138 IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

YAK 004.421:004.438

DOI: 10.18372/2073-4751.83.20551

Alexander Chizhov,
orcid.org/0000-0002-3992-8522

Andriy Fesenko,
orcid.org/0000-0001-5154-5324

INTELLIGENT LOAD BALANCING MANAGEMENT IN CLOUD
WEB HOSTING: EVALUATION CRITERIA AND METHODOLOGY

State University ""Kyiv Aviation Institute"

e-mail: 8288253 @stud.kai.edu.ua,
e-mail: andrii.fesenko@npp.kai.edu.ua

Introduction

The migration from the -classical
shared hosting model to cloud-cluster
architectures is becoming a necessity for
providers that serve large portfolios of low-
loaded websites. Studies show that hybrid
solutions with elastic scaling make it
possible to simultaneously reduce
operational costs and improve service quality
during peak traffic periods [1]. Under these
conditions, the load balancer stops being a
secondary L[4/L7 element and becomes a
managed component that affects the
fulfillment of the Service Level Agreement
(SLA) and the economics of resource usage.

A key feature of cluster web hosting is
massive Transport Layer Security (TLS)
with tens of thousands of domains and a high
frequency of certificate rotation. At this
scale, support for “hot” management of TLS
secrets without restarting processes is
critical. Modern solutions provide
corresponding mechanisms (for example, the
Runtime API in HAProxy [2] and SDS/xDS
in Envoy [3]), but their impact on stability,
latency, and the predictability of system
behavior under dynamic configuration
changes remains insufficiently studied in
typical testing methodologies.

The second defining aspect of the
architecture is the integration of the load
balancer with an asynchronous traffic
analysis circuit. The approach with placing a
dynamic blacklist in memory and moving
request classification to a queue and a
Machine Learning (ML) processor makes it
possible to maintain high throughput with

zero additional latency on the “hot” path.
This principle is formalized by the authors in
the registered Ukrainian utility model [4],
and is also examined in detail in the authors’
study [5], where a cluster hosting with neural
network filtering of HTTP Flood and Brute
Force attacks was proposed. These aspects
define specific requirements for extension
points, secure interfaces for managing block
lists, and efficient non-blocking data
structures.

To ensure the required SLA, the load
balancer must also act as a source of
telemetry and a feedback node for scaling
mechanisms: aggregate load metrics by
domains and time windows, export them in
standard formats (for example, Prometheus
or StatsD), and provide universal interfaces
such as Command Line Interface (CLI),
HyperText Transfer Protocol Application
Programming Interface (HTTP API), or
similar for initiating topology changes. In
this way, the load balancer becomes part of
the cluster control loop, where resource
supply parameters are calculated by a
mathematical model based on observed data.

Existing academic and engineering
comparisons usually focus on throughput
and latency in static configurations, without
taking into account the scale of TLS,
frequent “hot” changes, and the ability to
embed user logic. This creates a
methodological gap between the practical
requirements of cloud-cluster platforms and
the performance benchmarks being used.
This work aims to close this gap: we develop
a methodology for choosing a load balancer

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025

139

for cluster web hosting with massive TLS

and asynchronous traffic analytics,
highlighting criteria of suitability for
dynamic operation scenarios and
requirements for observability and
manageability.

The article is structured as follows. In
the section ‘“Problem Statement”, the
functional requirements for the load balancer
in the considered architecture are clarified. In
the “Literature Review”, the limitations of
existing comparison methodologies are
summarized, and the capabilities of modern
solutions relevant to the dynamic context are
identified. Further, selection criteria are
formulated and a methodology for
comparative analysis is proposed, oriented
toward scenarios with a changing number of
certificates, asynchronous filtering, and
autoscaling; questions of experimental
validation are placed in future publications.

Purpose and Structure of the
Study

The purpose of this work is to develop
a methodology for choosing a software load
balancer for a cloud-cluster web hosting
platform with massive use of TLS, dynamic
certificate rotation, and integration with an
asynchronous traffic analysis system. Unlike
traditional approaches based on measuring
throughput and latency in static
configurations, the proposed approach is
oriented toward dynamic operation
scenarios, where the number of certificates,
the state of the blacklist, and the size of the
cluster change.

To achieve this purpose, the following
tasks are solved:

e define the functional requirements for the
load balancer as a control element in the
architecture of cluster web hosting;

e analyze scientific publications and
technical documentation on the most
commonly used software load balancers
HAProxy, NGINX, Envoy, Traefik, and
Caddy, in terms of dynamic TLS
management, extensibility, and telemetry;

e formulate criteria for the suitability of the
load balancer for use under conditions of

configuration dynamics, asynchronous
analytics, and SLA-oriented scaling;

e propose a methodology for comparative
analysis that takes into account the change
in the number of certificates, TLS
rotation, and real-time blacklist updates.

The practical implementation of the
experimental ~ environment and the
quantitative validation of the methodology
are beyond the scope of this article and will
be presented in future works.

Problem Statement

In modern cluster web hosting
systems, the load balancer becomes not just a
transport node but a critical component that
determines infrastructure stability, SLA
compliance, and the possibility of dynamic
scaling. However, most existing studies
evaluate its behavior in static conditions,
where the number of domains is fixed, the
configuration does not change over time, and
TLS certificates are loaded only once at
startup. This approach contradicts the
practical realities of cloud-cluster platform
operation.

One of the main problems is the scale
of the TLS environment. Large hosting
providers work with tens of thousands of
domains, each requiring its own certificate.
These certificates are not static, new clients

appear daily, old ones stop working,
automatic renewal through Automatic
Certificate Management Environment

(ACME) is triggered, or internal key rotation
is performed. The load balancer is forced to
operate in conditions where the TLS
configuration continuously changes. In such
scenarios, classical configuration reload
mechanisms, accompanied by short delays or
connection loss, become unacceptable. With
a large number of certificates, memory usage
also increases, TLS handshake time grows,
and the risk of latency degradation rises,
especially during peak client reconnections.
The complexity is increased by the
need to perform “hot” configuration changes
without stopping processes. The load
balancer must update certificates, add or
remove backend servers, adjust request
routing and all of this in a running system

140

IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

that must not interrupt service. However,
typical testing methodologies for these
capabilities either do not exist or are limited
to subjective engineering observations. It is
unclear how quickly the load balancer
applies changes, whether connections are
lost at the moment of switching
configuration, and whether latency increases
during internal state rebuilding.

Special attention must be given to
integration with security systems. In the
authors' patented model of asynchronous
traffic filtering [4], the request is processed by
the load balancer immediately, but its copy is
sent to a queue for analysis by a neural
network. The result of the analysis becomes
an update of the blacklist, a list of IP
addresses that must be denied service in the
future. This operation is performed without
stopping the process and without additional
delay for the main traffic. Such an
architecture creates specific requirements: the
load balancer must be able to modify in-
memory data structures in real time, support
interaction with queue systems (Redis, Kafka,
RabbitMQ), and at the same time not lose
throughput. In existing literature, this type of
problem is almost never addressed, research
usually focuses on attack detection models,
but not on how the analysis results should be
applied directly at the traffic entry point.

Scaling management creates another
group of problems. In an elastic cluster, the
number of servers must change
automatically depending on the load. The
load balancer becomes a node that either
initiates changes or, at minimum, reacts
correctly to them: adds new nodes to the
pool, excludes unavailable ones, redistributes
traffic ~ without breaking connections.
However, the behavior of load balancers in
transitional modes, for example, when
dozens of backend servers are added at the
same time or when part of the infrastructure
fails is almost not studied. An open question
remains: which configuration management
mechanisms are reliable, what is the reaction
delay to changes, and is transactional
configuration change and rollback in case of
error possible.

Finally, full SLA management is
impossible without telemetry. Mathematical
models that determine the optimal number of
active servers require reliable data on the
number of requests, their distribution by
domains, latency, errors, and the number of
active connections. The load balancer must
be not only a participant in network
exchange but also a source of observable
metrics suitable for processing by external
systems (Prometheus, StatsD, etc.). The
problem is that not all solutions provide such
telemetry with the required accuracy and
frequency, and in existing research this
aspect is almost not considered.

Thus, the research problem is formed:
it is necessary to identify architectural
limitations that arise during the operation of
load balancers under conditions of massive
TLS, hot configuration changes,
asynchronous traffic filtering, and dynamic
cluster management, and based on these
limitations, formulate requirements for a
methodology of objective selection and
further comparison of load balancers in a
cloud-cluster environment.

Literature Review

Load balancers are traditionally
considered in research as components
expected to provide high throughput, low
latency, and stability under load. Most
works measure Requests Per Second,
latency metrics at the 95th and 99th
percentiles (p95 and p99 latency), that is the
response time below which 95% and 99%
of all requests fall, the number of errors,
and system behavior when the number of
simultaneous connections increases [6,7].
This approach was justified while web
hosting remained a static environment:
configuration changes were rare, certificates
were loaded manually, and the infrastructure
scale was measured in tens of servers.
However, in cloud-cluster environments,
these assumptions are no longer sufficient.
The number of domains reaches thousands,
certificates are updated dynamically, and
the cluster topology changes in real time.
Despite this, most comparative studies
continue to evaluate load balancers as

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 141

immutable systems that do not account for
dynamic configuration changes.

Some publications note that test results
are sensitive to configuration and TLS mode
[7], but do not include scenarios where
certificates are added, removed, or updated
during service operation. Situations where
the composition of backend servers, TLS
configuration, and traffic volume change
simultaneously are rarely considered. What
has long become the norm in real systems
still remains outside the focus of academic
literature. Researchers continue to compare
NGINX, HAProxy, or Envoy with a static set
of domains, while hosting providers operate
in a constantly changing enviro-nment where
a static state exists only for a moment.

Engineering sources, official
documentation for HAProxy, Envoy, NGINX,
Traefik, and Caddy, show that developers of
load balancers have long implemented
mechanisms for dynamic TLS management.
HAProxy uses a Runtime API that allows
updating the list of certificates without
restarting the process [2]. Envoy applies the
Secret Discovery Service (SDS) within the
xDS architecture [3], providing centralized
real-time distribution of keys. NGINX ofters
graceful reload, which updates the
configuration without breaking connections,
but this approach implies a full reload of the
master process [8]. Traefik and Caddy
automate certificate issuance and renewal via
ACME and allow configuration changes
through the API [9,10]. These mechanisms
exist and are actively used, but their impact
on latency, stability, and SLA has been
practically unstudied in academic works.

A similar situation is observed in
relation to embedded request-processing
logic. Modern load balancers have long
ceased to be universal “black boxes.”
HAProxy includes the Stream Processing
Offload Engine (SPOE), which allows
transferring data to external agents and
returning processing results in real time [2].
Envoy develops the concept of
WebAssembly filters, allowing the
embedding of business logic at a low level
of traffic processing [11]. NGINX supports

extensions through Lua or njs, enabling
integration of authorization, tracing, and
traffic filtering systems [8]. However,
publications where such mechanisms are
considered not as technical possibilities but
as measurable parameters are almost absent.
There are no works evaluating how the
introduction of such logic affects latency,
throughput, or stability under high load.

Another direction of literature is
devoted to machine learning and L7-DDoS
detection methods. These studies describe
how neural networks classify HTTP requests,
detect behavioral anomalies, and form
dynamic block lists. However, most research
focuses on model accuracy, datasets used,
and standard metrics: precision (the share of
correctly detected malicious requests among
all blocked ones) and recall (the share of
detected attacks among all actually existing
attacks) [12,13]. At the same time, almost no
attention is paid to how such solutions
should be integrated directly into the load
balancer or web server. It is not examined
how quickly a blacklist can be updated in
memory, whether this affects packet latency,
or what happens when configuration updates
and new load arrivals occur simultaneously.
In other words, the research focuses on
developing the “intelligence” of the system
but does not explain how to embed it into the
real transport architecture of traffic
processing.

Taken together, this forms a clear
scientific gap. On one hand, researchers
describe load balancer performance, but in
static conditions. On the other hand,
documentation and engineering practice
show the presence of complex mechanisms
for TLS dynamics, hot reload, and
programmable traffic processing, but these
aspects do not appear in academic
comparative works. A third direction, ML
and DDoS analytics, shows how attacks can
be detected but does not describe how
analysis results are applied at the load
balancer level. There is not a single work
that combines TLS scale, hot certificate
management, asynchronous request filtering,

142

IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

and SLA-oriented cluster control into a
unified methodology.

Eliminating this methodological gap is
precisely the goal of this article. Unlike
existing studies, here the load balancer is
considered not as a static element of the
network but as a dynamic control node
whose behavior must be evaluated under
conditions of configuration, load, and
security changes.

Criteria for Selecting a Load
Balancer

The problems outlined in the problem
statement require moving from the
description of bottlenecks to the formation of
a system of criteria by which software load
balancers can be objectively compared. If the
“Problem Statement” section identifies what
the architecture faces, this section defines
what exactly should be measured and
analyzed to distinguish a suitable solution
from an unsuitable one. Each criterion
describes not only a property of the load
balancer but also how this property can be
tested and verified.

1. Operation with TLS at Large
Scale
The first aspect to evaluate is the ability of
the load balancer to handle not tens but
thousands and tens of thousands of
certificates simultaneously. Unlike the
problem statement, this is not about the fact
that there are many certificates and they
change, but about how well a specific
solution can handle such a configuration
without increasing latency or failures.
Practical evaluation includes measuring TLS
material loading time, memory consumed by
certificates, TLS handshake execution time,
and behavior during sequential dynamic
loading of new domains without restarting
the system. If adding the hundredth or
thousandth certificate causes a response time
spike or process restart, the load balancer
does not meet the criterion.

2. Reaction to Configuration
Changes During Operation
A load balancer intended for use in cluster
environments must be able to accept new
settings ~ without interrupting service.

However, the criterion here is not simply the
presence of an API or reload command, but
how quickly and safely it applies changes. It
becomes important to measure the time
between issuing a command and the actual
application of changes, to record possible
connection losses, delays, or short “blind
spots” when part of the traffic is processed
with the old configuration. The evaluation
should be performed on a sequence of
changes: one certificate, ten, one hundred;
adding and removing backend servers;
updating routing. Only in this way can the
suitability of the solution for real dynamic
scenarios be judged.

3. Architectural Flexibility and
the Ability to Embed Additional Logic
The load balancer becomes part not only of
the network but also of the logical
architecture; therefore, its ability to embed
custom request processing is evaluated.
This is not about the fact that it can work
with queues or Lua scripts, but about how
fast such processing executes, how much it
interferes with the main request path, and
whether the load balancer can update
internal data structures, such as block
tables, without thread blocking.
Verification is carried out experimentally:
delays are measured with filters enabled
(Wasm, Lua, njs), additional CPU load is
recorded, and performance changes are
analyzed during mass updates of in-
memory records, for example, during
intensive IP table updates.

4. Manageability and Interaction
with External Systems
Unlike the problem of the absence of unified
management standards, the criterion here is
the measurable ability of the load balancer to
integrate into infrastructure orchestration.
This includes the presence of an API or CLI,
but more importantly is the reliability of
these interfaces. The test must determine
whether a cluster node can be automatically
added, how the load balancer reacts to a lost
connection with the API, and whether
rollback of changes is supported. In addition,
compatibility with DevOps tools is
evaluated: whether automatic configuration

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 143

via Ansible, Terraform, or CI/CD pipelines is
possible; whether changes are recorded
transactionally; and whether configuration is
blocked during concurrent access.

5. Observability and Telemetry
An important criterion is not only the
availability of statistics but also its suitability
for SLA analytics. The load balancer must
provide data on the number of requests,
latency, failures, and backend node states,
and do so in a format compatible with
monitoring systems such as Prometheus or
StatsD. The frequency of data updates, the
delay between an event and its appearance in
metrics, and the possibility of detail by
domain or IP address are evaluated. If
telemetry is incomplete or arrives with
delays of tens of seconds, such a system
cannot participate in autoscaling mechanisms
or SLA modeling.

6. Resilience to Dynamics and
Failures
In addition to individual capabilities, it is
necessary to test the load balancer’s
resilience during long-term operation under
conditions of continuous change. This is the
criterion most similar to real-world
conditions. It includes long-duration testing,
during which certificate changes, blacklist
updates, backend additions, and removals
occur simultaneously, while stable load is
applied at the input. If such a test reveals
memory leaks, latency growth, thread
blocking, API hangs, or incorrect connection
termination, the load balancer cannot be
considered resilient.

Unlike the problem statement, which
identified the challenges, this section defines
how these challenges should be translated
into measurable parameters. These criteria
form the basis for the next stage is the
development of a comparative analysis
methodology in which they will be tested on
real software solutions.

Methodology of Comparative
Analysis

The previously formulated criteria for
selecting a load balancer require an
evaluation method that takes into account not
the static state of the system, but its behavior

over time, at moments of configuration
change, under accumulated load, and during
the simultaneous operation of TLS, filtering,
and scaling mechanisms. Therefore,
traditional approaches limited to measuring
the maximum number of requests per second
or median latency in an unchanging
configuration are insufficient. To make the
evaluation relevant to the real operation of
cluster web hosting, it is necessary to
reproduce the very nature of this
environment, that is continuous change.

The Principle of a Dynamic
Benchmark

The proposed methodology is based on
the concept of a dynamic benchmark. Unlike
classical load tests, here the system is tested
not in a single fixed state but during its
change. Load is applied continuously, while
the configuration of the load balancer and
infrastructure gradually becomes more
complex: the number of certificates
increases, some of them are updated, new
backend servers are added, old ones are
removed, and protection mechanisms update
and apply a new blacklist. The goal is not
simply to record performance peaks but to
trace how the load balancer reacts to
changes, whether it maintains connections,
whether latency grows, and whether SLA
violations occur.

Basic Structure of
Experimental Environment

The methodology involves the use of
three components:

1. aload generator,

2. the tested load balancer,

3. a group of backend servers that respond
as quickly as possible (HTTP 200 OK).

Such a scheme creates conditions
where the only source of degradation is the
load balancer itself, not slow applications or
databases. This makes it possible to isolate
the studied effect.

Immediately before the start of the
experiment, the system is placed in a
minimal configuration state: the load
balancer serves a small number of domains,
the IP table is empty, and only a few TLS
certificates are loaded. Then continuous load

the

144

IIpobnemu ingpopmamuszayii ma ynpaeninus, 3(83) 2025

generation begins, and the system
sequentially passes through several stages.
Sequential Complexity Increase

The first stage is characterized by an
increase in the number of domains and
certificates. The configuration expands from
hundreds to thousands of records. At this
stage, not absolute RPS values but delays,
CPU spikes, and transitions between states
are recorded. The second stage includes
certificate updates during load: some of them
are replaced or deleted. Measurements are
taken to determine whether short service
interruptions occur, handshake errors appear,
or temporary delays arise.

The third stage is related to
asynchronous logic: a system is activated
that sends copies of requests to a queue,
where they are analyzed and converted into
new blacklist entries. It is important to
measure how quickly the load balancer
accepts these changes and how this affects
the latency of the main traffic. At the
fourth stage, the cluster topology changes:
new backend servers appear, and some of
them are later removed. The ability of the
load balancer to reassign requests without
breaking connections is evaluated.

What Is Measured

For each stage, metrics corresponding
to the selection criteria are recorded:

e response latency (p50, p95, p99) before,
during, and after configuration changes;

e number of failed connections and TLS
errors;

e reaction time of the load balancer to an
external configuration change command;

e increase in CPU and memory
consumption under growing TLS load;

e telemetry behavior: delay in data
appearance, continuity of metric output;

e cmergence of cumulative effects:
memory leaks, latency increase after a
series of changes.

At the analysis level, these data are
converted into integral indicators. For
example, resilience under dynamic
conditions can be expressed through the ratio
of performance in static and changing states.
Other parameters, reaction time to changes

or degradation coefficient, are evaluated
separately for each solution.

The Principle of Reproducibility

The methodology must be
reproducible. This means that all
configuration changes are performed
programmatically: through REST API,
scripts, or xDS/Runtime interfaces. Test
scenarios must be documented in such a way
that another researcher can obtain the same
results on a different infrastructure. This is
especially important, since the goal of the
methodology is not to compare specific
software versions but to establish a way of
their objective evaluation.

Unlike traditional static tests, the
described approach views the load balancer as
a system in motion: it changes, adapts, and
must continue to operate. The ability to
maintain manageability, predictability, and
performance under dynamic conditions
become the key criterion that distinguishes an
engineering solution from an architecturally
mature component of a cloud cluster.

Conclusion

In modern cloud-cluster web hosting,
the load balancer has long ceased to be an
auxiliary network component. Its role has
shifted toward a managed architectural
element that determines SLA compliance,
resilience to configuration dynamics, and the
system’s ability to adapt without downtime.
However, existing evaluation methodologies
for load balancers remain focused on static
conditions and measure only throughput and
latency, without reflecting the nature of real
operational scenarios. As a result, solutions
that show high performance in laboratory
tests may prove unsuitable under conditions
of massive TLS, frequent configuration
changes, or integration with asynchronous
traffic filtering systems.

This work proposes a methodological
approach that allows evaluating load
balancers in dynamics, not only by the
speed of request processing but also by how
stably and predictably they react to
changing architectural conditions. For this
purpose, the logic of selecting criteria was
redefined: each criterion is connected not

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025

145

with the internal functionality of the
product, but with a specific operational
challenge that arises in a cloud-cluster
environment. Massive rotation of TLS
certificates, hot configuration changes, in-
memory blacklist updates, the appearance or
disappearance of backend servers, and the
continuity of telemetry, all these processes
are considered not as exceptions but as the
normal state of the system.

The scientific novelty of this work
lies in shifting the focus from evaluating
peak performance to evaluating the
system’s behavior at the moments of
change. The concept of a “dynamic
benchmark” is proposed a test scenario in
which the load on the balancer is combined
with configuration evolution, allowing the
identification not only of maximum RPS or
latency values but also of the solution’s
ability to maintain SLA under continuous
environmental transformation. This
perspective unites previously separate
domains: network engineering practice,
fault-tolerant system architecture, and
asynchronous request-processing methods,
including those described in the patented
model [4].

The practical value of the study lies in
forming a reproducible methodology that can
be applied when selecting a load balancer
during migration from classical shared hosting
to a cloud-cluster architecture. The provider
receives a tool that makes it possible not only
to compare existing solutions (HAProxy,
NGINX, Envoy, Traefik, Caddy) but also to
justify the development of a proprietary
software load balancer if existing options do
not provide the required controllability or
reaction speed to changes.

Further development of this work
includes the implementation of a fully
functional test environment, experimental
validation of the proposed criteria, and the
construction of a quantitative comparison
table for the five load balancers. Another
direction will be the creation and testing of
a prototype load balancer written in Rust,
with built-in support for multithreading,
safe real-time configuration modification,

and asynchronous traffic analysis. This will
make it possible to finally verify the
hypothesis that performance and intelligent
manageability can be combined in a single
solution without compromises in reliability
or security.

References

1. Chizhov A., Fesenko A. Web
hosting companies’ client solutions: A study
of a strategic standpoint // Corporate &
Business Strategy Review. — 2025. — Vol. 6,
No. 1. — P 421-429. - DOL
10.22495/cbsrv6ilsiartl 8.

2. HAProxy Runtime API Reference
[Electronic resource]. — Access mode:
https://www.haproxy.com/documentation/ha

proxy-runtime-api/reference/ (accessed
04.11.2025).

3. Envoy Proxy. Secret discovery
service (SDS) [Electronic resource]. —
Access mode:

https://www.envoyproxy.io/docs/envoy/latest
/configuration/security/secret (accessed
04.11.2025).

4. Dudnik, A., Fesenko, A. &
Chyzov, O. (2025). Method of web
application protection based on
asynchronous request analysis: Utility Model
Patent of Ukraine No. UA 160974 U.
Registered 22 October 2025. Kyiv:
Ukrainian National Office of Intellectual
Property and Innovation.

5. Chizhov A., Fesenko A., Ziuziun
V., Basshykyzy D. “Cloud Shared Hosting
DDoS Resistance and Potential Ways of
Protection” // CEUR Workshop Proceedings
“Cyber Hygiene & Conflict Management in
Global Information Networks 2024”. — ISSN
1613-0073. — Vol. 3925. — P. 13-23. — Access
mode: https://ceur-ws.org/Vol-3925/
(accessed 04.11.2025).

6. Perecira D. S., Bezerra L. F. V.,
Nunes J. S., Barroca Filho I. M., Lopes F. A.
S. Performance Efficiency Evaluation based
on ISO/IEC 25010:2011 applied to a Case
Study on Load Balance and Resilient //
Workshop de Testes e Tolerancia a Falhas
(WTF) 2023. — DOI: 10.5753/wtf.2023.787.

7. Johansson A. HTTP Load
Balancing Performance Evaluation of

146 IIpobnemu inpopmamuzayii ma ynpaeninmus, 3(83) 2025

HAProxy, NGINX, Traefik and Envoy with
the Round-Robin Algorithm Bachelor
Degree Project in Science with a major in
Informatics, G2E, 30 ECTS / A. Johansson ;
supervisor J. Zaxmy, examiner T. Fischer ;
University of Skovde. — Skovde, Sweden,
2022. - 54 p.

8. nginx documentation — njs.
[Electronic resource]. — Access mode:
https://nginx.org/en/docs/njs/ (accessed
04.11.2025).

9. Traefik Labs. ACME: certificate
resolvers for TLS / Traefik Proxy [Electronic
resource]. - Access mode:
https://doc.traefik.io/traefik/reference/install-
configuration/tls/certificate-resolvers/acme/
(accessed 04.11.2025).

10. Caddy - Automatic HTTPS
[Electronic resource]. — Access mode:

11. Envoy Proxy. Wasm [Electronic
resource]. - Access mode:
https://www.envoyproxy.io/docs/envoy/latest
/intro/arch_overview/advanced/wasm
(accessed 04.11.2025).

12. Chovanec M., Hasin M., Havrilla
M., Chovancova E. Detection of HTTP
DDoS Attacks Using NFStream and
TensorFlow // Applied Sciences. — 2023. —
Vol. 13, No. 11. — Article 6671. — DOI:
10.3390/app13116671.

13. Najafimehr M., Zarifzadeh S.,
Mostafavi S. DDoS attacks and machine-
learning-based detection methods: A survey
and taxonomy // Engineering Reports. —
2023. — Vol. 5. — Article e12697. — DOI:
10.1002/eng2.12697.

https://caddyserver.com/docs/automatic-https
(accessed 04.11.2025).

Alexander Chizhov, Andriy Fesenko.

INTELLIGENT LOAD BALANCING MANAGEMENT IN CLOUD WEB HOSTING:
EVALUATION CRITERIA AND METHODOLOGY

This paper presents a methodology for selecting a software load balancer designed
for cloud-cluster web hosting environments that use a large number of Transport Layer
Security (TLS) certificates, perform their dynamic rotation, and integrate with an
asynchronous network traffic analysis system. It is shown that traditional methods of
evaluating load balancers, based on static testing of throughput and response time, do not
reflect real operating conditions, where the system configuration constantly changes,
block lists are updated, the composition of servers varies, and compliance with the Service
Level Agreement (SLA) is required. Under such conditions, the load balancer should be
considered an active control element capable of handling tens of thousands of certificates,
applying configuration changes without process restarts, updating internal in-memory
data structures, and providing reliable telemetry for automatic scaling systems. A new
evaluation approach is proposed, based on the concept of a “dynamic benchmark,” which
combines load testing with gradual configuration complexity: increasing the number of
domains, updating certificates, applying new block list entries, and changing cluster
topology. Key evaluation criteria are defined, including scalability, resilience under
dynamic changes, flexibility for implementing custom logic, manageability, and
completeness of observability. The developed methodology eliminates the existing gap
between academic research and the practical operation of modern hosting platforms and
creates a foundation for further experimental validation and the development of a next-
generation load balancer prototype focused on reliability, adaptability, and intelligent
load management.

Keywords: cloud web hosting, load balancing, dynamic TLS management, SLA-aware
scaling, dynamic benchmark.

Ipobnemu inpopmamuzayii ma ynpasninnus, 3(83) 2025 147

Ounexcanap Ynxos, Anapiii @eceHko

IHTEJEKTYAJIBHE YIIPABJIIHHA BAJIAHCYBAHHAM HABAHTAJKEHHS Y
XMAPHOMY BEB-XOCTHUHI'Y: KPUTEPII OINIHIOBAHHSA TA METOAOJIOT'TA

Y cmammi npedcmasneno memooonozito 8ubopy npocpamHo2o OaNaAHCYBATbHUKA
HABAHMAIICEHHS, NPUSHAYEHO20 OISl CepeoosUly XMAPHO-KIACMEPHO20 6€0-XOCMUH2Y, SKI
BUKOPUCMOBYIOMb 8eIUK) Kilbkicmb cepmugpikamie Transport Layer Security (TLS),
BUKOHYIOMb IX OUHAMIYUHY pOMayilo ma iHmezpyiomuvcs 3 ACUHXPOHHOIO CUCMEMOIO AHANI3Y
Mmepedicesoco mpaghixy. Ilokazano, wo mpaouyitini Memoou OYiHIOB8AHHs OAIAHCYBAILHUKIG
HABAHMAIICEH NS, 3ACHOBAHT HA CMAMUYHOMY MECH)8aHHI NPONYCKHOI 30amHOCMI Ma Yacy
8I02YKy, He 8i000pajicaromov pearvHux YMo8 eKcniayamayii, oe KoH@ieypayis cucmemu
NOCMINHO 3MIHIOEMbCSA, OHOBNIOIOMbCS CNUCKU OOKYB8AHHS, 3MIHIOEMbCS CKIAO cepeepis i
BUMALAEMBCS OOMPUMAHHS Y200U Npo piseHb o0bOcnyeosyeanns (SLA). 3a makux ymos
OaNaHCYBANbHUK HABAHMANCEHHA CI0 pO321A0amu K AKMUGHUL eleMeHm YNPAGIiHHS,
30amHuuti 06poOIAMU 0eCAMKU MUCcAY cepmuixamis, 3acmocogygamu 3MiHU KOH@ieypayii
be3 nepezanycky npoyecis, OHOBNIO8AMU GHYMPIWHI CMPYKMYpU OAHUX y nam’smi ma
Hadaeamu HAOIIHY meneMempilo O1d CUCEM ABMOMAMUYHO20 MACUMAOYEAHHSL.
3anpononosano Hosull nioxXi0o 00 OYIHIOBAHHS, 3ACHOBAHUU HA KOHYENnyii «OUHAMIYHO2O
Oenumapxyy, AKUll NOEOHYE HABAHMAICYBAIbLHE MECMY8AHHS 3 NOCMYNOBUM YCKIAOHEHHAM
KOHGi2ypayii: 30inbuenHsIM KilbKOCMI OOMEHI8, OHOBNEHHIM Cepmugikamis, 3acmocy8anHiIMm
HOBUX 3anucig y cnuckax OJIO0KY8AHHA ma 3MIHOW monolozii kiacmepa. Busnaueno xnouosi
Kpumepii OYiHIOBAHHS, 30KpemMda Macumabosanicms, CMIUKICMb 00 OUHAMIYHUX 3MiH,
CHYYKICMb peanizayii 61acCHOi JI02IKU, KepoBaHIiCMb ma NOGHOM) CNOCMEPEHCYBAHOCHII.
Po3spobnena memooonozia ycysae icHyrouuti po3apue mixnc akademivHuMu O0CIIOHCEHHAMU ma
NPAKMUYHOK eKCHIYAMAYIErd CYYACHUX XOCMUH208UX NAAM@OOpM i CMBOPIE OCHO8Y O
nooanbUloi eKCnepuMeHmanbHoi nepesipku ma po3pooKu npomomuny OAaIaHC)8ANbHUKA
HABAHMAIICEHHS HACMYNHO20 NOKONIHHSA, OPIEHMOBAHO20 HA HAOIUHICMb, A0ANMUBHICMb Md
iHmenekmyaibHe YNpasiinHs HA8AHMANCEHHSIM.

Knrouoei cnosa: xmapuuil ee6-xocmune, 0ANAHCYBAHHA HABAHMANCEHHS, OUHAMIUHE
ynpasninns TLS, macwumabyeanns 3 ypaxysannsam SLA, ounamiynuii benumapk.

