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Вступ 
Динамічний прогрес технологій 

обміну даними, а також стрімкий 
розвиток в сфері мікроелектроніки 
обумовлюють інтенсивне розширення 
галузей застосування систем на базі 

Інтернету Речей. В контексті таких систем 
йдеться про технології, що застосовують 
мережу Інтернет для передачі даних,         
а також команд управління. Завдяки 
можливості використання готових 
інфраструктурних рішень, якісному зрост

анню характеристик Інтернету, його 
низькій вартості, простоті інтеграції,         

а також практичній незалежності від від-
стані до об’єктів керування, Io

T-технології вийшли за межі 
побутових застосувань і активно 
впроваджуються у критично важливі 
галузі. Мова йде про такі сфери 
використання, як дистанційна медицина, 
системи охоронної сигналізації та 
відеоспостереження, управління безпі-
лотними пристроями, об’єктами інфра-
структури, технологічними лініями. 

Для таких систем використання 
мережі Інтернет як середовища передачі 
даних породжує низку загроз, пов’язаних 
із потенційною можливістю зовнішнього 
втручання в процеси віддаленого 

управління об’єктами та моніторингу їх 
стану [1]. Особливу небезпеку становлять 
спроби підміни або модифікації керуючих 
команд, які формуються пристроєм 
управління, а також фальсифікації даних, 
що надходять з термінальних платформ. 

Для протидії таким загрозам 
ключового значення набувають крипто-
графічні методи захисту інформації. 
Зокрема, для перешкоджання фальси-
фікації даних стану об’єктів реального 
світу та команд управління найбільш 
дієвим механізмом виступають алгоритми 
цифрового підпису (DSA) [2].  

Базовою математичною операцією, 
що лежить в основі таких алгоритмів, є 
операція модулярного експоненціювання 
AE mod M. Для забезпечення належного 
рівня криптостійкості вона виконується 

над числами великої розрядності. На 
сьогоднішній день стандартом є викорис-
тання ключів довжиною 4096 бітів [3], із 
перспективою її зростання до 8192, що на 
порядки перевищує розрядність проце

сорів, які використовуються у 
термінальних пристроях. Здійснення 
експоненціювання над такими числами 
потребує виконання мільярдів 
процесорних операцій, що суттєво 
ускладнює обчислення модулярної 

експоненти в системах управління в 
режимі реального часу. Для комп’ютерних 
платформ великої та середньої потужно-
сті, проблема швидкої реалізації модуляр-
ного експоненціювання вирішується за 
рахунок застосування вбудованих крипто-
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процесорів, що здатні швидко виконувати 
обчислення експоненти на апаратному 
рівні [4]. Водночас для малопотужних 
термінальних платформ, що використо-
вуються у IoT-системах, застосування 
криптопроцесорів вимагає додаткових 
ресурсів, а також потребує забезпечення 
особливих умов для їх функціонування.  

Таким чином, наукова задача 
прискорення реалізації базової операції 
криптографії з відкритим ключем – 
модулярного експоненціювання на 
термінальних пристроях є актуальною та 
важливою для сучасних систем віддале-
ного керування об’єктами реального світу.  

Оглядовий аналіз існуючих методів 
прискорення мультиплікативних опера-
цій для швидкого модулярного експонен-
ціювання  

Важливість проблеми швидкого 
обчислення модулярної експоненти на 
термінальних пристроях стимулює велику 
кількість досліджень на цю тему [5,6].  

На практиці, обчислення AE mod M 
здійснюється за одним із двох різновидів 
класичного алгоритму модулярного 
експоненціювання [7]. Для обох з них 
обчислення експоненти організовується у 
вигляді циклу з n ітерацій, де n – розряд-
ність модуля M. Перший різновид 
передбачає обробку коду експоненти зі 
старших розрядів. Результат експоненцію-
вання формується у змінній U, початкове 
значення якої ініціалізуюється рівним 
одиниці: U = 1. Кожна ітерація передбачає 
здійснення модулярного піднесення до 
квадрату U = U 2 mod M та, якщо відповід-
ний біт експоненти дорівнює одиниці, 
модулярного множення U = U  A mod M.  

В другому різновиді обробка коду 
експоненти здійснюється з молодших роз-
рядів, і обчислення AE mod M організову-
ється з використанням двох змінних D і R, 
початкове значення яких дорівнює числу 
A і одиниці відповідно: D = A, R = 1. На 
кожній ітерації передбачається виконання 
двох операцій: модулярного множення R = 
R  D mod M, за умови, що поточний біт 
експоненти E дорівнює одиниці, та моду-
лярного піднесення до квадрату 

D = D2 mod M. Кінцевий результат експо-
ненціювання формується у змінній R. 

Для обох різновидів класичного 
алгоритму експоненціювання загальна 
кількість мультиплікативних операцій 
модулярної арифметики, що виконуються 
над n-розрядними (довгими) числами, 
визначається n модулярними підне-
сеннями до квадрату та, в середньому, 
0,5  n модулярними множеннями. Якщо 
для обох типів згаданих операцій 
використовується однаковий механізм 
модулярного множення, то сумарна 
середня їх кількість становить 
приблизно 1,5  n. 

Структура обох різновидів 
класичного алгоритму експоненціювання 
має послідовний характер, що принци-
пово обмежує можливість їх 
розпаралелення. Повною мірою це 
стосується різновиду алгоритму зі 
старших розрядів, в якому кожна операція 
лежить на критичному шляху. Для різно-
виду з обробкою експоненти з молодших 
розрядів можлива часткова організація 
двох паралельних процесів, зокрема, гілка 
обчислення піднесення до квадрату D2 
mod M є незалежною, тоді як обчислення 
множення R  D mod M залежить від 
поточного значення D [8]. 

Виходячи з цього, основні зусилля 
дослідників спрямовані на прискорення 
виконання модулярних операцій над дов-
гими числами: модулярного множення та 
піднесення до квадрату. 

Структурно, операція модулярного 
множення A  B mod M включає дві фази: 
власне множення A  B та редукцію, тобто 
знаходження залишку від ділення отрима-
ного добутку A  B на модуль M.  

Існують два основних підходи до їх 
реалізації. Перший полягає у 
послідовному виконанні множення з 
подальшою редукцією, другий – у 
здійсненні обох фаз одночасно, тобто 
редукція суміщається з множенням [9].  

При реалізації модулярного мно-
ження в рамках першого підходу, в пере-
важній більшості застосувань, фаза обчис-
лення добутку A  B виконується з 
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використанням методу посекційного мно-
ження. Він передбачає розбиття обох n-
розрядних множників на s секцій довжи-
ною r, де r – розрядність процесора. 
Добуток A  B реалізується шляхом 
поелементного множення кожної секції 
числа A на кожну секцію числа B та 
подальшим додаванням одержаних 
часткових результатів. Такий метод вима-
гає здійснення s2 процесорних множень та 
2s  (s + 1) + 1 додавань r-розрядних чи-
сел. При виконанні піднесення до квад-
рату довгих чисел за таким самим мето-
дом, кількість операцій множення 
зменшується майже вдвічі за рахунок 
виключення дублюючих добутків однако-
вих секцій і становить 0,5 (s2- s)+s. 
Водночас кількість додавань залишається 
незмінною та складає 2s  (s + 1) + 1 [10]. 

Для підвищення швидкодії 
посекційного множення довгих чисел 
запропоновано метод [11], що базується 
на схемах прискореного множення. Його 
застосування дозволяє реалізувати добу-
ток двох довгих чисел за 0,5  s2 + 1,5  s 
процесорних множень, завдяки чому 
обчислення прискорюється майже в два 
рази. 

Основна перевага методів прискоре-
ного обчислення добутку, що базуються 
на посекційному множенні, полягає в 
ефективному використанні апаратних 
засобів процесора.  

В рамках першого підходу, добуток 
A  B обчислюється в явному вигляді із 
використанням описаних вище методів 
прискореного множення. Для подальшого 
виконання модулярної редукції, здебіль-
шого, застосовується метод Барретта [12], 
який дозволяє замінити ділення на 
операції множення та зсуву.  Основна ідея 
методу полягає в обчисленні A B mod M  
шляхом віднімання A B - f M. Значення f 
обчислюється як результат добутку   
A B  2-2n  , де  - константа, яка залежить 
тільки від модуля M і обчислюється одно-
разово у вигляді  = 22 n M-1 . Таким 
чином, метод Барретта реалізує 
модулярну редукцію шляхом виконання 
двох операцій множення довгих чисел.  

В якості недоліку першого підходу 
до реалізації модулярного множення 
можна виділити те, що розділення фаз 
множення та редукції значно уповільнює 
обчислення добутку A  B mod M. Окрім 
цього, формування кінцевого результату 
довжиною 2n вимагає додаткових витрат 
на роботу з числами подвоєної розряд-
ності.  

При реалізації модулярного мно-
ження за другим підходом, тобто із сумі-
щенням операцій редукції та множення, 
найбільш ефективним вважається метод 
Монтґомері [13]. Згідно з ним, множення 
реалізується у вигляді n ітерацій, на кож-
ній з яких здійснюється обробка відповід-
ного біту множника, починаючи з молод-
ших розрядів. Якщо поточний біт множ-
ника дорівнює одиниці, виконується 
додавання множеного, і, в залежності від 
парності часткового добутку, 
здійснюється його корекція додаванням 
непарного модуля. Виконання ітерації 
звершується зсувом праворуч часткового 
добутку. Результат модулярного множення 
Монтґомері формується у вигляді добутку 
A  B  2n mod M, тому для отримання 
кінцевого значення A  B mod M необхідно 
здійснити корекцію, яка полягає у 
модулярному множенні одержаного числа 
на 2n. На практиці, при обчисленні 
модулярної експоненти із використанням 
методу Монтґомері, описана корекція 
виконується одноразово – після завер-
шення усіх ітерацій експоненціювання. 

Таким чином, загальна кількість 
операцій, потрібних для реалізації 
модулярного множення за методом 
Монтґомері, в середньому становить 
приблизно (0,5+0,5)  n додавань та 1  n 
зсувів довгих чисел. З позиції аналізу 
часових характеристик, час виконання 
сучасними мікропроцесорами команди 
додавання практично ідентичний часу 
здійснення команди логічного зсуву. Тоді, 
загальний час обчислення модулярного 
добутку за методом Монтґомері визнача-
ється часом виконання 2  n додавань дов-
гих чисел [14]. 
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Для прискорення реалізації модуляр-
ного множення Монтґомері запропоно-
вано метод групового множення [15]. Він 
передбачає одночасну обробку групи з k 
розрядів множника при виконанні мно-
ження із суміщеним здійсненням редукції 
одразу на k розрядів. Для цього викону-
ється побудова двох таблиць передобчис-
лень. Перша формується на основі множ-
ника A і використовується для 
прискорення операції множення. Друга 
таблиця будується на основі модуля M і 
застосовується для виконання корекції 
часткового добутку та здійснення редук-
ції. Таким чином, обчислення A  B mod M 
зводиться до двох додавань значень з таб-
лиць передобчислень та зсуву отриманого 
часткового добутку на k розрядів. Це 
дозволяє виконати модулярне множення 

за k
n3

 адитивних операцій над довгими 
числами, де k – кількість розрядів, що 
обробляються одночасно. Кінцевий 
результат, як і в класичному множенні 
Монтґомері, потребує корекції, яка поля-
гає у модулярному множенні одержаного 
значення на 2n.  

В контексті обчислення модулярної 
експоненти, зазначений метод використо-
вується лише в різновиді алгоритму 
експоненціювання зі старших розрядів, в 
якому модулярне множення на кожній іте-
рації здійснюється над постійним числом. 
При цьому, для прискорення операції 
модулярного піднесення до квадрату цей 
метод не може бути застосований, так як 
відповідний операнд змінюється на кож-
ній ітерації експоненціювання. Загальна 
кількість операцій при обчисленні 
модулярної експоненти із застосуванням 
методу групового множення становить 

)5,12(2

k
n . Таким чином, використання 
зазначеного методу дозволяє прискорити 
операцію експоненціювання приблизно в 
1,5 рази в порівнянні з класичним мето-
дом Монтґомері. З огляду на сучасні 
вимоги до швидкості здійснення крипто-
графії з відкритим ключем, підвищення 
швидкодії, яке досягається із використан-

ням відомого методу, вбачається недостат-
нім для забезпечення реалізації модуляр-
ного експоненціювання в режимі реаль-
ного часу. 

Отже, проведений огляд показав, що 
існуючі методи швидкого обчислення мо-
дулярного добутку не дозволяють суттєво 
прискорити операцію модулярного експо-
ненціювання. Це визначає необхідність 
пошуку нових шляхів для підвищення 
швидкодії обчислення модулярної експо-
ненти. 

Мета досліджень 
Мета досліджень полягає у 

прискоренні комп’ютерної реалізації 
базової операції криптографії з відкритим 
ключем – модулярного експоненціювання 
за рахунок використання передобчислень, 
які здійснюються на кожній ітерації, що 
дозволяє виконувати модулярні операції 
множення та піднесення до квадрату з 
груповою обробкою розрядів на обох 
фазах: власне множення та редукції 
Монтґомері, завдяки чому зменшується 
час обчислення модулярної експоненти.  

Метод прискореного медуляр-
ного експоненціювання  

Для досягнення поставленої мети 
запропоновано метод прискореного 
модулярного експоненціювання на основі 
динамічних таблиць передобчислень для 
швидкої реалізації мультиплікативних 
операцій. 

Основна ідея запропонованого 
методу прискорення модулярного експо-
ненціювання полягає у зменшенні часу 
виконання кожної з мультиплікативних 
складових цієї операції шляхом 
використання таблиць передобчислень, 
які формуються, на відміну від відомих 
методів, на кожній ітерації експо-
ненціювання. Мультиплікативні складові 
являють собою операцію модулярного 
множення, що здійснюється шляхом 
виконання двох операцій: власне 
множення та редукції за методом 
Монтґомері. 

Побудова таблиць передобчислень 
забезпечує можливість групової обробки 
розрядів компонентів операцій множення 

 

використанням методу посекційного мно-
ження. Він передбачає розбиття обох n-
розрядних множників на s секцій довжи-
ною r, де r – розрядність процесора. 
Добуток A  B реалізується шляхом 
поелементного множення кожної секції 
числа A на кожну секцію числа B та 
подальшим додаванням одержаних 
часткових результатів. Такий метод вима-
гає здійснення s2 процесорних множень та 
2s  (s + 1) + 1 додавань r-розрядних чи-
сел. При виконанні піднесення до квад-
рату довгих чисел за таким самим мето-
дом, кількість операцій множення 
зменшується майже вдвічі за рахунок 
виключення дублюючих добутків однако-
вих секцій і становить 0,5 (s2- s)+s. 
Водночас кількість додавань залишається 
незмінною та складає 2s  (s + 1) + 1 [10]. 

Для підвищення швидкодії 
посекційного множення довгих чисел 
запропоновано метод [11], що базується 
на схемах прискореного множення. Його 
застосування дозволяє реалізувати добу-
ток двох довгих чисел за 0,5  s2 + 1,5  s 
процесорних множень, завдяки чому 
обчислення прискорюється майже в два 
рази. 

Основна перевага методів прискоре-
ного обчислення добутку, що базуються 
на посекційному множенні, полягає в 
ефективному використанні апаратних 
засобів процесора.  

В рамках першого підходу, добуток 
A  B обчислюється в явному вигляді із 
використанням описаних вище методів 
прискореного множення. Для подальшого 
виконання модулярної редукції, здебіль-
шого, застосовується метод Барретта [12], 
який дозволяє замінити ділення на 
операції множення та зсуву.  Основна ідея 
методу полягає в обчисленні A B mod M  
шляхом віднімання A B - f M. Значення f 
обчислюється як результат добутку   
A B  2-2n  , де  - константа, яка залежить 
тільки від модуля M і обчислюється одно-
разово у вигляді  = 22 n M-1 . Таким 
чином, метод Барретта реалізує 
модулярну редукцію шляхом виконання 
двох операцій множення довгих чисел.  

В якості недоліку першого підходу 
до реалізації модулярного множення 
можна виділити те, що розділення фаз 
множення та редукції значно уповільнює 
обчислення добутку A  B mod M. Окрім 
цього, формування кінцевого результату 
довжиною 2n вимагає додаткових витрат 
на роботу з числами подвоєної розряд-
ності.  

При реалізації модулярного мно-
ження за другим підходом, тобто із сумі-
щенням операцій редукції та множення, 
найбільш ефективним вважається метод 
Монтґомері [13]. Згідно з ним, множення 
реалізується у вигляді n ітерацій, на кож-
ній з яких здійснюється обробка відповід-
ного біту множника, починаючи з молод-
ших розрядів. Якщо поточний біт множ-
ника дорівнює одиниці, виконується 
додавання множеного, і, в залежності від 
парності часткового добутку, 
здійснюється його корекція додаванням 
непарного модуля. Виконання ітерації 
звершується зсувом праворуч часткового 
добутку. Результат модулярного множення 
Монтґомері формується у вигляді добутку 
A  B  2n mod M, тому для отримання 
кінцевого значення A  B mod M необхідно 
здійснити корекцію, яка полягає у 
модулярному множенні одержаного числа 
на 2n. На практиці, при обчисленні 
модулярної експоненти із використанням 
методу Монтґомері, описана корекція 
виконується одноразово – після завер-
шення усіх ітерацій експоненціювання. 

Таким чином, загальна кількість 
операцій, потрібних для реалізації 
модулярного множення за методом 
Монтґомері, в середньому становить 
приблизно (0,5+0,5)  n додавань та 1  n 
зсувів довгих чисел. З позиції аналізу 
часових характеристик, час виконання 
сучасними мікропроцесорами команди 
додавання практично ідентичний часу 
здійснення команди логічного зсуву. Тоді, 
загальний час обчислення модулярного 
добутку за методом Монтґомері визнача-
ється часом виконання 2  n додавань дов-
гих чисел [14]. 
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та редукції, що істотно знижує загальний 
об’єм обчислень. Запропонований метод 
базується на використанні різновиду 
алгоритму модулярного експонен-
ціювання з молодших розрядів. Кожна 
з n ітерацій алгоритму передбачає 
виконання двох операцій модулярного 
множення, кожна з яких використовує од-
наковий множник, який є фіксованим на 
відповідній ітерації. 

Ключовою особливістю розробле-
ного методу є застосування таблиць 
передобчислень для однакового множ-
ника, що дозволяє виконати обробку k 
розрядів множника одночасно. Множник 
розбивається на k-розрядні фрагменти, 
кожен з яких слугує адресою для вибору 
відповідного елемента з таблиці. Таким 
чином, обчислення модулярного добутку 
зводиться до послідовного додавання 
значень із таблиці передобчислень 
відповідно до k-розрядних фрагментів 
двійкового коду множника, з наступною 
груповою редукцією Монтґомері на k 
розрядах. Завдяки такій організації 
обчислювального процесу досягається 
суттєве скорочення кількості необхідних 
арифметичних операцій, що дозволяє під-
вищити швидкодію всієї процедури 
модулярного експоненціювання. 

Викладена ідея реалізована у вигляді 
детально розроблених процедур, які влас-
не і складають метод. До таких процедур 
належать: побудова таблиці передобчис-
лень WQ для прискореного модулярного 
множення, формування таблиці C значень 
корекції для групової редукції 
Монтґомері, виконання модулярного мно-
ження з використанням зазначених таб-
лиць, і безпосереднє обчислення 
модулярної експоненти. 

Запропонований метод включає 
процедуру побудови таблиці WQ передоб-
числень для заданого значення множеного 
Q. Розроблена процедура передбачає 
виконання наступної послідовності дій: 
1. Початковому елементу WQ[0] таблиці 

присвоюється значення нуля: 
WQ[0] = 0. Індексу p рядків присвою-
ється значення одиниці: p = 1.  

2. Визначається значення наступного 
елементу таблиці шляхом додавання 
множеного Q до попереднього (p-1)-го 
елемента таблиці: WQ[p]=WQ[p-1] + Q.  

3. Виконується інкремент індексу p ряд-
ків: p = p + 1. 

4. Якщо p < 2k, здійснюється повернення 
до пункту 2. 

Робота запропонованої процедури 
може бути проілюстрована прикладом 
побудови таблиці WQ для значення Q = 
1974 при довжині фрагменту k = 3. 

Згідно п.1 процедури значення 
WQ[0] = 0 та p = 1. У відповідності з п.2 
значення WQ[1] визначається як сума 
попереднього значення WQ[0] = 0 та 
Q = 1974: WQ[1] = WQ[0] + 1974 = 1974. В 
рамках п.3 здійснюється інкремент індек-
су p рядків: p = 1 + 1 = 2. В силу того, що 
p = 2 < 2k = 8 здійснюється повернення на 
повторне виконання п.2. В подальшому 
виконання процедури здійснюється по 
аналогії з описаним. Побудована в резуль-
таті виконання таблиця WQ для Q = 1974 
наведена в табл.1. 

Таблиця 1. Таблиця WQ передобчислень для 
Q = 1974 

p WQ 
0 0 
1 1974 
2 3948 
3 5922 
4 7896 
5 9870 
6 11844 
7 13818 

Запропонований метод передбачає 
реалізацію модулярного множення з вико-
ристанням групової редукції Монтґомері. 
Цей підхід полягає у виконанні модуляр-
ної редукції часткового добутку відразу на 
k розрядів. Щоб не втратити значущі роз-
ряди часткового добутку під час зсуву на k 
розрядів, передбачається виконання 
корекції, яка полягає у додаванні до нього 
числа кратного модулю. Унаслідок такої 
корекції молодші k бітів часткового добут-
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ку приймають значення нуля. Для швид-
кого виконання корекції доцільним вида-
ється використовувати таблицю C 
передобчислень, що дозволяє по значен-
нях молодших k розрядів часткового 
добутку одразу визначити код корекції. 

Процедура побудови таблиці C зна-
чень корекції зводиться до виконання 
наступної послідовності дій: 

 Значення елементу С[0] таблиці С 
встановлюється рівним нулю: С[0] = 0. 
Змінній H присвоюється значення оди-
ниці: H = 1. 

 Значення індексу i номеру розряду 
встановлюється в одиницю: i = 1. Зна-
чення коригуючого коефіцієнту l вста-
новлюється рівним нулю l = 0. Змінній 
Y = yk  2k-1 + … + y2  21 + y1 ,  x  
{1,2,…k}: yx  {0,1} присвоюється 
значення H: Y = H. 

 Якщо значення розряду yi дорівнює 
одиниці: yi = 1, то до коригуючого кое-
фіцієнту l додається 2i-1 : l = l + 2i-1 та 
значення Y обчислюється як: 
Y = Y + M  2i-1 mod2k.  

 Здійснюється інкремент індексу i: 
i = i + 1. Якщо i < k, виконується пере-
хід на повторне виконання п.3. 

 Значення елементу С[H] таблиці С об-
числюється як добуток коригуючого 
коефіцієнту l та модуля M: 
С[H] = l  M.  

 Виконується інкремент H: H = H + 1. 
Якщо H < 2k, здійснюється перехід на 
п.2. 

Робота описаної процедури може 
бути ілюстрована прикладом побудови 
таблиці C для модуля M = 3763 при дов-
жині фрагменту k = 3. 

Відповідно до п.1 процедури, зна-
чення H встановлюється рівним одиниці: 
H = 1. За п.2 індекс номеру розряду i = 1, 
коригуючий коефіцієнт l = 0 та змінна Y = 
H = 1. В силу того, що yi = 1, за п.3 кори-
гуючий коефіцієнт l = 0+20 = 1 та зна-
чення Y = 1 + 3763  20 mod23 = 4. Згідно з 
п.4 здійснюється інкремент i = 1+1 = 2. З 
огляду на те, що i = 2 < k = 3, відбувається 
повернення на п.3. Оскільки yi = 0, здій-

снюється перехід до п.4, в рамках якого 
індекс i = 2 + 1 = 3. Внаслідок того, що i = 
k, виконується п.5. Згідно п.5 елемент 
С[0] = 0 3763 = 0. Відповідно до п.6, H = 0 
+ 1 = 1. В силу того, що H = 1 < 2k = 8, 
реалізація процедури повертається до п.2. 
Наступні дії виконуються по аналогії з 
вищеописаним. Результатом виконання 
процедури побудови таблиці C корекції 
при модулі M = 3763 є наведена нижче 
табл.2. 

Таблиця 2. Приклад заповнення таблиці C 
значень корекції для групової редукції при 
M = 3763 та довжині фрагменту k = 3 

Значення H Значення корекції 
000 0 
001 5 M = 18 815 
010 2 M = 7526 
011 7 M = 26 341 
100 4 M = 15 052 
101 M = 3763 
110 6 M = 22 578 
111 3 M = 11 289 

В силу того, що побудова таблиці C зале-
жить виключно від значення модуля, який 
є частиною відкритого ключа, її форму-
вання здійснюється одноразово з подаль-
шим збереженням в постійній пам’яті. 

З використанням побудованих таб-
лиць WQ та C реалізується модулярне 
множення U = B Q modM, де B = bn  2n-1 
+ …+ b3  22 + b2  2 + b1 ,  z  {1,2,…n}: 
bz  {0,1}. Обчислення модулярного 
добутку U полягає у виконанні наступної 
послідовності дій: 

 Частковому добутку U = un  2n-1 + …+ 
+ u3  22 + u2  2 + u1 ,  z  {1,2,…n}: 
uz  {0,1} та індексу g  {0; n/k-1} 
присвоюється значення нуля: U = 0 та 
g = 0.  

 Змінній Bg присвоюється значення k-
розрядного коду g-ого фрагмента 
множника bg  k+k  2k-1 + …+ bg  k+2  21 + 
+ bg  k+1: Bg = bg  k+k  2k-1 +…+ bg  k+2  21 
+ bg  k+1. 

та редукції, що істотно знижує загальний 
об’єм обчислень. Запропонований метод 
базується на використанні різновиду 
алгоритму модулярного експонен-
ціювання з молодших розрядів. Кожна 
з n ітерацій алгоритму передбачає 
виконання двох операцій модулярного 
множення, кожна з яких використовує од-
наковий множник, який є фіксованим на 
відповідній ітерації. 

Ключовою особливістю розробле-
ного методу є застосування таблиць 
передобчислень для однакового множ-
ника, що дозволяє виконати обробку k 
розрядів множника одночасно. Множник 
розбивається на k-розрядні фрагменти, 
кожен з яких слугує адресою для вибору 
відповідного елемента з таблиці. Таким 
чином, обчислення модулярного добутку 
зводиться до послідовного додавання 
значень із таблиці передобчислень 
відповідно до k-розрядних фрагментів 
двійкового коду множника, з наступною 
груповою редукцією Монтґомері на k 
розрядах. Завдяки такій організації 
обчислювального процесу досягається 
суттєве скорочення кількості необхідних 
арифметичних операцій, що дозволяє під-
вищити швидкодію всієї процедури 
модулярного експоненціювання. 

Викладена ідея реалізована у вигляді 
детально розроблених процедур, які влас-
не і складають метод. До таких процедур 
належать: побудова таблиці передобчис-
лень WQ для прискореного модулярного 
множення, формування таблиці C значень 
корекції для групової редукції 
Монтґомері, виконання модулярного мно-
ження з використанням зазначених таб-
лиць, і безпосереднє обчислення 
модулярної експоненти. 

Запропонований метод включає 
процедуру побудови таблиці WQ передоб-
числень для заданого значення множеного 
Q. Розроблена процедура передбачає 
виконання наступної послідовності дій: 
1. Початковому елементу WQ[0] таблиці 

присвоюється значення нуля: 
WQ[0] = 0. Індексу p рядків присвою-
ється значення одиниці: p = 1.  

2. Визначається значення наступного 
елементу таблиці шляхом додавання 
множеного Q до попереднього (p-1)-го 
елемента таблиці: WQ[p]=WQ[p-1] + Q.  

3. Виконується інкремент індексу p ряд-
ків: p = p + 1. 

4. Якщо p < 2k, здійснюється повернення 
до пункту 2. 

Робота запропонованої процедури 
може бути проілюстрована прикладом 
побудови таблиці WQ для значення Q = 
1974 при довжині фрагменту k = 3. 

Згідно п.1 процедури значення 
WQ[0] = 0 та p = 1. У відповідності з п.2 
значення WQ[1] визначається як сума 
попереднього значення WQ[0] = 0 та 
Q = 1974: WQ[1] = WQ[0] + 1974 = 1974. В 
рамках п.3 здійснюється інкремент індек-
су p рядків: p = 1 + 1 = 2. В силу того, що 
p = 2 < 2k = 8 здійснюється повернення на 
повторне виконання п.2. В подальшому 
виконання процедури здійснюється по 
аналогії з описаним. Побудована в резуль-
таті виконання таблиця WQ для Q = 1974 
наведена в табл.1. 

Таблиця 1. Таблиця WQ передобчислень для 
Q = 1974 

p WQ 
0 0 
1 1974 
2 3948 
3 5922 
4 7896 
5 9870 
6 11844 
7 13818 

Запропонований метод передбачає 
реалізацію модулярного множення з вико-
ристанням групової редукції Монтґомері. 
Цей підхід полягає у виконанні модуляр-
ної редукції часткового добутку відразу на 
k розрядів. Щоб не втратити значущі роз-
ряди часткового добутку під час зсуву на k 
розрядів, передбачається виконання 
корекції, яка полягає у додаванні до нього 
числа кратного модулю. Унаслідок такої 
корекції молодші k бітів часткового добут-
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 Здійснюється додавання до часткового 
добутку U значення з таблиці WQ, яке 
адресується k-розрядним кодом g-ого 
фрагмента множника Bg: 
U = U + WQ[Bg]. Значення U' складає k 
молодших розрядів коду U: 
U' = uk  2k 1 + …+ u1. 

 Виконується корекція проміжного 
результату шляхом додавання зна-
чення корекції з таблиці C, яке адресу-
ється k молодшими розрядами коду U: 
U = U + C[U']. 

 Реалізується зсув праворуч часткового 
добутку U на k розрядів: U = U >> k. 

 Здійснюється інкремент індексу g: 
g = g + 1. Якщо g < n/k, реалізується 
перехід для повторного виконання до 
пункту 2.  
Подальші операції виконуються з 

одержаним значенням U. Результат моду-
лярного множення, як і результат звичай-
ного множення Монтґомері, потребує 
корекції, яка здійснюється шляхом добут-
ку U  2n mod M. 

Роботу процедури обчислення моду-
лярного добутку із використанням таблиці 
WQ передобчислень та таблиці C значень 
корекції можна проілюструвати прикла-
дом обчислення U = B  Q modM = = 2025 
 1974 mod 3763 = 1044. В рамках при-
кладу обчислюється модулярний добуток 
з наступними значеннями параметрів: B = 
= 202510 = 0111 1110 10012 ; 
Q = 197410 = 0111 1011 01102; M = 376310 = 
= 1110 1011 00112. 

Кількість n двійкових розрядів 
модуля M дорівнює 12. В рамках при-

кладу обирається двійкова розрядність 
фрагментів для одночасного множення 
k = 3. Для обраного значення Q = 1974 
таблиця WQ передобчислень наведена у 
табл.1. Для модуля M = 3763 таблиця C 
значень корекції наведена у табл.2. У від-
повідності до п.1 процедури обчислення 
модулярного добутку значення U = 0 та 
g = 0. Згідно з п.2 процедури, значення Bg 
дорівнює двійковим розрядам bg  k+k 2k-1+ 
bg  k+2 21 + + bg  k+1 g-ого фрагмента множ-
ника B: Bg = 0012. За п.3, відповідно до 
коду Bg здійснюється додавання U = U + 
WQ[1] = 0 + 1974 = 1974. Значення U' 
складає uk  2k-1 + …+ u1: U' = 1102. За п.4 
реалізується корекція результату виходячи 
зі значення U': U = U + C[6] = 1974 + 
+ 22578 = 24552. Відповідно до п.5 
виконується зсув часткового добутку U на 
k: U = 24552 >> 3 = 3069. За п.6 індекс 
g = 0+1=1. В силу того, що g = 1 < n/k = 4, 
відбувається перехід для повторного вико-
нання до п.2.  Аналогічним чином викону-
ється подальше обчислення для наступ-
них фрагментів коду множника В довжи-
ною k для g  {1; 3}. Динаміка покроко-
вих змін параметрів процедури наведена у 
табл.3. В результаті виконання п.4 при g = 
3, частковий добуток U становить 2444. За 
п.6 здійснюється інкремент індексу 
g = 3 + 1 = 4. З огляду на те, що 
g = n/k = 4, виконання процедури завер-
шується. Для отримання правильного 
результату обчислене значення U=2444 
помножається на 212: 2444 4096 mod 
3763= 1044. 

Таблиця 3. Динаміка покрокових змін параметрів процедури при обчисленні модулярного 
добутку при значеннях B = 2025, Q = 1974 та  M = 3763 

g 
k-розрядний 
фрагмент 
коду B 

WQ[Bg] 
Частковий 
добуток U 

Молодші k 
розрядів U C[U'] 

Частковий  
добуток U після 
корекції та зсуву 
на k розрядів 

0 001 1974 1974 110 22578 3069 
1 101 9870 12939 011 26341 4910 
2 111 13818 18728 000 0 2341 
3 011 5922 8263 111 11289 2444 
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Обчислення модулярної експоненти за 
запропонованим методом передбачає 
попереднє формування таблиці 
передобчислень C, що виконується відпо-
відно до процедури побудови таблиці зна-
чень корекції на основі модуля для групо-
вої редукції Монтґомері. У рамках 
розробленого методу прискорена реаліза-
ція модулярного експоненціювання AE 
mod M здійснюється шляхом виконання 
наступної послідовності дій: 
1. Змінній D присвоюється значення A  2n 

mod M: D = A  2n mod M, змінній резуль-
тату R та індексу j двійкових розрядів 
коду експоненти присвоюється значення 
одиниці: R = 1, j = 1. 
2. Виконується побудова таблиці WQ 
передобчислень за описаною вище проце-
дурою побудови таблиці WQ для значення 
множеного Q: Q = D. 
3. Якщо j-тий розряд коду експоненти E 
дорівнює одиниці: ej = 1, то здійснюється 
прискорене модулярне множення R = R  Q 
modM з використанням таблиці WQ 
передобчислень та таблиці C для групової 
редукції за наведеною процедурою обчис-
лення модулярного добутку. 

4. Здійснюється прискорене модулярне 
множення D = D  Q modM з використан-
ням таблиць передобчислень WQ та C від-
повідно до процедури обчислення модуля-
рного добутку. 
5. Реалізується інкремент індексу j: j = j + 
1. Якщо j <= n, здійснюється повернення 
до п.2. 
Обчислення модулярної експоненти з 
використанням запропонованої процедури 
ілюструється наступним прикладом. 
Нехай для наведеного прикладу 
обираються наступні значення парамет-
рів: A = 202510 = 0111 1110 10012; E = 
273110 = 1010 1010 10112; M = 376310 = 
1110 1011 00112; AE mod M = 
20252731 mod 3763 = 2025. 
Попередньо сформована таблиця C зна-
чень корекції для обраного модуля M = 
3763 представлена у табл.2. Відповідно до 
п.1 процедури, значення D = 2025*212 
mod3763 = 748, R = 1, j = 1. За п.2 
виконується побудова таблиці WQ1 
передобчислень для значення Q = 748, що 
наведена у табл.4 для  j = 1.

 

Таблиця 4. Таблиця WQ передобчислень для Q 

j 1 2 3 4 5 6 7 8 9 10 11 12 

Q 748 1974 3057 1316 2613 1282 890 3181 1424 1671 554 2063 

p WQ1 WQ2 WQ3 WQ4 WQ5 WQ6 WQ7 WQ8 WQ9 WQ10 WQ11 WQ12 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1 748 1974 3057 1316 2613 1282 890 3181 1424 1671 554 2063 

2 1496 3948 6114 2632 5226 2564 1780 6362 2848 3342 1108 4126 

3 2244 5922 9171 3948 7839 3846 2670 9543 4272 5013 1662 6189 

4 2992 7896 12228 5264 10452 5128 3560 12724 5696 6684 2216 8252 

5 3740 9870 15285 6580 13065 6410 4450 15905 7120 8355 2770 10315 

6 4488 11844 18342 7896 15678 7692 5340 19086 8544 10026 3324 12378 

7 5236 13818 21399 9212 18291 8974 6230 22267 9968 11697 3878 14441 
 
Виходячи з того, що e1 = 1, за п.3 

здійснюється прискорене модулярне мно-
ження R = 1  748 mod3763 = 2025 з вико-
ристанням таблиці передобчислень WQ 

 

 Здійснюється додавання до часткового 
добутку U значення з таблиці WQ, яке 
адресується k-розрядним кодом g-ого 
фрагмента множника Bg: 
U = U + WQ[Bg]. Значення U' складає k 
молодших розрядів коду U: 
U' = uk  2k 1 + …+ u1. 

 Виконується корекція проміжного 
результату шляхом додавання зна-
чення корекції з таблиці C, яке адресу-
ється k молодшими розрядами коду U: 
U = U + C[U']. 

 Реалізується зсув праворуч часткового 
добутку U на k розрядів: U = U >> k. 

 Здійснюється інкремент індексу g: 
g = g + 1. Якщо g < n/k, реалізується 
перехід для повторного виконання до 
пункту 2.  
Подальші операції виконуються з 

одержаним значенням U. Результат моду-
лярного множення, як і результат звичай-
ного множення Монтґомері, потребує 
корекції, яка здійснюється шляхом добут-
ку U  2n mod M. 

Роботу процедури обчислення моду-
лярного добутку із використанням таблиці 
WQ передобчислень та таблиці C значень 
корекції можна проілюструвати прикла-
дом обчислення U = B  Q modM = = 2025 
 1974 mod 3763 = 1044. В рамках при-
кладу обчислюється модулярний добуток 
з наступними значеннями параметрів: B = 
= 202510 = 0111 1110 10012 ; 
Q = 197410 = 0111 1011 01102; M = 376310 = 
= 1110 1011 00112. 

Кількість n двійкових розрядів 
модуля M дорівнює 12. В рамках при-

кладу обирається двійкова розрядність 
фрагментів для одночасного множення 
k = 3. Для обраного значення Q = 1974 
таблиця WQ передобчислень наведена у 
табл.1. Для модуля M = 3763 таблиця C 
значень корекції наведена у табл.2. У від-
повідності до п.1 процедури обчислення 
модулярного добутку значення U = 0 та 
g = 0. Згідно з п.2 процедури, значення Bg 
дорівнює двійковим розрядам bg  k+k 2k-1+ 
bg  k+2 21 + + bg  k+1 g-ого фрагмента множ-
ника B: Bg = 0012. За п.3, відповідно до 
коду Bg здійснюється додавання U = U + 
WQ[1] = 0 + 1974 = 1974. Значення U' 
складає uk  2k-1 + …+ u1: U' = 1102. За п.4 
реалізується корекція результату виходячи 
зі значення U': U = U + C[6] = 1974 + 
+ 22578 = 24552. Відповідно до п.5 
виконується зсув часткового добутку U на 
k: U = 24552 >> 3 = 3069. За п.6 індекс 
g = 0+1=1. В силу того, що g = 1 < n/k = 4, 
відбувається перехід для повторного вико-
нання до п.2.  Аналогічним чином викону-
ється подальше обчислення для наступ-
них фрагментів коду множника В довжи-
ною k для g  {1; 3}. Динаміка покроко-
вих змін параметрів процедури наведена у 
табл.3. В результаті виконання п.4 при g = 
3, частковий добуток U становить 2444. За 
п.6 здійснюється інкремент індексу 
g = 3 + 1 = 4. З огляду на те, що 
g = n/k = 4, виконання процедури завер-
шується. Для отримання правильного 
результату обчислене значення U=2444 
помножається на 212: 2444 4096 mod 
3763= 1044. 

Таблиця 3. Динаміка покрокових змін параметрів процедури при обчисленні модулярного 
добутку при значеннях B = 2025, Q = 1974 та  M = 3763 

g 
k-розрядний 
фрагмент 
коду B 

WQ[Bg] 
Частковий 
добуток U 

Молодші k 
розрядів U C[U'] 

Частковий  
добуток U після 
корекції та зсуву 
на k розрядів 

0 001 1974 1974 110 22578 3069 
1 101 9870 12939 011 26341 4910 
2 111 13818 18728 000 0 2341 
3 011 5922 8263 111 11289 2444 
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(табл.4) та таблиці C передобчислень 
(табл.2). Згідно з п.4 виконується модуля-
рне множення D=748 748 mod 3763 = 1974 
з використанням таблиці WQ та таблиці C. 
Відповідно до п.5, реалізується інкремент 
індексу j = 1+1= 2. В силу того, що j = 2 < 
n = 12, здійснюється перехід до повтор-
ного виконання на п.2. За п.2 формується 
таблиця WQ2 передобчислень для значення 
Q = D = 1974, наведена у табл.4 для j = 2. 
Згідно з п.3 здійснюється модулярне мно-
ження R = 2025  1974 mod3763 = 2444 з 
використанням таблиць WQ та C передоб-
числень. Детальний опис обчислення мо-
дулярного добутку R = 2025 1974mod 3763 
наведений у табл.3. Згідно з п.4 вико-
нується модулярне множення D = 1974  
 1974 mod3763 = 3057 з використанням 
таблиці WQ та таблиці C. Відповідно до 
п.5, реалізується інкремент індексу 
j =2+1= 3. В силу того, що j = 3 < n = 12, 
здійснюється перехід до повторного вико-
нання на п.2. Аналогічним чином вико-
нуються подальші обчислення. Таблиці 
передобчислень WQ, сформовані на кож-
ній ітерації алгоритму для спільного 
множника для мультиплікативних опера-
цій наведено у таблиці 4. Проміжні 
результати, отримані в ході кожної ітера-
ції, представлені в таблиці 5. 
Таблиця 5. Динаміка покрокових змін при 

обчисленні 20252731 mod3763 

j ej Q R D 
- - - 1 748 
1 1 748 2025 1974 
2 1 1974 2444 3057 
3 0 3057 2444 1316 
4 1 1316 3240 2613 
5 0 2613 3240 1282 
6 1 1282 676 890 
7 0 890 676 3181 
8 1 3181 1734 1424 
9 0 1424 1734 1671 
10 1 1671 3311 554 
11 0 554 3311 2063 
12 1 2063 2025 1955 

Остаточний результат модулярного 
експоненціювання, одержаний шляхом 

модулярного множення 3311  2063 modM 
становить 2025. 

Оцінка ефективності 
Виходячи з поставленої мети, 

ефективність розробленого методу визна-
чається прискоренням виконання операції 
модулярного експоненціювання з його ви-
користанням. Для кількісної оцінки такого 
прискорення може бути використаний 
коефіцієнт прискорення β, що визнача-
ється співвідношенням часу T′E реалізації 
експоненціювання класичним способом 
до часу TE виконання цієї операції із 
застосуванням запропонованого методу: 

E

E

T
T '

 .  (1) 

За класичним алгоритмом, модуляр-
не експоненціювання здійснюється за n 
ітерацій, на кожній з яких виконується 
операція піднесення до квадрату та, в за-
лежності від поточного розряду коду екс-
поненти, операція модулярного мно-
ження. Тобто, у середньому, обчислення 
модулярної експоненти передбачає здій-
снення 1,5  n мультиплікативних опера-
цій. На практиці, для їх реалізації най-
більш ефективним вважається викорис-
тання методу Монтґомері[]. Згідно з ним, 
час T′M реалізації одного модулярного 
множення становить T′M = 2  n  tADD. 

Таким чином, час T′E здійснення 
всієї операції модулярного експоненцію-
вання класичним способом складає: 

T′E = 1,5  n  2  n  tADD = 3  n2  tADD . (2) 

Розроблений метод модулярного 
експоненціювання також передбачає вико-
нання n ітерацій, на кожній з яких 
виконується, в середньому, 1,5 операції 
множення, для яких в якості одного з 
операндів використовується однаковий 
множник.  

В рамках запропонованого методу, 
модулярне множення виконується згідно з 
описаною вище процедурою, яка викорис-
товує таблиці WQ та C передобчислень. 

Таблиця WQ передобчислень зале-
жить від значення поточного спільного 
операнда мультиплікативних операцій, що 
здійснюються на одній ітерації. Відповід-
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но, побудова такої таблиці також викону-
ється на кожній ітерації алгоритму експо-
ненціювання, що впливає на загальний 
час обчислення модулярної експоненти. 
Водночас, таблиця C значень корекції для 
здійснення групової редукції відразу на k 
розрядів залежить виключно від модуля 
M, який є частиною відкритого ключа. 
Тому формування таблиці C реалізується 
практично одноразово на етапі генерації 
криптосистеми і не враховується при 
оцінці загального часу експоненціювання. 
Таким чином, час TE обчислення модуляр-
ної експоненти із застосуванням запропо-
нованого методу становить: 

TE = n  (TTW + 1,5  TM) ,         (3) 
де TTW – час побудови таблиці WQ, і TM – 
час реалізації модулярного множення із 
використанням розробленої процедури. 

Час TTW формування таблиці WQ 
передобчислень становить  

TTW = 2k  tADD ,                 (4) 

де k – розрядність фрагментів множника, 
що оброблюються одночасно. 

Запропонована процедура обчис-
лення модулярного добутку передбачає 
здійснення n/k ітерацій. На кожній з них 
виконується дві операції додавання: числа 
з таблиці WQ, яке адресується k-розряд-
ним фрагментом множеного, та значення 
елементу таблиці C для виконання корек-
ції проміжного результату. Кінцевою 
операцією в рамках ітерації є зсув частко-
вого добутку на k розрядів праворуч. З 
цього випливає, що час здійснення 
модулярного множення із використанням 
таблиць передобчислень складає.  

ADDADDM t
k
nt

k
nT 3)111(

 .  (5) 
Відповідно, підстановка виразів (4) 

та (5) у (3), дозволяє представити фор-
мулу часу TE обчислення модулярної екс-
поненти із застосуванням запропонова-
ного методу у наступному вигляду: 

)35,12( ADDADD
k

E t
k
ntnT . (6) 

Підставивши значення T′E та TE у 
формулу (1), одержаний коефіцієнт 
прискорення β  набуває вигляду: 

k
n

n
k 5,42

3
 .              (7) 

З одержаного виразу випливає, що 
коефіцієнт β залежить від довжини k 
фрагментів та набуває найбільшого 
значення при мінімумі функції: 

k
nk k 5,42)(  .             (8) 

Теоретично, для визначення най-
більш вигідного значення параметра k, 
можна розв’язати рівняння 

05,42ln2 2k
nk . Очевидно, що воно не 

може бути розв’язане у явному вигляді. 
Тому значення k, за якого досягається най-
більше прискорення, може бути знайдене 
лише числовими методами.  

Результат обчислень коефіцієнта 
прискорення β для розрядностей n = 4096 
та n = 8192 наведений у таблиці 6. Аналіз 
отриманих значень показав, що найбіль-
шого прискорення β досягає при k = 9. 
Дані таблиці свідчать про те, що значення 
коефіцієнту β збільшується зі зростанням 
розрядності n. 
Таблиця 6. Залежність коефіцієнту при-

скорення β від значення k 

Параметр k 
Коефіцієнт прискорення β 
n = 4096 n = 8192 

2 1.33275 1.33304 
4 2.65744 2.66205 
6 3.91837 3.95876 
8 4.72125 5.05263 
9 4.8 5.33333 
10 4.28571 5.21739 
12 2.18182 3.42857 

Одержане підвищення швидкодії до-
сягається за рахунок використання додат-
кових ресурсів оперативної пам’яті, необ-
хідної для збереження таблиць передобчи-
слень. Зокрема, для обробки 4096-бітових 
чисел при виборі розрядності фрагментів 
k = 8, обсяг необхідної пам’яті становить 
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(табл.4) та таблиці C передобчислень 
(табл.2). Згідно з п.4 виконується модуля-
рне множення D=748 748 mod 3763 = 1974 
з використанням таблиці WQ та таблиці C. 
Відповідно до п.5, реалізується інкремент 
індексу j = 1+1= 2. В силу того, що j = 2 < 
n = 12, здійснюється перехід до повтор-
ного виконання на п.2. За п.2 формується 
таблиця WQ2 передобчислень для значення 
Q = D = 1974, наведена у табл.4 для j = 2. 
Згідно з п.3 здійснюється модулярне мно-
ження R = 2025  1974 mod3763 = 2444 з 
використанням таблиць WQ та C передоб-
числень. Детальний опис обчислення мо-
дулярного добутку R = 2025 1974mod 3763 
наведений у табл.3. Згідно з п.4 вико-
нується модулярне множення D = 1974  
 1974 mod3763 = 3057 з використанням 
таблиці WQ та таблиці C. Відповідно до 
п.5, реалізується інкремент індексу 
j =2+1= 3. В силу того, що j = 3 < n = 12, 
здійснюється перехід до повторного вико-
нання на п.2. Аналогічним чином вико-
нуються подальші обчислення. Таблиці 
передобчислень WQ, сформовані на кож-
ній ітерації алгоритму для спільного 
множника для мультиплікативних опера-
цій наведено у таблиці 4. Проміжні 
результати, отримані в ході кожної ітера-
ції, представлені в таблиці 5. 
Таблиця 5. Динаміка покрокових змін при 

обчисленні 20252731 mod3763 

j ej Q R D 
- - - 1 748 
1 1 748 2025 1974 
2 1 1974 2444 3057 
3 0 3057 2444 1316 
4 1 1316 3240 2613 
5 0 2613 3240 1282 
6 1 1282 676 890 
7 0 890 676 3181 
8 1 3181 1734 1424 
9 0 1424 1734 1671 
10 1 1671 3311 554 
11 0 554 3311 2063 
12 1 2063 2025 1955 

 

Остаточний результат модулярного 
експоненціювання, одержаний шляхом 

модулярного множення 3311  2063 modM 
становить 2025. 

Оцінка ефективності 
Виходячи з поставленої мети, 

ефективність розробленого методу визна-
чається прискоренням виконання операції 
модулярного експоненціювання з його ви-
користанням. Для кількісної оцінки такого 
прискорення може бути використаний 
коефіцієнт прискорення β, що визнача-
ється співвідношенням часу T′E реалізації 
експоненціювання класичним способом 
до часу TE виконання цієї операції із 
застосуванням запропонованого методу: 

E

E

T
T '

 .                       (1) 

За класичним алгоритмом, модуляр-
не експоненціювання здійснюється за n 
ітерацій, на кожній з яких виконується 
операція піднесення до квадрату та, в за-
лежності від поточного розряду коду екс-
поненти, операція модулярного мно-
ження. Тобто, у середньому, обчислення 
модулярної експоненти передбачає здій-
снення 1,5  n мультиплікативних опера-
цій. На практиці, для їх реалізації най-
більш ефективним вважається викорис-
тання методу Монтґомері[]. Згідно з ним, 
час T′M реалізації одного модулярного 
множення становить T′M = 2  n  tADD. 

Таким чином, час T′E здійснення 
всієї операції модулярного експоненцію-
вання класичним способом складає: 

T′E = 1,5  n  2  n  tADD = 3  n2  tADD . (2) 

Розроблений метод модулярного 
експоненціювання також передбачає вико-
нання n ітерацій, на кожній з яких 
виконується, в середньому, 1,5 операції 
множення, для яких в якості одного з 
операндів використовується однаковий 
множник.  

В рамках запропонованого методу, 
модулярне множення виконується згідно з 
описаною вище процедурою, яка викорис-
товує таблиці WQ та C передобчислень. 

Таблиця WQ передобчислень зале-
жить від значення поточного спільного 
операнда мультиплікативних операцій, що 
здійснюються на одній ітерації. Відповід-
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212  28 = 220 біт, що еквівалентно 128 КБ. 
Такий об’єм ресурсних витрат цілком від-
повідає можливостям переважної біль-
шості сучасних мікроконтролерів.  

Проведені експериментальні дослі-
дження показали близькі до наведених 
вище теоретично одержаних результатів 
оцінки ефективності.  

Таким чином, теоретично доведено 
та експериментально підтверджено, що 
розроблений метод дозволяє підвищити 
швидкодію обчислення модулярної експо-
ненти приблизно в 5 разів в порівнянні з 
класичним алгоритмом експоненцію-
вання. 

Висновки  
В ході проведених досліджень, на-

правлених на прискорення комп’ютерної 
реалізації базової операції криптографії з 
відкритим ключем – модулярного 
експоненціювання, були отримані наступ-
ні результати.  

Теоретично обґрунтовано, розроб-
лено та досліджено метод прискореного 
обчислення модулярної експоненти, від-
мінність якого полягає в тому, що в кож-
ній ітерації здійснюються передобчис-
лення, які дозволяють виконувати 
модулярні операції множення та підне-
сення до квадрату з груповою обробкою 
розрядів на обох фазах: власне множенні 
та редукції Монтґомері, завдяки чому 
досягається скорочення часу реалізації 
експоненціювання. 

Теоретичні дослідження ефективно-
сті розробленого методу довели, що його 
використання дозволяє прискорити обчис-
лення приблизно в 5 разів у порівнянні з 
класичним алгоритмом. Проведені моде-
лювання, а також практичні експерименти 
показали результати, в цілому, близькі до 
оцінок ефективності, одержаних 
теоретичним шляхом.  

Запропонований метод модулярного 
експоненціювання орієнтований на вико-
ристання у системах віддаленого управ-
ління об'єктами у режимі реального часу 
для забезпечення цілісності даних та 
автентичності команд у технологіях 
Інтернету Речей. 
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Русанова О.В., Марковський О.П., Гайдукевич О.А. 
МЕТОД ПРИСКОРЕНОГО МОДУЛЯРНОГО ЕКСПОНЕНЦІЮВАННЯ НА 
ОСНОВІ ДИНАМІЧНИХ ТАБЛИЦЬ ПЕРЕДОБЧИСЛЕНЬ  

Теоретично обґрунтовано, розроблено та досліджено метод прискореного обчис-
лення модулярної експоненти, відмінність якого полягає в тому, що в кожній ітерації 
здійснюються передобчислення, які дозволяють виконувати модулярні операції множе-
ння та піднесення до квадрату з груповою обробкою розрядів на обох фазах: власне 
множенні та редукції Монтґомері, завдяки чому досягається скорочення часу реаліза-
ції експоненціювання.  

Прискорення досягається за рахунок формування таблиць передобчислень на 
кожній ітерації алгоритму експоненціювання. В роботі теоретично обґрунтована 
така можливість шляхом використання вбудованої оперативної пам’яті терміналь-
ного пристрою, наведено детальний опис методу, робота якого ілюстрована числовим 
прикладом, представлена розгорнута оцінка ефективності.  

Теоретично та експериментально показано, що запропонований метод дозволяє в 
5 разів прискорити модулярне експоненціювання в порівнянні з відомими методами її 
реалізації на термінальних пристроях в технологіях IoT.  

Ключові слова: модулярне експоненціювання, криптографія з відкритим ключем, 
захищеність систем IoT, цифровий підпис. 

 

Rusanova O.V., Markovskyi O.P., O. Haidukevych 

METHOD OF ACCELERATED MODULAR EXPONENTATION BASED ON 
DYNAMIC PRE-CALCULATION TABLES  

A method for accelerated calculation of the modular exponent has been theoretically 
substantiated, developed and investigated, the difference of which is that in each iteration, 
recalculations are performed, which allow performing modular operations of multiplication 
and squaring with group processing of bits in both phases: multiplication itself and 
Montgomery reduction, due to which the time for implementing exponentiation is reduced. 

 

212  28 = 220 біт, що еквівалентно 128 КБ. 
Такий об’єм ресурсних витрат цілком від-
повідає можливостям переважної біль-
шості сучасних мікроконтролерів.  

Проведені експериментальні дослі-
дження показали близькі до наведених 
вище теоретично одержаних результатів 
оцінки ефективності.  

Таким чином, теоретично доведено 
та експериментально підтверджено, що 
розроблений метод дозволяє підвищити 
швидкодію обчислення модулярної експо-
ненти приблизно в 5 разів в порівнянні з 
класичним алгоритмом експоненцію-
вання. 

Висновки  
В ході проведених досліджень, на-

правлених на прискорення комп’ютерної 
реалізації базової операції криптографії з 
відкритим ключем – модулярного 
експоненціювання, були отримані наступ-
ні результати.  

Теоретично обґрунтовано, розроб-
лено та досліджено метод прискореного 
обчислення модулярної експоненти, від-
мінність якого полягає в тому, що в кож-
ній ітерації здійснюються передобчис-
лення, які дозволяють виконувати 
модулярні операції множення та підне-
сення до квадрату з груповою обробкою 
розрядів на обох фазах: власне множенні 
та редукції Монтґомері, завдяки чому 
досягається скорочення часу реалізації 
експоненціювання. 

Теоретичні дослідження ефективно-
сті розробленого методу довели, що його 
використання дозволяє прискорити обчис-
лення приблизно в 5 разів у порівнянні з 
класичним алгоритмом. Проведені моде-
лювання, а також практичні експерименти 
показали результати, в цілому, близькі до 
оцінок ефективності, одержаних 
теоретичним шляхом.  

Запропонований метод модулярного 
експоненціювання орієнтований на вико-
ристання у системах віддаленого управ-
ління об'єктами у режимі реального часу 
для забезпечення цілісності даних та 
автентичності команд у технологіях 
Інтернету Речей. 
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Acceleration is achieved by forming recalculation tables at each iteration of the expo-
nentiation algorithm. The paper theoretically substantiates this possibility by using the built-
in RAM of the terminal device, provides a detailed description of the method, the operation of 
which is illustrated by a numerical example, and presents a detailed assessment of its 
effectiveness. 

It is theoretically and experimentally shown that the proposed method allows for 5 times 
faster modular exponentiation compared to known methods for its implementation on terminal 
devices in IoT technologies. 

Keywords: modular exponentiation, open key cryptography, security of IoT, digital 
signature.  
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Вступ 
Розглядається завдання застосуван-

ня експертної системи з базою даних (БД) 
реального часу, які використовуються для 
сумісної (інтегральної) оптимізації марш-
рутів інформаційно-комунікаційної мере-
жі. Існують алгоритми маршрутизації з 
різними технологіями доставляння даних 
по критеріям мінімальної затримки 
(latency), прийнятної наскрізної якості 
сервісу (Quality of Service, QoS) та надій-
ності  доставляння у сенсі мінімальної 
величини перекручених бітів відносно 
загальної кількості доставлених бітів (Bit 
Error Ratio, BER). Найпоширенішими є 
алгоритми адаптивної (або динамічної) 
маршрутизації з дуальним навчанням 
13 . Ці алгоритми забезпечують автома-
тичну апперцепцію таблиць маршрутиза-
ції (ТМ) після зміни конфігурації мережі. 

Протоколи, побудовані на основі адапти-
вних алгоритмів, забезпечують всім мар-
шрутизаторам збирання інформації про 
топологію зв’язків у мережі, оперативне 
опрацювання всіх змін конфігурації 
зв’язків. У ТМ при адаптивній маршрути-
зації зазвичай є інформація про інтервал 
часу, протягом якого даний маршрут за-
лишатиметься дійсним (Time-to-Live, 
TTL)  

Адаптивні алгоритми маршрутизації 
мають розподілений характер і повинні 
відповідати декільком ключовим вимогам 
5 . Перше, вони повинні забезпечувати 
якщо не оптимальність, то хоча б раціона-
льність маршруту. Друге, алгоритми мають 
бути достатньо простими, щоб при їх реалі-
зації не витрачалося дуже багато мережних 
ресурсів, зокрема, вони не повинні вимага-
ти надмірно великого об’єму обчислень або 


