUX
JAMIHAPHHUX IITAPIB HECTUCJIMBOI TEYII PITUHA

HaBemeno HOBWI MiAXiA OIOJ0 aHATITHUYHOTO OINCY CTAlliOHAPHOTO JaMiHAPHOTO
MPUMEKOBOTO LIapy HECTUCIMBOI PiJMHU HAa HecKiH4YeHi# rmommHi. Llei miaxin 6a3yerbcs Ha
BiZIMOBI, B 3araJI,HOMY BHIIa/IKy, BiJ] IPUITYLIIEHHS [1PO CTAIICTh MOJIEKYJIIPHOI B’ I3KOCTI yCIOAN
B obOmacti Teuii. HoBU3HA mojsirac y BUKOpPHCTaHHI BapiallifHOrO YHMCIEHHS JUIS 3aMUKaHHS
piBasHHS Haw’e-CTOKca, B IKOMY B)K€ IPUCYTHS HOBa HeBifoMa (PYHKIISI — MOJEKYJIpHA
B’s3KiCTh. /|11 3aMHUKaHHS BUKOPHCTOBYETHCS YMOBA €KCTPEMYMY BTPATH PiIMHH KpPi3h mepepi3
npuMexoBoro mapy. Ll ymoBa kopemioe i3 mepmuM B icTOpii BapialifHUM NPHHIUAIIOM
(naiimenmoi aii) [T’epa Momept’roi. B 3anexnocti Bif Tumy Teuil, - rpamieHTHOI uu Oe3-
Tpa/Ii€HTHOI, -- BAAIOCH [T0KA3aTH, 1110 P TPai€HTHIHN Teuil piANHA B’SI3KICTh € CTAJIOI0 YCIO/IH,
a B 0e3-rpajieHTHill Teuil 3MIHIOETHCSI TIO BCill TOBIII MPUMEXOBOTO Inapy. Lls BinxMiHHICTE
MOSICHIOETBCS PI3HOIO KUTBKICTIO CHJI, IO CTBOPIOIOTH TEUII0 PIAMHU B 0€3-TPaIieHTHOMY Ta
TpaJieHTHOMY NPAMEXOBUX mapax. Lle BiamoBimHO oxHa Ta nBi crmi. HasBHICTE mpyroi cuim,
a caMe IMOB3J0BXHBOIO TPAMIEHTy THCKY, BIAMOBIZA€ 3a CTAIICTh MOJICKYJISIPHOI B’S3KOCTI.
BigcyTHIiCTh iHIIMX, KPIM CHJIM BHYTPIIIHBOTO TEPTS, CHII J03BOJISIE MOJICKYJISIPHIH B’ SI3KOCTI,
32 yMOBHM CTaJOCTI JOTHYHUX HalpyXeHb, OyTH 3MIiHHOIO BEJIMYMHOIO, a TpOoQiIto
MIOB3JIOBXHBOI MIBUJKOCTI BIAPI3HATUCH Bix JiHIHHOI (YHKIII, SIKa HE CIOCTEpIraeTbest y
npuMexoBoMy mrapi. HaBeneHo MOpIBHAHHS 13 ICHYIOUMMH KJIAQCHYHUMH Ta Cy4acHHUMH
TEOPisIMH JIaMiHAPHOT'O IPHMEKOBOTO MIApPy. 3T1IHO i3 MU TEOPisIMH, MPODLITh IIBUAKOCTI Ma€e
pas3iody CXOXICTh (BIOIXWJICHHS HE IepeBHuInye 5%) i3 mapabomiyHIM 3aKOHOM, OTPUMAaHUM y
JIaHii poOOTI, a TAKOXK 3a0€3MEeUYe CTANICTh MOJICKYJIAPHOT B’ SI3KOCTI B CEPEIMHI TPUMEKOBOTO
Ipajii€eHTHOTO JIAMIHAPHOTO IIapy HECTUCIHUBOI pifuHU. B 11i1oMy B po60Ti poOUTHCS BUCHOBOK
PO Bi/ICYTHICTh aHAJIOT1] MiXK TPaJ[IEHTHUM Ta 0€3-TPpalieHTHUM CTaI[iOHAPHUMH ITPUMEKOBUMHU
mrapaMM  HECTHCIHMBOI piguHHA. Tewii y [HMX MmapaX ONHCYEThCS 30BCIM  Pi3HUMH
(byHKITIOHATEHUMH PO3MOITIaMU — MapaboiyHUM 1 €eKCTIOHEHITIaTbHUM.

KalouoBi cioBa: BHyTpilIHE TepTs, NPUMEKOBUIM IIAp, HECTUCIWBA TeYis, 3MiHHA
MOJIEKYJISIpHA B’SI3KiCTh, MaJi unciia PeitHonbaca, aHaiTHYHI pO3B’ 3K, BapialliiiHe YUCIICHHS
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