УДК 004.724.4(045)

Левчук А.В.

АНАЛИЗ ЭФФЕКТИВНОСТИ АЛГОРИТМОВ РАЗБИЕНИЯ МОБИЛЬНОЙ КОМПЬЮТЕРНОЙ СЕТИ НА ЗОНЫ МАРШРУТИЗАЦИИ

Институт компьютерных технологий Национальный авиационный университет

Предложен способ анализа эффективности алгоритмов разбиения мобильной компьютерной сети на зоны маршрутизации, на основе протокола ZRP и алгоритма DDR. Проведена оценка объемов служебного трафика в зависимости от способа разбиения сети и протоколов внутризонной маршрутизации

Введение

Для современных компьютерных сетей большой размерности характерна многоуровневая маршрутизация. Как правило, протоколы маршрутизации, используемые в современных мобильных компьютерных сетях, относятся к протоколам маршрутизации по требованию, и эффективны при небольшом количестве узлов и низкой мобильности.

С увеличением размера сети и подвижности узлов использование протоколов данного класса приводит к резкому увеличению объема служебного трафика, времени формирования маршрутов передачи информации и вычислительной сложность алгоритмов маршрутизации.

В мобильных компьютерных сетях большой размерности используются протоколы децентрализованной многоуровневой динамической маршрутизации, которые предполагают разбиение сети на зоны маршрутизации, используя на уровне подсетей наиболее эффективные протоколы группы *IGP* (*Interior Gateway Protocol*) [1], и протоколы группы *EGP*(*Exterior Gateway Protocol*) [2] между сетями.

В связи с увеличением размерности сети и появлением новых узлов, постоянное перемещение абонентов мобильной компьютерной сети приводит к изменению ее топологии, состава и количества зон маршрутизации, что сказывается на эффективности процедуры маршрутизации. В связи с этим возникает необходимость в разработке способов и средств

поддержки оптимальной структуры зон маршрутизации за счет их динамической реконфигурации.

Обзор и анализ существующих решений

Большинство известных методов и протоколов маршрутизации в мобильных сетях рассчитаны на сети с однородной (плоской) структурой (протоколы DSDV, RIP (Routing Information Protocol), WRP) или на сети с фиксированной структурой зон (протоколы CBRP, CGSR, ZRP (Zone Routing Protocol)), что не эффективно для мобильных сетей большой размерности.

Построение иерархической сети даст возможность осуществлять процедуру маршрутизации отдельно на внутризонном и межзонном уровнях, за счет чего можно существенно уменьшить объем служебной информации передаваемой по сети. В связи с этим, перспективным подходом является разбиения сети на перекрывающиеся зоны маршрутизации на базе протокола ZRP [3], что позволит использовать независимые протоколы в каждой зоне.

Протокол *ZRP* является протоколом зональной маршрутизации, который состоит из проактивного (с помощю постоянной поддержки таблиц маршрутизации) и реактивного (открытие маршрута происходит только по запросам) подходов к маршрутизации. Знание локальной топологии предвидит использования внутри зоны проактивного подхода к маршрутизации. Разбиение на зоны происходит в

результате объединение узлов по количеству переходов (хопов) с другими соседними узлами. При зональном разбиении нет четких границ, узлы не имеют четкой принадлежности к зоне, они практически одновременно находятся в нескольких зонах. Можно сделать вывод, что зоны могут легко перекрывать одна другую.

Важно отметить, что *ZRP* предусматривает использование реактивного похода для межзонной маршрутизации модуль *IARP* [4] — протокол маршрутизации между зонами. Он включает в себя проактивную часть для прохождения маршрута внутри зоны. Каждый узел внутри зоны сохраняет информацию о кратчайшем маршруте ко всем своим соседям. Этот минимальный маршрут обязательно должен быть меньше чем радиус зоны для предотвращения петли.

Постановка задачи

Эффективность использования существующих способов и алгоритмов маршрутизации в современных компьютерных сетях в существенной степени зависит от структуры и размерности сети. Кроме того, также необходимо учитывать требования интеллектуальных протоколов маршрутизации, обеспечивающих передачу информации с заданными параметрами качества обслуживания при минимальном объеме служебного трафика независимо от реконфигурации сети.

В связи с мобильностью узлов, топология сети меняется динамически. что невозможным использовалелает ние обычных таблиц маршрутизации. Поэтому в компьютерных мобильных сетях большой размерности используются протоколы децентрализованной многоуровневой динамической маршрутизации, которые предполагают разбиение сети на зоны маршрутизации. В этом случае процедура маршрутизации осуществляется отдельно на внутридоменном (протоколы RIP и OSPF) и междоменном (протокол BGP) уровнях.

Решение поставленной зада-

Для решения поставленной задачи предлагается, использовать протокол ZRP, для разбиения сети на независимые друг от друга зоны. Алгоритм создания зоны в ZRP начинает свое действие с момента появления узла в сети.

На первом этапе узел инициирует процесс опроса всех своих соседей в зоне доступа с шагом равным 1. После опроса доступные узлы записываются в таблицу маршрутизации.

На втором этапе узел устанавливает шаг равным 2 и опять проводит опрос соседних узлов, в результате чего записывает полученную информацию о доступных узлах во внутреннюю таблицу маршрутизации. Таким образом заполняется внутренняя таблица маршрутизации. Все остальные узлы, которые не находятся в зоне доступа узла или зоне доступа его соседей не заносятся в таблицу маршрутизации. Для этих узлов *ZRP* использует реактивный подход маршрутизации и прокладывает маршруты к ним через своих соседей. На рис. 1 представлен алгоритм создания зоны узла протокола *ZRP*.

Рис. 1. Алгоритм создания зоны в протоколе *ZRP*

В качестве примерам работы протокола ZRP, рассмотрена беспроводная сеть без инфраструктуры (рис. 2).

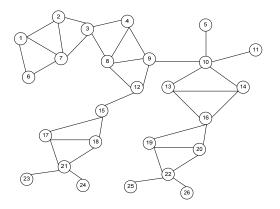


Рис. 2. Беспроводная сеть без инфраструктуры

Каждый узел сети использует реактивный и проактивный подходы маршрутизации в зависимости от местонахождения узла назначения и его доступности. В связи с этим, в зависимости от значения степени связности узлов выбирается главный узел (проактивный подход), который организовывает собственную зону и сохраняет всю маршрутную внутризонную информацию.

Создание зоны начинается с утверждения ее радиуса, в протоколе *ZRP* радиус зоны равен 2. Это означает, что все узлы зоны в радиусе двух хопов от узла 7 создают зону *Z*7 и находятся во внутренней таблице маршрутизации, то есть для них используется проактивный подход маршрутизации. На рис. 3 показан первый этап алгоритма создания зоны для узлов 7 и 10.

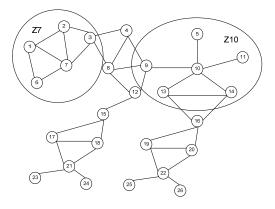


Рис. 3. Первый этап алгоритма создания зоны для узлов 7 и 10

На втором этапе происходит опрос соседей, после которого, как показано на рис.4. зоны узлов 7 и 10 увеличиваются.

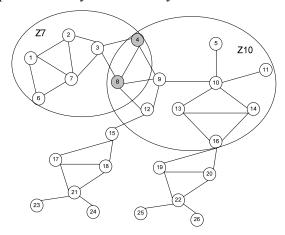


Рис. 4. Второй этап алгоритма создания зоны по протоколу *ZRP*

В результате чего, можно сделать вывод, что ZRP представляет собой гибридный подход, основанный на понятии зоны. В отличие от алгоритма DDR [5], в ZRP [6] зоны перекрываются. Кроме того, в ZRP каждый узел имеет представление о состоянии зоны и требует частого обновления информации о расстоянии и маршрутах до всех узлов в пределах своей зоны, в то время как в DDR каждый узел должен знать только следующий переход ко всем узлам в пределах его зоны. За счет чего увеличивается объем передаваемой по сети маршрутной информации, время задержек и использование пропускной способности канала.

В отличие от ZHLS, ZRP не требует физической информации о местонахождении для маршрутизации и инициализации зоны. В ZRP размер зоны изменяется динамически, что упрощает маршрутизацию в случае отказа одного из узлов.

Важно отметить, что в каждой зоне можно использовать различные протоколы внутризонной маршрутизации, такие как, *RIP*, *OSPF* (*Open Shortest Pass First*). Для оценки эффективности разбиения сети на зоны по протоколу *ZRP* промоделируем предложенный подход в *OpNet*.

Для этого разобьем сеть (рис. 2) на перекрывающиеся зоны по протоколу ZRP и на не перекрывающиеся зоны по

алгоритму DDR. В качестве протоколов внутризонной маршрутизации будем использовать протоколы RIP и OSPF.

На рис. 5 представлено сравнение протоколов внутризонной маршрутизации RIP и OSPF при разбиении сети на не перекрывающиеся зоны по алгоритму DDR.

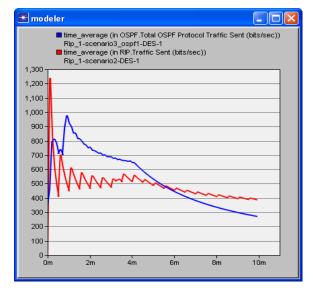


Рис. 5. Разбиение сети на не перекрывающиеся зоны по алгоритму *DDR*

На рис. 6 представлено сравнение протоколов внутризонной маршрутизации RIP и OSPF при разбиении сети на перекрывающиеся зоны по протоколу ZRP.

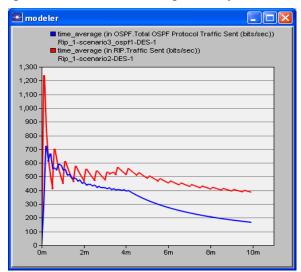


Рис. 6. Разбиение сети на перекрывающиеся зоны по протоколу *ZRP*

По результатам моделирования можно сделать вывод, что при разбиении сети на не перекрывающиеся зоны объем служенного трафика, переданного по про-

токолу *OSPF* на 25% больше, чем при разбиении на перекрывающиеся зоны.

Выводы

В работе предложен способ анализа эффективности алгоритмов разбиения мобильной компьютерной сети большой размерности на зоны маршрутизации. В качестве алгоритмов разбиения взяты протокол ZRP и алгоритм DDR.

В работе также проведено моделирование работы сети разбитой на зоны, с использование протоколов *RIP* и *OSPF* дл внутридоменной маршрутизации. По результатам моделирования можно сделать вывод, что объем служебного трафика существенно меньше при разбиении сети по протоколу *ZRP* с использованием в качестве протокола внутризонной маршрутизации протокола *OSPF*.

Список литературы

- 1. Choosing a "Common IGP" for the IP Internet (The IESG's Recommendation to the IAB) [Online source] / P. Gross // RFC Database. 1992. № 1371.
- 2. Exterior Gateway Protocol (EGP) [Online source] / E. C. Rosen // RFC Database. 1982. № 0827.
- 3. *Nikaein N., Labiod H., Bonnet C.,* DDR-distributed dynamic routing algorithm for mobile ad hocnetworks // MobiHOC 2006. Vol. 2, № 3, P.19–27.
- 4. *Haas Z.J.*, *Pearlman M.R.*, *Samar P.*, Intrazone Routing Protocol (IARP) //RFC IETF Internet Draft, draft-ietf-manet-iarp-02.txt, Июль −2002–№27/6.
- 5. Nikaein N., Labiod H., Bonnet C., DDR-distributed dynamic routing algorithm for mobile ad hocnetworks // MobiHOC 2006. Vol. 2, № 3, P. 19–27.
- 6. Chen Y. P., Liestman A. L. A zonal algorithm for clustering ad hoc networks. International Journal of Foundations of Computer Science. 2003. № 14 (2). P. 305–322.

Подано до редакції 19.03.10