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Results of models parameters optimization for the nonstationary traffic in telecommunication 
and computer networks are given. For optimum modeling o f the traffic dynamics metrics o f  
Euclid’s and Gilbert’s spaces are used. The technique and algorithm o f models optimization are 
developed. Theoretical positions are illustrated by numerical examples and diagrams with use
ofMathCAD

Introduction
Problems of modeling of the traffic in 

telecommunication and computer networks 
become more and more actual, in process of 
development of these networks, use of 
principles of construction of open 
information systems and OSI ISO standards, 
growth of a supply and demand in the market 
of optimum service models of the traffic at a 
transport level [1-3]. The successful decision 
of these problems restrains complexity of the 
problems decision of modeling for 
nonstationary and nonlinear cases. In the 
known literature there are no techniques and 
results of optimization and the comparative 
analysis of models of the nonstationary 
traffic. In many respects it is caused by weak 
development of mathematical methods of 
stochastic approximation of casual 
nonstationary processes, difficulties of the 
proved choice of the traffic standards. The 
given work is logic continuation of the work
[4].

The purpose of work
The purpose of work is optimization 

and comparison of models of the nonstatio­
nary traffic in telecommunication and com­
puter networks.

For achievement of the purpose the fol­
lowing tasks are put and solved: use of a 
technique and algorithm of the comparative 
analysis of optimum models of the nonsta­
tionary traffic in telecommunication and 
computer networks [4], a choice of the spac­
es metrics of models comparison and criteria 
of their optimality, substantiation and a 
choice of optimality criteria of models of the 
nonstationary traffic, a substantiation of a

task statement and construction of optimum 
models of the nonstationary traffic, the com­
parative analysis of adequacy of optimum 
models of the nonstationary traffic on the 
basis of the chosen adequacy parameters, the 
decision of numerical examples and the for­
mulation of conclusions by results of models 
optimization of the nonstationary traffic.

Statement of problem
As well as in the work [4], in a role of 

the initial data the initial polynomial repre­
sentation of the reference nonstationary traf­
fic with known Gaussian m - measured dis­
tribution of decomposition independent fac­
tors and the Markov’s non-uniform models 
of the nonstationary traffic are chosen [4]. 
The basic methods of construction of optimi­
zation models of the nonstationary traffic are 
chosen a method of the traffic quantization 
and Markov’s approximation of random 
process of the traffic conditions change, the 
Ritz’s method and the method of the maxim­
al plausibility. The results of the problem 
decision are optimization models parameters 
of the nonstationary traffic constructed on 
the basis of metrics of Euclid’s and Gilbert’s 
spaces, the comparative analysis and also 
conclusions on results of the analysis.

The problem decision
We shall begin with the optimization 

of the traffic quantization values with the 
purpose of achievement of the best approxi­
mation of the modeling and reference mo­
ments of the traffic on the normalized inter­
val of comparison time. We shall use the 
technique and the algorithm of the compara­
tive analysis of the work [4].



n
We shall use the metrics of the Euc­

lid’s space then the square of distance be­
tween the first initial moments of the refer­
ence and model of the nonstationary traffic 
can be submitted as [4]

4Z„Z2)2 = j j t k -(2-tk)-[Z2 -(Z 2 -Z,)./>0.e ^ ‘] f , (1 )  
1,=0

where Z/ and Z2 - the traffic quantization 
values,
tk (2-tk) -  normalized on an interval of com­
parison the standard of the traffic, 
r] -  intensity of change of the nonstationary 
traffic,
tk -  the k— th moment of the traffic supervi­
sion time,
P 10 -  probability of the traffic presence in the 
first condition at the initial moment of time.

When we use the metrics of the Gil­
bert’s space then the square of distance be­
tween the first initial moments of the refer­
ence and model of the nonstationary traffic 
can be submitted as [4]

f (Z„Z2)2 = jfc (2 - /J -[Z 2 -(Z2 - z, ) . ] M  -(2) 
0

From formulas (1), (2) follows, that 
with a choice of quantized values Z/ and Z2 it 
is possible to provide the best approximation 
of the initial moments of the reference traf­
fic. Similar expression can be written down 
concerning the second central moments of 
the reference and model of the nonstationary 
traffic. For a case of the Gaussian multiva­
riate distribution the optimum choice of the 
first two moments of the traffic model the 
method of optimization of quantized values 
and their dispersions allows to solve a prob­
lem of the best approximation of the normal 
density of distribution of the reference non­
stationary traffic and the normal density dis­
tribution of the model of the nonstationary 
traffic.

Let's illustrate the specified opportuni­
ty with the problem decision of the best ap­
proximation of a population mean of the ref­
erence nonstationary traffic by a population 
mean of the model of the traffic. Considering 
(1), (2) as optimization criteria of quantized 
values in a nonlinear bidimentional problem 
of optimization without restrictions, we use a 
classical method of search of the optimal 
quantized values.

This problem we shall solve in the fol­
lowing statement: expression of optimization 
criterion quantized values Zj, Z2 as function­
al (1) or (2) is known, the classical method 
of search of a minimum (1) or (2) requires to 
find Ziopt, Z2opu delivering a minimum func­
tional (1) (a discrete case) or functional (2) 
(a continuous case):

min s 2( Zr Z 2) = s ^ ( Z lopl, Z 2opi) (3)
Z\.Z2

Differentiating functionals (1), (2) on 
parameters Z/, Z2, we shall receive two equa­
tions of optimization concerning values Z/, 
Z2.

1. For a discrete case:

B M 2 - g - [ Z 2- ( Z 2- Z , ) P l0 •*-'" ]]• (4)

■ (Pn - e * ' )  = o

B fe  • (2 - t t ) -IZ2 - (Z2 - Z , ) P W- e""‘ ]]• (5)
<* =o
(l-/>0 ^'*)=0

2. For a continuous case:

jfe • (2-tk)-[z2 -(Z 2 -z.) • j>0 • ]]• (Pm-e'" )dtk =0 (6)
0

j  fc • (2-<t)-[Z 2 -  (Z2 -  Z,) ■ P]0 ■ e'"“ ]] ■ (1 -  /?„• e+'> )dtk = 0 '(7 )  
0

Let's result these equations in an initial 
form of system from two linear algebraic eq­
uations, we shall receive

a \ l^ l  a i2^2 ~  1̂ • (8)

#21̂ 1 + a22Z2 — b2. (9)
1. For a discrete case:

an = ± (P l0. e ^ y
tk=0 9

a2l = £ P l 0 e-™-(l-Pl0-e ^ ‘)
<4=0 ) \ /

a\2 = ^ ( l - P ]0- e ^ ) P l 0 e~^
'*= 0 9

a22 = ̂ ( l -P l0 e-^ )2 n n
/,=0 * V '

bl =  (2- t k)] Pl0 - e *
/*=0

9

b2 = '£[tt V - t k)\-Q-Pn - e * ) '  ( 1 2 )

2. For a continuous case:
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0

alx=\{Pw - e ^ ) - { \ - P w -e~^)dtk , (13) 
0

an =\ [ ( \ -Pw -e^) - {Pia-e^) ]d tk ,
0

a22= ) { \ - P X0-e -^fd t r  (14)
0

bl = ][tk(2-tt)HPl0-e-«')dtk,
0

0
Using Kramer’s rule, we shall receive 

optimum quantized values of controlled va­
riables

where |A|, |A1|, |A2| - determinants of the 
equations system (8), (9).

Substituting these values in functional 
(1) or (2), we shall find its minimal value at 
optimum quantized values (16).

Example 1. We shall show feature of 
definition optimum quantized values and mi­
nimal root-mean-square deviations of the 
moments of the first order nonstationary pa­
rabolic traffic at the following initial data: 
P,o = 0.95, P20 = 0.05, /// = 3.414.

Using formulas (10) - (12), we shall 
find parameters of system of the algebraic 
equations for a discrete case

a ll  = 0.903, al2 = 0.078, 61 = 0.031,

a21 = 0.078, a l l  = 0.941, b l  = 0.969 .

Using formulas (13) - (15), we shall 
find parameters of system of the algebraic 
equations for a continuous case

an =0.132, an =0.137, 6, =0.108, 

a2] = 0.137 , a22 = 0.594, b2 = 0.559 .

|A2| float,7 -> .8727696 = 0.873

Substituting these values in formulas 
for determinants, we shall find their values 
for a continuous case

\A\ float, 7—» 5.961473 • 10“2 = 0.06 

|zll| float, 7 —» —1.267710• 1 O' 2 = -0.013 

\A1\ float, 7 —» 5.905071 • 10~2 = 0.059

We use these values of determinants 
and we shall find under formulas (16) re­
quired optimum quantized values. In system 
MathCAD the decision looks like:

1. For a discrete case

Z10 = -0 .213 ,Z20 = 0.990538. (17)

2. For a continuous case

Z10 =-0.054, Z20 =1.034. (18)

Substituting optimum quantized values 
Z10, Z20 in the formula (3), we shall find the 
minimal values target functional and root- 
mean-square errors of modeling of a popula­
tion mean of the reference traffic:

1. For a discrete case

£ram(.Z\,Zl) -  1.624<10

CT„,„= ^ .«4x/(T 7 (]9)

2. For a continuous case

£ mîn(Z11Z 2)  =  2,587x10 3

a min= J 2,587*1O'3 = 0,05086 =  5,086% ( 2 Q )

Let's define the minimal value of aver­
age factor of a variation of an error on an 
interval nonstationary:

1. For a discrete case
V min

&  min

mo
0.04% 

~ 0.667 = 0.06% , ( 21)

2. For a continuous case

Substituting these values in formulas 
for determinants, we shall find their values 
for a discrete case

|A| float,7 —» .8440187 = 0.844

|Al| float,7 -» -,4593524e-l =-0.046

F  min —
(7  min 

mo
5,086
0,667 = 7,6252% , ( 22)

where average value (a constant com­
ponent) normalized traffic on an interval 
nonstationary is defined under the formula
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mO = \[tk {2 -tk)]dtk . (23)
0

On fig. 1 results of modeling of a pop­
ulation mean of the reference nonstationary 
traffic m(tk) by model M(Zi , Z2 , t/J opti­
mized in Gilbert space with parameters (18), 
and a parameter of accuracy of the modeling 
(22) optimized in Euclid space by model 
Ml(tk), and also model M2(ty) in which in a 
role quantized values average values of 
quantums are used are shown. Comparing 
curves, it is uneasy to notice, that model 
M(Zi , Z2 , tk) optimized in Gilbert space 
with parameters (18), and a parameter of ac­
curacy of modeling (22) yields the best re­
sults of modeling of the reference traffic. 
Fig. 1 evidently illustrates that the model op­
timized in Gilbert space approximates the 
reference traffic much better.

F5(ZItrilopl)min = 2.993 10 s > 2.587 I ff3. 
Hence, selection r\l the optimum decision to 
improve is impossible.

Research of influence of other un­
guided parameters of models - initial proba­
bilities P jo, P 11 is similarly carried out. It is 
interesting to note, that concerning these pa­
rameters of the equation of optimization are 
linear algebraic, therefore values of probabil­
ities are optimum.

pi

Fig. 1. Comparison of models of the nonstatio­
nary traffic

Intensity and initial probabilities in 
problems of optimization act, as a rule, in a 
role of unguided parameters. Despite of it is 
not superfluous to check up their influence 
on the optimum decision, to estimate an op­
portunity of optimization of their values for 
the further improvement of the decision. We 
shall show feature and principles of such 
check on an example of optimization rjl.

Example 2. We shall present target 
functional as function of intensity rjl:

For a continuous case

Fig. 2. Find the optimal value pi

In a role of criteria of adequacy we 
shall choose parameters concordance model­
ing and reference values of the traffic on an 
interval nonstationary. We shall enter a pa­
rameter concordance modeling and reference 
values of the traffic in points of supervision 
th k =1, m,

P(^10,^20»̂ k)
2 ‘m(tk)’M(Z10 Z20,tk) 
m(tk)2 +M(Z10 Z20,tk)2

Example 3. We shall calculate values 
of a parameter (25) for the models optimized 
in spaces Euclid and Gilbert at m = 10. Re­
sults of calculation we shall reduce in tab. 1 
and we shall display on fig. 3.

.rçl)=j[f* • (2-ft) -[Z20 -(Z20 -Z,0) ■ /|0 • e~nUk ]f dtk -(24) 
0

Also we shall find a graphic method 
(fig. 2) a minimum value of functional (24), 
on rjl at optimum quantized value of the traf­
fic. We shall receive r\lopt = 2.81,

a. A discrete case
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b. A continuous case
Fig. 3. Diagrams of dependences of parameters 

concordance models from time 
Tab. 1. Calculation results p(Z10 Z20,tk)

4 0.0 0.1 0.2 0.3 0.4
Pki 0.0 0.905 0.941 0.967 0.983
Pk2 0.0 0.998 0.991 0.992 0.996
tk 0.5 0.6 0.7 0.8 0.9 1.0

Pkl 0.993 0,998 1.0 1.0 1.0 1.0
Ж . 0.999 1.0 1.0 0.999 0.999 0.999

Analyzing given tab. 1 and fig. 3 it is 
possible to conclude, that the optimized 
models precisely enough display the refer­
ence traffic, is especial in second half of in­
terval nonstationary. In a continuous case 
more exact coordination of model and the 
standard is observed.

Application of various criteria of 
adequacy allows all-round check of 
adequacy of models, enables to execute also 
an estimation of influence of unguided 
variables on optimum decisions. Especially it 
is necessary to pay attention to the nonlinear 
effects connected to application of decompo­
sition in a number on indicative functions 
and use intensities of change of the traffic as 
parameters an exhibitor.

Conclusions
1. Application of quantization and 

Markov approximations allows building of 
adequate models of the nonstationary traffic 
submitted initial polynomial by decomposi­
tion with casual factors. With growth of di­
mension of optimum models accuracy of 
modeling nonstationary the traffic will grow 
also. The significant interest represents re­
search of this law.

2. Offered the system of parameters 
and a technique of verification of models 
nonstationary traffic with various number of 
conditions of the traffic allow to carry out 
verification of models and to use quantitative 
estimations of a degree of adequacy of mod­
els to the real nonstationary traffic.

References
1. Игнатов В.А., Жуков И.А., Гузий

H.H. Данилина Г.В. Моделювання 
перехідних режимів трафіку
комп’ютерної мережі. Информационные 
технологии и безопасность. -  Сборник 
научных трудов. -  К.: Национальная ака­
демия наук Украины, Институт проблем 
регистрации информации, 2006. -  Вып. 9. 
-С . 84 -87 .

2. Гузій М.М., Даниліна Г.В., 
Ігнатов В. О., Милокум Я.В. Методи і ал­
горитми оптимального управління 
трафіком в обчислювальних мережах. 
Проблеми інформатизації та управління- 
К.: НАУ, 2006. -  Вип. 17. -  С. 32 -  37.

3. Гузій М.М., Даниліна Г.В., 
Ігнатов В.О. Мачалін І.О. Марковські 
рандомізовані моделі. Вісник Жито­
мирського державного технологічного 
університету. Житомир 2006. -  Вип. IV 
(39).-С . 179- 184.

4. Гузій М.М., У Цзы Цзюанъ,
Ігнатов В. О. Сравнительный анализ адек­
ватности моделирования нестационарного 
трафика в телекоммуникационных и ком­
пьютерных сетях. Проблеми
інформатизації та управління. -  К.: НАУ, 
2007.-В ип. 21.-С . 127- 134.


