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Results of models parameters optimization for the nonstationary traffic in telecommunication
and computer networks are given. For optimum modeling of the traffic dynamics metrics of
Euclids and Gilberts spaces are used. The technique and algorithm ofmodels optimization are
developed. Theoretical positions are illustrated by numerical examples and diagrams with use

ofMathCAD

Introduction

Problems of modeling of the traffic in
telecommunication and computer networks
become more and more actual, in process of
development of these networks, use of
principles of construction of open
information systems and OSI ISO standards,
growth of a supply and demand in the market
of optimum service models of the traffic at a
transport level [1-3]. The successful decision
of these problems restrains complexity of the
problems decision of modeling for
nonstationary and nonlinear cases. In the
known literature there are no techniques and
results of optimization and the comparative
analysis of models of the nonstationary
traffic. In many respects it is caused by weak
development of mathematical methods of
stochastic ~ approximation  of  casual
nonstationary processes, difficulties of the
proved choice of the traffic standards. The
given work is logic continuation of the work
[4].

The purpose of work

The purpose of work is optimization
and comparison of models of the nonstatio-
nary traffic in telecommunication and com-
puter networks.

For achievement of the purpose the fol-
lowing tasks are put and solved: use of a
technique and algorithm of the comparative
analysis of optimum models of the nonsta-
tionary traffic in telecommunication and
computer networks [4], a choice of the spac-
es metrics of models comparison and criteria
of their optimality, substantiation and a
choice of optimality criteria of models of the
nonstationary traffic, a substantiation of a

task statement and construction of optimum
models of the nonstationary traffic, the com-
parative analysis of adequacy of optimum
models of the nonstationary traffic on the
basis of the chosen adequacy parameters, the
decision of numerical examples and the for-
mulation of conclusions by results of models
optimization of the nonstationary traffic.

Statement of problem

As well as in the work [4], in a role of
the initial data the initial polynomial repre-
sentation of the reference nonstationary traf-
fic with known Gaussian m - measured dis-
tribution of decomposition independent fac-
tors and the Markov’s non-uniform models
of the nonstationary traffic are chosen [4].
The basic methods of construction of optimi-
zation models of the nonstationary traffic are
chosen a method of the traffic quantization
and Markov’s approximation of random
process of the traffic conditions change, the
Ritz’s method and the method of the maxim-
al plausibility. The results of the problem
decision are optimization models parameters
of the nonstationary traffic constructed on
the basis of metrics of Euclid’s and Gilbert’s
spaces, the comparative analysis and also
conclusions on results of the analysis.

The problem decision

We shall begin with the optimization
of the traffic quantization values with the
purpose of achievement of the best approxi-
mation of the modeling and reference mo-
ments of the traffic on the normalized inter-
val of comparison time. We shall use the
technique and the algorithm of the compara-
tive analysis of the work [4].



We shall use the metrics of the Euc-
lid’s space then the square of distance be-
tween the first initial moments of the refer-
ence and model of the nonstationary traffic
can be submitted as [4]

4z,,22)2:'i% k-(2-tK)-[Z2-(Z2-Z,)./>0.e~ ] , (1)

where Z/ and Z2 - the traffic quantization

values,

tk (2-tk) - normalized on an interval of com-

parison the standard of the traffic,

r] - intensity of change of the nonstationary

traffic,

tk - the k— th moment of the traffic supervi-

sion time,

P10 - probability of the traffic presence in the

first condition at the initial moment of time.
When we use the metrics of the Gil-

bert’s space then the square of distance be-

tween the first initial moments of the refer-

ence and model of the nonstationary traffic

can be submitted as [4]

f(Z,,ZZ)ZZJ'd‘C (2-13-[22-(Z2-2, ) . 1 M -(2)

From formulas (1), (2) follows, that
with a choice of quantized values Z/ and Z2 it
is possible to provide the best approximation
of the initial moments of the reference traf-
fic. Similar expression can be written down
concerning the second central moments of
the reference and model of the nonstationary
traffic. For a case of the Gaussian multiva-
riate distribution the optimum choice of the
first two moments of the traffic model the
method of optimization of quantized values
and their dispersions allows to solve a prob-
lem of the best approximation of the normal
density of distribution of the reference non-
stationary traffic and the normal density dis-
tribution of the model of the nonstationary
traffic.

Let's illustrate the specified opportuni-
ty with the problem decision of the best ap-
proximation of a population mean of the ref-
erence nonstationary traffic by a population
mean of the model of the traffic. Considering
(1), (2) as optimization criteria of quantized
values in a nonlinear bidimentional problem
of optimization without restrictions, we use a
classical method of search of the optimal
quantized values.

This problem we shall solve in the fol-
lowing statement: expression of optimization
criterion quantized values Zj, Z2 as function-
al (1) or (2) is known, the classical method
of search of a minimum (1) or (2) requires to
find Zigy, Z2Zqu delivering a minimum func-
tional (1) (a discrete case) or functional (2)
(a continuous case):

min s 2(Zr Z2)=s” ( Z lopl,Z 20pi) (3)
7\.22

Differentiating functionals (1), (2) on
parameters Z/, Z2, we shall receive two equa-
tions of optimization concerning values Z/,
Z2.

1 For a discrete case:

BM 2-g-[Z2-(22-Z,)PI0s*""T] (4)
wPn-e*') =0
E\:J;e o2-tt)-1Z2- (22-Z,)PW-eT (5)
(I-/>0~*)=0
2. For a continuous case:

jd‘e o2-tk-[22(z2-2.) 4B  TlEm-e')dtk=0 (6)
jd‘c o(2-<t)-[Z2- (Z2- Z) WPOm" ]| W1~ /2,se+'>)dtk=0"(7)

Let's result these equations in an initial
form of system from two linear algebraic eg-
uations, we shall receive

a\lrl ai2n2 ~ e (8)
H#AM + a2Z7 2 —h2. 9
1. For a discrete case:

an=x(Pl0.eNy
tk=0 9

a2l=£P10e-™-(I-PI0-e"")
49

)\ /
a\2="(1-PJ0-e*)P l0e~"
™0 9

a22="(I-P10e-")2 nn

/,:8 )2, VA

bl - 2-tK)] PI0-e*
pg (271K PO-e

b2 ="E£[ttV - tK\-Q-Pn-e*)" (i2)

2. For a continuous case:
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alx=\{Pw-e”")-{\-Pw-e~")dtk, (13)
0

an =\[(\-Pw-e”)-{Pia-e”)]dtk,
0

a22=){\-PX3e-~fdtr

(14)
0

bl =JItK(2-t)HPI0-e-<)dk.

0

Using Kramer’s rule, we shall receive
optimum quantized values of controlled va-
riables

where |A|, |Al], |A2| - determinants of the
equations system (8), (9).

Substituting these values in functional
(1) or (2), we shall find its minimal value at
optimum quantized values (16).

Example 1 We shall show feature of
definition optimum quantized values and mi-
nimal root-mean-square deviations of the
moments of the first order nonstationary pa-
rabolic traffic at the following initial data:
P,0 =0.95, PD=0.05, /// = 3.414.

Using formulas (10) - (12), we shall
find parameters of system of the algebraic
equations for a discrete case

all =0.903, al2 =0.078, 61=0.031,
a21=0.078, all =0.941, bl =0.969 .

Using formulas (13) - (15), we shall
find parameters of system of the algebraic
equations for a continuous case

an =0.132, an =0.137, 6,=0.108,
a2 =0.137, a2=10.594, b2=0.559.

Substituting these values in formulas
for determinants, we shall find their values
for a discrete case

|A| float,7 —» .8440187 = 0.844

IAl| float,7 -» -4593524e-I =-0.046

13

|A2| float,7 -> .8727696 = 0.873

Substituting these values in formulas
for determinants, we shall find their values
for a continuous case

\A\ float, 7—» 5.961473 «10“2= 0.06
|zll| float, 7—»—1.267710+ 102=-0.013

\A1\ float, 7—» 5.905071 «10~2=0.059

We use these values of determinants
and we shall find under formulas (16) re-
quired optimum quantized values. In system
MathCAD the decision looks like:

1. For adiscrete case

Z10=-0.213,Z20=0.990538. (17)

2. For a continuous case

Z10=-0.054,Z22=1.034. (18)

Substituting optimum quantized values
Z10 Z2 in the formula (3), we shall find the
minimal values target functional and root-
mean-square errors of modeling of a popula-
tion mean of the reference traffic:

1. For adiscrete case

£ram(.2\,Zl) - 1.624<10

a,,,=".«4x/(T7 19)

2. For a continuous case

£min(Zuz2) - 2,587x10 3

amr=J2,587*10'3 = 0,05086 - 5,086% (29)

Let's define the minimal value of aver-
age factor of a variation of an error on an
interval nonstationary:

1. For a discrete case

& min 0.04%
min =0.06%
Viin -~ 0.667 °,(21)

2. For a continuous case

5,086
0,667

(7 min
F min —

where average value (a constant com-
ponent) normalized traffic on an interval
nonstationary is defined under the formula
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mO=\[tk {2-tK)]dtk . (23)
0

On fig. 1results of modeling of a pop-
ulation mean of the reference nonstationary
traffic m(tk) by model M(zZi , Z2 , t1J opti-
mized in Gilbert space with parameters (18),
and a parameter of accuracy of the modeling
(22) optimized in Euclid space by model
MI(tk), and also model M2(ty) in which in a
role quantized values average values of
guantums are used are shown. Comparing
curves, it is uneasy to notice, that model
M(Zi , Z2 , tk) optimized in Gilbert space
with parameters (18), and a parameter of ac-
curacy of modeling (22) yields the best re-
sults of modeling of the reference traffic.
Fig. 1evidently illustrates that the model op-
timized in Gilbert space approximates the
reference traffic much better.

Fig. 1. Comparison of models of the nonstatio-
nary traffic

Intensity and initial probabilities in
problems of optimization act, as a rule, in a
role of unguided parameters. Despite of it is
not superfluous to check up their influence
on the optimum decision, to estimate an op-
portunity of optimization of their values for
the further improvement of the decision. We
shall show feature and principles of such
check on an example of optimization rjl.

Example 2. We shall present target
functional as function of intensity rjl:

For a continuous case

o= j(gf*-(z-ft)—[ZD(ZZ}Z,Q M| O] foitk-(24)

Also we shall find a graphic method
(fig. 2) a minimum value of functional (24),
on rjl at optimum quantized value of the traf-
fic. We shall receive nrlgt = 281,

F5(Zltrilgd)ymn = 2.993 10s > 2.587 Iff3
Hence, selection r\I the optimum decision to
improve is impossible.

Research of influence of other un-
guided parameters of models - initial proba-
bilities P jo, P 11 is similarly carried out. It is
interesting to note, that concerning these pa-
rameters of the equation of optimization are
linear algebraic, therefore values of probabil-
ities are optimum.

pi
Fig. 2. Find the optimal value pi

In a role of criteria of adequacy we
shall choose parameters concordance model-
ing and reference values of the traffic on an
interval nonstationary. We shall enter a pa-
rameter concordance modeling and reference
values of the traffic in points of supervision
thk =1, m,

2‘m(tk)’M(ZDZ D tk)

PN 1tk 2+M (ZDZ 20, tk)2

Example 3. We shall calculate values
of a parameter (25) for the models optimized
in spaces Euclid and Gilbert at m = 10. Re-
sults of calculation we shall reduce in tab. 1
and we shall display on fig. 3.

a. A discrete case
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b. A continuous case
Fig. 3. Diagrams of dependences of parameters
concordance models from time

Tab. 1 Calculation results p(Z10Z20,tk)

4 00 01 0.2 0.3 04
P 00 0905 0941 0967 0.983
pre 00 0998 0991 0992 0.99
tk 05 0.6 0.7 0.8 0.9 10
P 0993 0998 10 10 10 10
. 0999 10 10 0999 0999 0.999

Analyzing given tab. 1 and fig. 3 it is
possible to conclude, that the optimized
models precisely enough display the refer-
ence traffic, is especial in second half of in-
terval nonstationary. In a continuous case
more exact coordination of model and the
standard is observed.

Application of various criteria of
adequacy allows all-round check of
adequacy of models, enables to execute also
an estimation of influence of unguided
variables on optimum decisions. Especially it
IS necessary to pay attention to the nonlinear
effects connected to application of decompo-
sition in a number on indicative functions
and use intensities of change of the traffic as
parameters an exhibitor.

Conclusions

1 Application of quantization and
Markov approximations allows building of
adequate models of the nonstationary traffic
submitted initial polynomial by decomposi-
tion with casual factors. With growth of di-
mension of optimum models accuracy of
modeling nonstationary the traffic will grow
also. The significant interest represents re-
search of this law.

2. Offered the system of parameters
and a technique of verification of models
nonstationary traffic with various number of
conditions of the traffic allow to carry out
verification of models and to use quantitative
estimations of a degree of adequacy of mod-
els to the real nonstationary traffic.
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