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The causes of sensor biases during small aircraft operation are considered. The estimation problem of these
biases on the basis of flight test data is solved. It is proposed to estimate sensor biases as a result of simulta-
neous application of extended Kalman filter and accelerated Kesten stochastic approximation during optimi-
zation of the likelihood function. The proposed procedure of sensor biases estimation was checked on the
“benchmark’” model of lateral motion of small piloted aircrafi DHC-2 “Beaver”.

Introduction

Estimation of aerodynamic characteristics of
any aircraft on the basis of flight test data in the
presence of measurement noise and systematic
errors, which are caused by biases of measuring
systems and devices, is a real problem, especially
for small planes of general aviation and Un-
manned Aerial Vehicles (UAV). For this class of
aircrafts it is impossible to apply an efficient vi-
broprotection of sensors that causes a high level
of measurement noise [1]. Moreover, strict tech-
nical, economical and constructional require-
ments exclude application of expensive sensors,
which have high accuracy, while cheap and less
accurate (micromechanical and fiber-optic) have
significant biases (systematic errors) of output
signals. So far as measurement noise and sensor
biases causes to biased estimations of small air-
craft dynamic model parameters, that is why min-
imization of these factors negative influence dur-
ing identification procedure is a very actual
problem.

Many works are devoted to the identification
problem of aircraft dynamic characteristics, main
of them are [2-4]. But in these works the task of
sensor bias estimation was not stated. In this pa-
per the causes of sensor biases occurrence during
operation of small aircraft are considered, on the
basis of works [1, 5]; the task of sensor bias esti-
mation during the identification of small aircraft
dynamic characteristics is solved and comparative
analysis of sensor bias estimation results obtained
without application of accelerated Kesten sto-
chastic approximation and with it, which was not
implemented in [6, 7], is performed.

Problem statement

It is necessary to consider causes of sensor bi-
as appearance during operation of small piloted
aircraft and UAVs; to estimate sensor biases
without application of accelerated Kesten sto-

chastic approximation and with it during the per-
formance of parametrical identification procedure
(determination of aircraft dynamic characteristics,
which enter to the state space model [8] linearly)
on the basis of flight test data in the presence of
measurement noise and sensor biases. As it
shown in [7], as an identification criterion it is
better to use the negative logarithm of maximum

likelihood function (LLF) P(y|8) [9]
J(®) = ~In P(y[6)=
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where P(y|6) is the maximum likelihood func-

tion; y, and y, are the i -th element of output var-

iable vector of model and its estimation respective-
ly; (y,—y,) is the i-th vector of innovations;

|R,, | is the Frobenius norm of innovation matrix;

N is the number of measurement points (it de-
pends on the length of realization); / is the length
of output vector y (it depends on the number of

measured values).
Problem solution

Since the output signal of sensors contains not
only the useful component, but systematic and
random errors also, practically all data processing
operations have statistical nature. Mix of the useful
signal and the errors on the output of sensors is
complex in general case (the components of this
mix can be correlated). However, for majority of
practical tasks of measuring device analysis this
mix is presented as additive [S], that is independ-
ence of useful signal and errors is supposed.
Thereby, output signal of measurement devices in
general case is the following:

y(0) =0y, (1), <))
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where y(¢) is the output signal of measuring de-
vices;, y,(f) 1s the useful component of output
signal, ¢(¢) is the error; @(yo(l), g(t)) is some
non-linear function which is possible to take as
MOES MORISOR

For the aircraft considered in this paper errors
caused by delay have very small values; therefore
they may be neglected [5].

Taking into account the mentioned above a sen-
sor model can be presented as:

Y=Y, t+b+& )
where b is the vector of sensor biases; & is the

vector of Gauss ¢ -correlated random errors of
measurement:

Fen) =0, Ef0E (1+0)]=Ro(@)
where FE is the sign of mathematical expectation;
R is the covariance matrix of measurement er-
rors, 6(7) is Dirac function; 7 is time shift.

Especially high values of biases take place in
signals measured with the help of accelerometers
and angular rate sensors [S]. The main cause of
biases presence in signals from accelerometers is
absence of gyro stabilization, since accelerome-
ters are installed on the body of small piloted air-
craft or UAV directly [1]. In angular rate sensors,
except absence of gyro stabilization, the tempera-
ture compensation which is also causes signifi-
cant values of biases is absent [5]. Absence of
vibroprotection in these sensors results into raise
of random errors level [1, 5].

Since the values of sensor biases are changing
quiet slowly during the flight, their values may be
assumed as constant [10] during flight test (20-60
seconds).

The state space model of aircraft dynamics
with constant coefficients [8] and with taken into
account the sensor model (2) is the following:

X = Ax + Bu;
_ ()
y=Cx+Du+b+§
where A is the nxn state matrix; xis the nx1
state vector; B is the nxm control matrix, u is
the nxm control vector, C is the /xn meas-
urement matrix; y is the /xn measurement vec-

tor; D is the /xm matrix of direct transfer of
control from input to output; b is the vector with
size ux1; & isthe vector with size /x1.

Since it is required to estimate sensor biases
under unknown parameters of aircraft model (3),
in [6] it is proposed to extend the state space of

this model by means of including in it so-called
“dummy” variables (sensor biases):

b=[b, b, .... b1

§]
After extension of state space the input vector
u,,, the state vector x_,, the output (measure-

ext ? ext >

ment) vector y, . are the following:

u, =u=[u, ... u,l,

Xexl :[X7 b]T = (4)
=[x, ..., x, b, ..., bu]T,
yexz:y:[y17 b yl]T

and four matrices which correspond to the state
space model (3) look like:

ol ol Mo
Ouxn O,ux,u O,uxm

(5)
_ E/”X/“ . _
C - Enxn > D= [Onxm]
O(nw)w
where
all aln
AO _ . . ’
L nl nn_|
11 blm
B,=|: i
bnl bnm

O,.; is the i x j zero matrix; E, ; is the 7 x j unit
diagonal matrix.

By the extension (4)-(5) Hamiltonian matrix
associated with the Riccati equation for synthesis
of optimum observer [8] for the system (3) will
have 2u zero eigenvalues. Solution of the opti-

mum observer synthesis problem in the presence
of singular Hamiltonian matrix having high order
multiple zero eigenvalues is practically impossi-
ble. Because of it in [6] it is suggested to apply
the randomization method to the “dummy” state
variables. As a result of randomization Hamilto-
nian is a non-singular matrix and task of optimal
observer synthesis is solved with the help of
standard algorithm based on the stationary Kal-
man filtration [6, 8].

The first step of this procedure contains the de-
termination of the covariance matrices of the state
variables Q and the measurements R. The ma-
trix R could be easily determined on the basis of
known r.m.s. of the sensors. The matrix Q re-
quires some procedures for its estimation. The
simplest one is the running Kalman filtering pro-
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cedure several times to receive the best value of
LLF after each execution. Then it is necessary to
determine the covariance matrix of innovations
R,, for Kalman filtering:
R, =CPC’ +R (6)
where P is the solution of the Riccati equation.
In [2, 3] several methods for iterative determi-
nation of this matrix are discussed. The problem
is the fact that R, in (6) depends on the covari-

ance matrix P of state variables, which could be
defined later as the Riccati equation solution that

depends on the matrix R, . In [6] it is proposed

the simplest way for solution of this problem.
As the first step before the solution of
Riccati equation, the matrix R, could be approx-
imated as [6]:

R, =CQC +R.

In this case it is possible to solve the Riccati
equation. This approximation could be success-
fully used for Kalman filtering itself as well as at
each step of the optimization procedure.

As it is offered in [2, 3], the better results (in
comparison with purely discrete case) could be
received using the first order approximation of
the discrete Riccati equation by the continuous
Riccati equation:

AP +PA" —(1/id)PC'(R,) 'CP+Q =0
where d is the sampling interval.

Solution of this equation gives the state varia-
bles covariance matrix P, which then is used to
determine Kalman gain matrix K :

K=PC'(R,)".

For calculation of updated state space vector it
is used well-known procedure of standard Kal-
man filtration [8].

Since application of stationary Kalman filtra-
tion to “dummy” variables gives their rough esti-
mation, in [6] it is suggested to use a combina-
tion: extended Kalman filter (for estimation of
real state variables and rough estimation of
“dummy” state variables, which are sensor bias-
es) and accelerated Kesten stochastic approxima-
tion (for refining of the data obtained as a results
of extended Kalman filtration).

The advantages of such combination are noted
in particular in [10]. In this connection in [6] it is
proposed to use additional correction for state
variables that concern to bias b, . This correction

is determined by algorithm of accelerated Kesten
stochastic approximation [11]:

5o +1) =3, 4D +70)- (3, — 5,
where X,(i+1) is the state variable, which con-
cerns to j-th bias on (i+1)-th step; y(i) is the gain
of the stochastic approximation on i-th step that
could be defined as [11]:

if i<2,then y(i)=1/i;

if i >2, then y(i)=1/(2+ A()) ;

where A(i) = A(i—1)—0.5(¢p(i)—1).

Function ¢(i) is defined by the following ex-
pressions:

p(i)=0, if

(v=3) ~0=9) N =2), ~(v=3).) =0,

o) =1, if

((y_j/)i _(y_j})FlX(y_j\/ i-1 _(y_j/)z;z)> 0.

It is necessary to notice, that, if the estimation
process is optimal, then the innovation vector
(y,,—¥,,) in the steady-state mode should have

properties of the white noise. Efficiency confirma-
tion of the sensor bias estimation procedure is that
the correlation functions of all estimated biases
tend to delta-functions.

Presented procedure of sensor biases estimation
during the parametrical identification of small air-
craft model was checked on the “benchmark” dy-
namic model of lateral motion of small piloted air-
craft DHC-2 “Beaver” [12]. Mathematical model
of this motion in state space [13] is described by

the following vectors: x=[p,r,v]" where p,r
are roll and yaw rates respectively; v is lateral
velocity; u=[dc, or] where & , & are aileron

and rudder deflections respectively;

y=[p. 7 a,, p,r]" where p,7 are roll and yaw
accelerations respectively; a, is lateral accelera-
tion; b=[b b b T where b ,b,b

p> 7r> Yay p> “r> Yay
biases of corresponding measured signals.

Values of sensor biases, estimated without ac-
celerated Kesten stochastic approximation (fig. 1)
and with its application (fig. 2) during the para-
metrical identification of lateral motion model of
the aircraft “Beaver”, converge, but the length of
realization of output signals (time of flight test)
which are necessary for the estimation procedure
is differs more than 40 times.

Time which is necessary to estimate b, without

stochastic approximation is approximately 600
seconds, and with accelerated Kesten stochastic
approximation is 13 seconds).

are the
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Fig. 1. Processes of sensor bias estimation without applying of accelerated
Kesten stochastic approximation
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Fig. 2. Processes of sensor bias estimation with applying of accelerated
Kesten stochastic approximation
Results of the proposed sensor bias estimation the basis of flight test data during the identification
procedure (with and without applying of accelerat- of dynamic characteristics of small piloted aircraft

ed Kesten stochastic approximation (AKSA)) on “Beaver” is presented in Table 1.
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Table 1.
Results of Sensor Bias Estimation
Result of estimation Result of estimation
Nominal without AKSA with AKSA
Bias (necessary time for flight test is 800 s) | (necessary time for flight test is 20 s)
value : . -
) Relative Estimated val- Relative
Estimated value o o
error, % ue error, %
bp, rad/s 0.0040 0.003903 2.43 0.003765 5.88
b.,rad/s 0.0070 0.006945 0.79 0.006966 0.49
bay, m/s® 0.0950 0.094783 0.23 0.096798 1.89

Obtained results prove the efficiency of
simultaneous application of extended Kalman
filter and accelerated Kesten stochastic
approximation during optimization of identifica-
tion criteria (1).

Conclusions

The causes of sensor bias during small air-
craft operation are considered. The estimation
problem of these biases during the identification
of dynamic characteristics of small aircraft is
solved. The comparative analysis of results of
sensor bias estimation obtained without applica-
tion of accelerated Kesten stochastic approxima-
tion and with it is made. The proposed procedure
was checked on the “benchmark” model of lat-
eral motion of small piloted aircraft “Beaver”.
Relative error of sensor bias estimation is less
than 2% for 2 biases b, and b,, and is less than

6% for b,, moreover, relative error of lateral

motion model parameter estimation is less than
5% for 12 parameters, but for other 3 ones it is
less than 25%, that converge with the results of
identificability analysis [4] of lateral motion
model for this plane [14].
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