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The present article proposes a non-contact method for metal recognition - aluminium, chrome-
nickel steel, brass and copper. A piezo-electric emitter sends an acoustic wave to the object to 
be identified. The reflected signal is received and processed using orthogonal wavelet basis 
functions. Clusters are formed based on feature spaces of classifiers realized following the k-
nearest neighbour (kNN) method. During each subsequent measurement the results are related 
to a specific cluster. This approach has yielded a 100%  recognition of the above materials, as 
well as three types of explosives 

Introduction 
It is often necessary in practice to per-

form identification of brittle materials, and 
sometimes – of explosives. That is why it is 
desirable to use a non-contact method, which 
guarantees a non-destructive effect. This is a 
difficult process that requires a complex the-
ory, fast algorithms for data conversion and 
good technical facilities. The synthesis of a 
system for automatic non-destructive recog-
nition is a multi-aspect task. It involves 
planning and conducting of experiments for 
collecting information, formation of samples 
for training and control, selection of classi-
fier, reduction of recognition features, etc. 

Description 
Sequence of the recognition 

process 
The steps that make up this approach 

are presented in Fig. 1. 

 

Fig. 1. Sequence of the recognition process 

Retrieval of discrete data about 
the selected object 

The most commonly used method for 
retrieval of discrete data about the specific 

object is the pulse-code modulation 
[MM&WEB]. It expands the information 
about the object (the received analogue sig-
nal) by means of a discretization grid with 
coordinates along X – discretization fre-
quency and along Y – the binary values of 
the numbers determined by the conversion 
digit capacity. The general solution is a bi-
nary sequence, which defines the discrete 
values of the signal. The number of solutions 
is determined by the discretization frequency 
and the duration of the analogue signal. 

Formation of samples 
The discrete data about a certain object 

are used for the formation of the so-called 
training sample and control sample. One of 
the ways for practical realization is by using 
a random-number generator for choosing 
samples out of the overall data set about the 
objects. After that the data are subject to fur-
ther processing. The training sample is used 
to synthesize the classifiers, and their effi-
ciency is tested by means of the control sam-
ple. 

Spectral transforms 
The formation of recognition features 

can be objectified by applying the general 
spectral theory of signals, using the coeffi-
cients of the received expansion of the image 
signal in a predefined basis in the capacity of 
features. 

The spectral analysis theory enables 
the synthesis of recognition features, the 
output description is transformed into a new 
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space, and the coefficients C(k) from the ex-
pansion of U(x) in a suitable basis act as fea-
tures: 

C(k)=Ғ.U(x),                    (1) 

where Ғ is the transformation operator 
(transformant).  

Thus, instead of the image values in 
the reference points U(х), the classifier will 
use their transformation operators C(k) in the 
capacity of features forming the feature 
space. This notion of image transformation 
in feature space mainly results in project ob-
jectification, but along with this provides a 
number of other advantages. For instance, if 
suitable orthogonal functions are selected as 
basis functions, this de-correlates the fea-
tures – spectral components, and eliminates 
the necessity for studying them according to 
the strength of statistical connection. More-
over, the spectral components having higher 
numbers carry a small part of the signal en-
ergy and are low image-informative, accord-
ingly. This circumstance supports the study 
according to feature informativeness, as far 
as the spectral analysis itself is a solution to 
the problem [4]. 

The fast Fourier transform (FFT) en-
ables the transformation of the large amount 
of time series data into several coefficients 
that can be used as features, but information 
about the time component is lost during the 
transform – the dependence of amplitude on 
time is transferred into a dependence of am-
plitude on frequency. The most commonly 
applied transform has the following disad-
vantages: 

− the Fourier transform gives the 
global data about the frequency spectrum of 
the signal studied and does not present the 
local properties in case of fast time changes 
of its spectral content; 

− the presence of “discontinuities” or 
“peaks” in the output signal causes insignifi-
cant changes in their frequency spectrum, 
and a large number of low amplitude har-
monics is required for presenting them, etc. 

Some of the above disadvantages are 
avoided when applying the windowed Fou-
rier transform, the output signal being ex-
panded within a certain time interval – win-

dow function. It is also possible to use other 
transforms, such as the discrete cosine trans-
form (DCT), fast Walsh-Hadamard trans-
form (FWHT) etc., which often have advan-
tages over the Fourier transform, but in gen-
eral the transform is always in a space elimi-
nating the time coordinate. 

In view of the above circumstances, it 
is suitable to use a wavelet transform, which 
yields the dependence of amplitude on fre-
quency and time.  

Wavelets are functions localized 
along the independent variable axis (t or х), 
capable of shifting along it and scaling 
(shrinking / stretching), and having the form 
of short wave packets with zero average 
value of the wavelet function )(xψ , i.e.: 

∫
∞

∞−

= 0)( dxxψ ,           (2) 

The continuous wavelet transform 
(CWT) is based on the use of two continuous 
functions that are integrable along the inde-
pendent variable axis: 

− )(xψ  – wavelet function showing 
the signal details and forming the detail coef-
ficients; 

− )(xϕ  – scaling function determin-
ing the signal approximation and forming the 
approximation coefficients. The scaling 
functions are only inherent to orthogonal 
wavelets – Haar wavelets, Daubechies wave-
lets, coiflets, etc [5, 6]. 

The basis wavelet function )(0 xψ  has 

to satisfy (2) and the performance of the op-
erations: 

− shift along the independent variable 
axis –  

)(0 bx −ψ ,                     (3) 

where Rb∈  (real number) and determines 
the location of the wavelet packet; 

scaling  








−

a

x
a 0

2/1 ψ ,                 (4) 

where 0>a , is also a real number Rà∈  
and determines the width of the wavelet 
packet. 
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Taking into consideration requirements 
(3) and (4): 








 −= −

a

bx
ax 0

2/1)( ψψ ,        (5) 

At present a number of basis wavelet 
functions are known – Haar, Daubechies, 
Morlet etc.  

The fundamental principle of orthogo-
nal expansion by means of wavelets consists 
in the possibility of independent analysis of a 
given signal (function) in different scales. 
The wavelet transform is intermediate be-
tween the purely spectral (frequency) trans-
form and the pure time presentation [1, 3, 5]. 
As regards their localization in both the time 
and the frequency domains, wavelets are in-
termediary between the sinusoid functions 
that are well localized in the frequency do-
main and the Dirak function – well localized 
in the time domain. 

When using wavelets, the product of 
the time and the frequency ranges remains 
constant during function re-scaling, i.e. the 
area remains constant (Fig. 2). This allows 
the low-frequency components of the signal 
to be well localized in the frequency domain, 
and the high-frequency components – in the 
time domain (leaps, peaks, etc.) 

The wavelet transform has a great “re-
dundancy” and to represent a specific occur-
rence, it is sufficient to determine the coeffi-
cients in certain points in the plane (x, f), for 
instance, in the centers of each cell (Fig. 2).  

а3 < а2  < а1 

 
Fig. 2. Wavelet transform in the plane (x, f) 

For a material recognition transform to 
be applicable, it must be based on an or-
thogonal system of basis functions and there 
must be fast conversion algorithms. A suit-
able transform is the discrete wavelet trans-
form (DWT) with orthogonal wavelets with 
the elaborated fast wavelet conversion 
(Mallat algorithm). 

For discrete values –  

ma 2= and mkb 2= ,            (6) 

where k and m  – integers, dependence takes 
the form: 

( )kxx mm
km −= −− 22)( 0

2/
, ψψ ,    (7) 

The approximation coefficients of the 
forward discrete wavelet transform on level 
m are calculated according to the depend-
ence [1, 2]: 

( )∫
∞

∞−

−− −= dxxUkxkmA mm )(22),( 0
2/ ϕ ,  (8) 

and the detail coefficients are calculated after 
substitution of )(0 xψ  by )(0 xϕ : 

( )∫
∞

∞−

−− −= dxxUkxkmD mm )(22),( 0
2/ ψ    (9) 

In the general form the output signal 
on level m is represented by the expression: 

(x)D(x)A)x( k
1j -k

kj,km,
-k

km, ψϕ ∑ ∑∑
=

∞

∞=

∞

∞=

+=
m

U   (10) 

Wavelets are capable of localizing well 
low-frequency details along the frequency 
axis and high-frequency details along the 
time axis. This ability of wavelets to find a 
compromise between time localization and 
frequency localization of the studied signal is 
one of the most important characteristics in 
analyzing signals of complex shape. The 
wavelet transform splits the signal into fre-
quency components, which allows each of 
these components to be studied with a reso-
lution corresponding to its scale, and thus to 
achieve a good frequency-time localization. 
Thanks to this property, wavelets allow the 
manifestation of sharp “discontinuities” and 
“peaks” in the signals. 
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Compared to the analysis using har-
monic expansion, the analysis by means of 
wave packets (wavelets) has the following 
advantages [1, 4]: 

− the wavelet transform provides in-
formation about the studied signal in the 
time-frequency domain, while the spectral 
analysis yields a spectrum in the frequency 
domain.  

− the wavelet transform provides in-
formation about the occurrence of a given 
spectral component and the time of its exis-
tence. This approach is suitable for analysis 
of signals with high-frequency components 
of short duration and low-frequency compo-
nents of long duration. 

The wavelet transform enables signal 
analysis in different time scales and the 
manifestation of various properties of the 
signal related to changes in its structure in 
case of transition from one scale into an-
other, with energy distribution between 
scales, etc. [4, 5]. 

What has been stated so far makes it 
possible to conclude that the wavelet analy-
sis allows the structure of the studied signal 
to be assessed and the behaviour of the com-
ponents to be observed. 

Fast wavelet conversion  
Fast wavelet conversion has been de-

veloped for orthogonal wavelets – this is 
Mallat pyramidal algorithm [3]. It is realized 
on the basis of an iteration algorithm follow-
ing the diagram shown in Fig. 3. Signal U is 
passed to a low-frequency filter H and a 
high-frequency filter G with transfer func-
tions, respectively 

∑ ∈
−=)

Zn

in
neh ωωH(     and      (11) 

∑ ∈
−=)

Zn

in
neg ωωG( ,               (12) 

corresponding to wavelet functions )(tψ and 
)(tϕ . The filter coefficients hn and gn are 

calculated depending on the wavelet applied, 
and n is an integer. After reducing the num-
ber of the frequency components in half (bi-
nary decimation operation ( 2↓ )), the ap-
proximation coefficients are obtained on 
level m=1–A1 from filter H, while detail co-

efficients D1 are obtained from filter G. In 
case of a higher level expansion, the ap-
proximation coefficients on level m=1(A1) 
undergo analogous operations according to 
the diagram in Fig. 3. 

The proposed algorithm can be exe-
cuted fast in Мatlab software environment. 

 
Fig. 3. Diagram of fast wavelet conversion on m 

levels 

Experimental model for recogni-
tion of aluminium, chrome-nickel 
steel, brass, copper 

The experiments conducted for collect-
ing information have been realized using ul-
trasonic sensors of the type 
UST40Т/UST40R. The analysis of the ultra-
sonic signal returned upon reflection makes 
it possible to recognize various physical me-
dia. The block diagram of the experimental 
setup is shown in Fig. 4.  

 
Fig. 4. Block diagram of the experimental setup 
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The single-chip microcontroller excites 
the pulse former and a series of six pulses, 
each having a duration of 12,5 µs (40 kHz), 
is passed to the ultrasonic transducer, fol-
lowed by a pause of interval 12 ms (Fig. 5). 
As a result, a short sequence of ultrasonic 
waves generated by a piezoelectric trans-
ducer is propagated in the working medium 
near the object  

 
Fig. 5. Packets of square pulses for excitation 

of the transducer 

to be analyzed. The returned signal is ampli-
fied by the receiver and is then sent to the 
oscilloscope input. The discretization of the 
reflected signal is performed using the ana-
logue-to-digital converter built in the oscillo-
scope with discretization frequency 500 kHz. 
Each measurement yields 2500 discrete val-
ues (records). The data are converted in an 
ASCII text file.  

The investigation of the above-
mentioned materials – aluminium, chrome-
nickel steel, brass and copper – required tak-
ing 60 measurements for each of them, the 
distance between the transducer and the ana-
lyzed medium being 50 сm. The choice of 
these metals is based on their close similarity 
as a structure, the fact that they are different 
as substances and their wide use in industry. 

By means of simulation using the Mat-
lab software product [5], the approximation 
and detail coefficients of the occurrences in 
the training sample have been obtained (100 
occurrences) on levels m=1 through m=9, 
applying DWT with orthogonal Haar, 
Daubechies, Coiflets and Symlet wavelets. 
During this processing, after reaching level 
m=8, the feature parts are reduced to 10 co-
efficients as a result (obtained upon dividing 
2500 discretes by 28).  

Fig. 6, Fig. 7, Fig. 8 and Fig.9 present 
the results after the wavelet transform (wave-

let spectra), compared to the reflected signal 
for the respective material. 

  

Fig. 6. Aluminium Fig.7. Chrome-nickel 
steel 

  

Fig.8. Brass Fig. 9. Copper 

The obtained coefficients have been 
studied in the capacity of recognition (classi-
fication) features. Fig. 10 and Fig. 11 present 
the approximation and detail coefficients af-
ter discrete wavelet transform (DWT) on 
level m=8, which yields the best results. As 
can be seen from the obtained 10 features 
(coefficients), the greatest distinction is 
achieved for number one and number four.  

On the basis of the obtained features, 
four clusters have been defined, correspond-
ing to the materials to be identified. These 
are presented in Fig. 12 and Fig. 13. 

 
Fig. 10. Approximation coefficients 
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Fig. 11. Detail coefficients 

 
Fig. 12. Clusters of approximation 

 
Fig. 13. Clusters of detail coefficients  

coefficients 

The selected classifier that operates us-
ing the k-nearest neighbour (КNN) method 
[8, 12] takes into account the Euclidean dis-
tance to the three nearest neighbours. It can 
be seen in Fig. 12 and Fig. 13 that there is no 
overlapping, instead there is a clear distinc-
tion between the cluster zones, which is, in 
practice, a prerequisite for error-free opera-
tion.  

Table 1 summarizes the results ob-
tained for the classification of the validation 

set (133 occurrences). As can be seen in it, 
the error is equal to zero with the classifier 
used, which works with two features only, 
and 100% of all measurements taken of the 
materials have been related to the respective 
clusters. 

This can serve as a basis for training of 
a material recognition system. 

Table 1. Results from the classification 
Classified by the clas-

sifier, number 
Errors Analyzed 

material 
Al CrNi CuZn Cu Total Actual Major 

 mik mi1 mi2 mi3 mi4  gi,% ei,% 
Al m1k 39 0 0 0 39 0 0 

CrNi m2k 0 34 0 0 34 0 0 
CuZn m3k 0 0 29 0 29 0 0 

Cu m4k 0 0 0 31 31 0 0 

Total бр. 39 34 29 31 133 
Total error 
E = 0 % 

Conclusions 
The main advantage of the proposed 

approach lies in the possibility for obtaining 
the features in a strictly defined mathemati-
cal procedure, avoiding the subjective factor 
in the heuristic formation of features. This 
makes the classifier practically applicable. 
On the basis of this approach, three types of 
explosives have been studied, with a 100% 
recognition achieved. 
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