
40 Проблеми інформатизації та управління, 3(83)`2025 
The Posit arithmetic is considered a promising alternative to classical approaches. Its 

conceptual features make it possible to enhance numerical accuracy, reduce hardware costs, 
and achieve a better balance between performance and energy efficiency. This makes the Pos-
it system a relevant subject of investigation in such fields as deep learning, embedded sys-
tems, and high-performance computing. 

However, the practical implementation of Posit arithmetic at the hardware level re-
quires in-depth analysis. The viability and scalability of this new number representation sys-
tem are determined by the efficiency of hardware architectures capable of providing the re-
quired levels of accuracy, performance, and robustness against computational errors. 

In the main part of this article, prepared within the framework of obtaining the degree 
of Doctor of Philosophy, the fundamentals of Posit arithmetic, its structure, advantages, and 
challenges in comparison with IEEE 754 are described.This is followed by a detailed exami-
nation of hardware implementations of Posit arithmetic units. Applications in deep learning, 
accuracy and efficiency analyses, robustness studies, and error investigations will be consid-
ered. The review concludes with a summary of the key findings and implications for future 
research. 
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Вступ1 
Під час пересилання даних комуні-

каційними засобами, що піддаються 
впливу перешкод, вникає проблема запо-
бігання втраті інформації. Наприклад, 
передача радіоканалом відеозображення з 
бортової камери БпЛА, які останнім ча-
сом все частіше використовуються не 
тільки для цивільних, але й для військо-
вих застосувань, ускладнюється внаслідок 
впливу різних факторів. Основним дже-

1  Дослідження виконане за фінансової підтримки 
з боку Національного фонду досліджень 
України, проєкт 2025.6/0109 "Захищена 
завадостійка система передачі відеоінформації з 
безпілотного літального апарата", номер 
державної реєстрації 0125U003164. 

релом перешкод є засоби радіоелектрон-
ної боротьби, причому, не тільки ворожі, 
але також дружні [1, 2]. Заміна радіокана-
лу на оптоволоконну лінію зв’язку обме-
жує радіус дії, ускладнює маневреність та 
вносить ризик втрати зв’язку внаслідок 
пошкодження волоконного кабелю [3]. 
Тому радіозв’язок досі залишається осно-
вним рішенням для забезпечення керу-
вання та передачі відеосигналу. Тому 
проблема підвищення завадостійкості 
залишається гострою. Відомі суто радіо-
технічні підходи щодо боротьби з переш-
кодами. Наприклад, розробляються спеці-
алізовані радіомодеми для БпЛА, які зда-
тні динамічно змінювати частоту та зна-
ходити "вікна" в спектрі ворожих глуш-
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ників, або застосовують ортогональне 
частотне мультиплексування [4]. Іншим 
дієвим напрямом протидії перешкодам є 
завадостійке кодування інформації, яке за 
рахунок введення надлишковості дозво-
ляє не тільки виявляти факт спотворення 
інформації, що передається, але також 
виправляти певну кількість помилок. 

Відомо багато завадостійких кодів з 
відносно обмеженими характеристиками. 
В даній роботі розглядається ідея пошуку 
найкращих кодів (здатних виправляти 
максимальну можливу кількість помилок 
для заданої розмірності) шляхом перебо-
ру можливих комбінацій кодових слів [5]. 
Здійснювати такий пошук передбачається 
з використанням високопродуктивних 
обчислювальних засобів, таких як обчис-
лювальні кластери та розподілені супер-
комп'ютерні грід-системи [6]. 

Метою даної роботи є оцінка 
основних видів обчислювальних ресурсів, 
потрібних для пошуку найкращих завадо-
стійких кодів шляхом перебору можливих 
комбінацій кодових слів з використанням 
високопродуктивного комп’ютерного об-
ладнання. 

Для її досягнення необхідно викона-
ти наступні завдання: 

1) визначитися з термінами;
2) обґрунтувати основні теоретичні

положення зрозумілим чином, щоб обле-
гшити подальше складання алгоритмів 
розрахунків; 

3) використовуючи низку евристик,
скласти основний алгоритм та. по можли-
вості, його спрощені варіанти; 

4) оцінити обчислювальну склад-
ність отриманого алгоритму та його мо-
дифікацій; 

5) знайти верхню оцінку потрібних
обчислювальних ресурсів двох основних 
видів – обсягу пам'яті та машинного часу, 
як функцій від параметрів розмірності 
завадостійкого коду. 

3. Основні терміни
Одним з підходів до боротьби з цим 

явищем є використання спеціальних ко-
дів, здатних виправляти помилки – кори-
гуючими кодами. В блокових кодах інфо-
рмація кодується послідовностями бітів 
фіксованої довжини – словами. Існують 
нелінійні та лінійні коди. Останні більш 
прості у використанні, тому є більш роз-
повсюдженими. Лінійний код довжини n і 
розмірністю k – це лінійний підпростір C 
розмірності k над бінарним полем GF(2) і 
позначається як (n, k)-код. 

2. Теоретичне обґрунтування
Лінійний блоковий код однозначно 

задається лінійним базисом бітових век-
торів, які разом створюють так звану по-
роджувальну матрицю G. Будь-яке слово 
(двійковий вектор)  може бути подане 
(закодоване) відповідним кодом (двійко-
вим вектором)  – у вигляді лінійної ком-
бінації базисних векторів, що у матричній 
формі має наступний вигляд: 

 . (1) 

Оскільки елементи результуючого 
вектора  також є двійковими бітами, до-
давання у формулі (1) при перемноженні 
вектора на матрицю за відомими прави-
лами здійснюється за модулем 2. 

Властивість завадостійкості кори-
гуючого лінійного блокового коду забез-
печується шляхом внесення надмірності в 
кодові комбінації. Це означає, що до k 
бітів корисної інформації додається певна 

кількість надлишкових бітів, за рахунок 
чого довжина вихідних слів лінійного 
коду n завжди більша за розмірність k: 

. (2) 
Якщо надлишкові біти розташову-

ються в кодовому слові після інформа-
ційних, код називається систематичним. 
Для систематичних кодів породжувальна 
матриця G складається з двох підматриць 

The Posit arithmetic is considered a promising alternative to classical approaches. Its 
conceptual features make it possible to enhance numerical accuracy, reduce hardware costs, 
and achieve a better balance between performance and energy efficiency. This makes the Pos-
it system a relevant subject of investigation in such fields as deep learning, embedded sys-
tems, and high-performance computing.

However, the practical implementation of Posit arithmetic at the hardware level re-
quires in-depth analysis. The viability and scalability of this new number representation sys-
tem are determined by the efficiency of hardware architectures capable of providing the re-
quired levels of accuracy, performance, and robustness against computational errors.

In the main part of this article, prepared within the framework of obtaining the degree
of Doctor of Philosophy, the fundamentals of Posit arithmetic, its structure, advantages, and 
challenges in comparison with IEEE 754 are described.This is followed by a detailed exami-
nation of hardware implementations of Posit arithmetic units. Applications in deep learning, 
accuracy and efficiency analyses, robustness studies, and error investigations will be consid-
ered. The review concludes with a summary of the key findings and implications for future 
research.

Keywords: Posit Number System, IEEE floating point unit, embedded systems, hard-
ware, deep neural network.

УДК 519.725:629.7.052 DOI: 10.18372/2073-4751.83.20525 

Гільгурт С.Я., д.т.н., 
orcid.org/0000-0003-1647-1790 

Давиденко А.М., д.т.н.,
orcid.org/0000-0001-6466-1690 

ОЦІНКА МОЖЛИВОСТЕЙ СТВОРЕННЯ ЗАВАДОСТІЙКИХ КОДІВ ШЛЯХОМ
ПЕРЕБОРУ КОМБІНАЦІЙ КОДОВИХ СЛІВ1

Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
e-mail: hilgurt@ukr.net 

e-mail: davidenkoan@gmail.com 

Вступ1

Під час пересилання даних комуні-
каційними засобами, що піддаються
впливу перешкод, вникає проблема запо-
бігання втраті інформації. Наприклад, 
передача радіоканалом відеозображення з
бортової камери БпЛА, які останнім ча-
сом все частіше використовуються не
тільки для цивільних, але й для військо-
вих застосувань, ускладнюється внаслідок
впливу різних факторів. Основним дже-

1 Дослідження виконане за фінансової підтримки
з боку Національного фонду досліджень
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релом перешкод є засоби радіоелектрон-
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технічні підходи щодо боротьби з переш-
кодами. Наприклад, розробляються спеці-
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– одиничної (діагональної) матриці [Ik,k]
порядку k та прямокутної матриці [Ak,n-k], 

яка містить k рядків і (n – k) стовпців: 

. (3) 

Відомо, що перестановка будь-яких 
рядків та будь-яких стовпців не змінює вла-
стивостей коду. Тому нескладно довести, 
що будь-який коригуючий лінійний блоко-
вий код є функціонально рівноцінним від-
повідному систематичному коду [7]. 

Вагою w кодового слова =(x1, x2, x3, 
… , xn) називають кількість його ненульо-
вих елементів: 

. (4) 
Відстань d в лінійних кодах – це ві-

дстань Геммінга між різними кодовими 
словами, яка визначається кількістю від-
мінних бітів. Тобто відстань d за Геммін-
гом дорівнює вазі побітової суми за мо-
дулем 2 двох кодових слів (векторів)  та 

, що порівнюються: 

. (5) 
Найважливішою характеристикою 

коригуючого коду є кількість помилок e, 
яку цей код здатний виправити. Ця вели-
чина напряму пов’язана з мінімальною 
кодовою відстанню d* коду: 

, (6) 
де мінімальна кодова відстань d* – 

це найменше значення кодової відстані 
між будь-якими двома прийнятними зна-
ченнями кодів . Отже практичний інте-
рес складають лише коди, що мають не-
парну мінімальну кодову відстань d*. 
Інакше є можливим випадок, коли спо-
творений код виявиться рівновіддаленим 
від двох прийнятних значень кодів, і його 
первинне значення буде неможливо від-
новити. 

Математична подібність операцій 
обчислення кодової відстані та лінійної 
комбінації базисних векторів (в обох ви-
падках – додавання за модулем 2), а та-
кож той факт, що нульова комбінація бі-

тів також є можливим значенням коригу-
ючого коду (при нульовому вхідному век-
торі) мають наслідком наступну важливу 
властивість параметра d*: він визначаєть-
ся як мінімальна вага серед всіх прийня-
тних ненульових кодових слів: 

. (7) 

Нагадаємо, що згідно (1) прийнятні 
слова коду знаходяться як добуток вхід-
ного інформаційного вектора (всіх його 
комбінацій) на породжувальну матрицю. 
Тому значення d* напряму залежить від 
змісту породжувальної матриці, а у випа-
дку систематичного коду – від матриці 
[Ak,n-k]. 

Оскільки цінність коригуючого коду 
тим вища, чим більшу кількість помилок 
він здатний виправити, задачу пошуку 
найкращого коду можна сформулювати, 
як пошук такої породжувальної матриці 
(точніше – її складової [Ak,n-k]), для якої 
мінімальна відстань d* коду приймає мак-
симально можливе значення : 

. (8) 

Тобто, для наданих значень k та n з 
усіх можливих варіантів створення мат-
риці [Ak,n-k] необхідно знайти таку, що 
відповідає умові (8). Якщо значення мак-
симальної кодової відстані  для неї 
виявиться непарним, то найкращій код 
знайдено. У іншому випадку приходимо 
до висновку, що для наданих значень кі-
лькості корисних та надлишкових бітів 
найкращого коригуючого лінійного бло-
кового коду не існує. 

3. Складання алгоритму
Вирішення цієї задачі повним пере-

бором потребує виконання такого числа 
операцій: . Для 
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її спрощення та прискорення можна за-
пропонувати декілька евристик. 

Е1. Немає сенсу розглядати всі варі-
анти для всіх можливих значень d*. Є сенс 
виконувати пошук наступним чином: для 
заданих n і k спробувати побудувати по-
роджувальну матрицю для послідовних 
значень d*. Найбільше значення d*, для 
якого вдасться побудувати правильну 
матрицю, вочевидь, і є максимальною 
кодовою відстанню . 

Е2. Оскільки невдала спроба за-
ймає менше часу, є сенс починати з най-
більшого теоретично можливого зна-
чення d*, переходячи після невдалої 
спроби до наступного, меншого на оди-
ницю його значення. Перше значення d*, 
для якого вдасться побудувати правиль-
ну матрицю, є максимальною кодовою 
відстанню , 

Е3. Оскільки перестановка будь-
яких рядків та будь-яких стовпців не змі-
нює властивостей коду, для більш зруч-
ного поводження з матрицями є сенс ви-
користовувати ранжування рядків за яки-
мось принципом, наприклад, за зростан-
ням умовного двійкового числа Si, скла-
деного зі значень елементів i-го рядка 
матриці ai,m наче з двійкових розрядів: 

. (9) 

Назвемо гладкою породжувальну 
матрицю G, якщо для будь-яких двох її 
рядків, що входять до складу матриці 
[Ak,n-k] з номерами i та j, причому i < j, 
виконується співвідношення: 

Si < Sj. (10) 
Е4. Очевидно, що гладких кодів іс-

тотно менше ніж довільних. Тому за ра-
хунок пошуку лише гладких матриць мо-
жна значно зменшити кількість варіантів 
для розглядання. Доведено, що для дові-
льного коду (n, k) з мінімальною кодовою 
відстанню не нижче 3 існує подібний до 
нього код з гладкою породжувальною 
матрицею. 

Нижче наведений приклад гладкої 
породжувальної матриці G для коду (12,7) 
з мінімальною кодовою відстанню 4:  

Зауважимо, що кількість одиниць в 
рядку породжувальної матриці не 
обов’язково дорівнює значенню мініма-
льної кодової відстані, Але завжди – не 
менша за неї. 

Е5. Якщо припустити, що нам ві-
домо перші (верхні) m рядків породжу-
вальної матриці, то шляхом побітового 
додавання за модулем 2 усіх їх між со-
бою, можливо знайти 2m прийнятних 
кодових слів. Якщо хоча б для однієї з 
усіх 2m комбінацій не виконується 
умова 

, (12) 

тобто хоча б в одному кодовому 
слові кількість одиниць менша за d*, то 
наше припущення хибне. 

З евристик Е1 – Е5 природним чи-
ном випливає наступна послідовність по-
будови гладкої породжувальної матриці 
лінійного блокового коду (точніше – її 
правої частини [Ak,n-k]). Назвемо її мето-
дом нарощування. 

Починаючи з першого рядка, буду-
ємо матрицю [Ak,n-k], відшукуючи послі-
довно кожний наступний рядок таким 
чином: на основі попереднього m-го ге-
неруємо гіпотетичний наступний (m+1)-
й рядок, збільшуючи його значення Sm 
на одиницю і перевіряючи, чи викону-
ється при цьому умова (12). Знаходимо 
всі лінійні комбінації цього гіпотетич-
ного рядку з вже відомими попередніми, 
перевіряючи для кожної з комбінацій 
виконання умови (12). В разі, якщо умо-
ва не виконується, збільшуємо Sm+1 ще 
на одиницю, і так далі, поки не буде 
знайдено прийнятний (m+1)-й рядок. 
Якщо не вдалося побудувати всі необ-
хідні k рядків, повертаємось на один 
рядок назад, збільшуємо його значення 
Sm-1 на одиницю і знов намагаємось від-
шукати прийнятні значення кодових 
слів. І так – у зворотному напрямку до 

– одиничної (діагональної) матриці [Ik,k] 
порядку k та прямокутної матриці [Ak,n-k], 

яка містить k рядків і (n – k) стовпців:

. (3) 

Відомо, що перестановка будь-яких
рядків та будь-яких стовпців не змінює вла-
стивостей коду. Тому нескладно довести, 
що будь-який коригуючий лінійний блоко-
вий код є функціонально рівноцінним від-
повідному систематичному коду [7].

Вагою w кодового слова =(x1, x2, x3, 
… , xn) називають кількість його ненульо-
вих елементів: 

. (4) 
Відстань d в лінійних кодах – це ві-

дстань Геммінга між різними кодовими
словами, яка визначається кількістю від-
мінних бітів. Тобто відстань d за Геммін-
гом дорівнює вазі побітової суми за мо-
дулем 2 двох кодових слів (векторів) та

, що порівнюються:

. (5) 
Найважливішою характеристикою

коригуючого коду є кількість помилок e, 
яку цей код здатний виправити. Ця вели-
чина напряму пов’язана з мінімальною
кодовою відстанню d* коду:

, (6) 
де мінімальна кодова відстань d* –

це найменше значення кодової відстані
між будь-якими двома прийнятними зна-
ченнями кодів . Отже практичний інте-
рес складають лише коди, що мають не-
парну мінімальну кодову відстань d*.
Інакше є можливим випадок, коли спо-
творений код виявиться рівновіддаленим
від двох прийнятних значень кодів, і його
первинне значення буде неможливо від-
новити.

Математична подібність операцій
обчислення кодової відстані та лінійної
комбінації базисних векторів (в обох ви-
падках – додавання за модулем 2), а та-
кож той факт, що нульова комбінація бі-

тів також є можливим значенням коригу-
ючого коду (при нульовому вхідному век-
торі) мають наслідком наступну важливу
властивість параметра d*: він визначаєть-
ся як мінімальна вага серед всіх прийня-
тних ненульових кодових слів: 

. (7) 

Нагадаємо, що згідно (1) прийнятні
слова коду знаходяться як добуток вхід-
ного інформаційного вектора (всіх його
комбінацій) на породжувальну матрицю. 
Тому значення d* напряму залежить від
змісту породжувальної матриці, а у випа-
дку систематичного коду – від матриці
[Ak,n-k]. 

Оскільки цінність коригуючого коду
тим вища, чим більшу кількість помилок
він здатний виправити, задачу пошуку
найкращого коду можна сформулювати, 
як пошук такої породжувальної матриці
(точніше – її складової [Ak,n-k]), для якої
мінімальна відстань d* коду приймає мак-
симально можливе значення : 

. (8) 

Тобто, для наданих значень k та n з
усіх можливих варіантів створення мат-
риці [Ak,n-k] необхідно знайти таку, що
відповідає умові (8). Якщо значення мак-
симальної кодової відстані для неї
виявиться непарним, то найкращій код
знайдено. У іншому випадку приходимо
до висновку, що для наданих значень кі-
лькості корисних та надлишкових бітів
найкращого коригуючого лінійного бло-
кового коду не існує.

3. Складання алгоритму
Вирішення цієї задачі повним пере-

бором потребує виконання такого числа
операцій: . Для

 (11)
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першого рядку. Якщо всі можливі при-
пущення перебрано, приходимо до ви-
сновку, що для наданих значень n і k на-
дане значення d* досягнути неможливо. 

З наведеного методу випливає на-
ступний алгоритм. 

Крок 1. Сформуємо перший (m = 1) 
рядок a1,n-k питомої гладкої породжуваль-
ної матриці [Ak,n-k]. Внаслідок вимог (8) і 
(10), а також того факту, що в діагональ-
ній матриці одна одиниця вже присутня, 
такий рядок завжди є послідовністю з 
d* – 1 одиниць, яким передує n – k – d* + 1 
нулів (див. приклад (11)). 

Крок 2. Формуємо m-й рядок am,n-k 
матриці [Ak,n-k] таким чином, щоб викону-
валися умови: S(am,n-k) > S(am-1,n-k) та 
w(am,n-k)  d* – 1. Переходимо до Кроку 4. 

Крок 3. Замінюємо знайдений рані-
ше m-й рядок a*

m,n-k матриці [Ak,n-k] таким 
новим рядком am,n-k, щоб виконувалися 
умови: S(am,n-k) > S(a*

m,n-k) та w(am,n-k)   
d* – 1. 

Крок 4. Знаходимо всі можливі лі-
нійні комбінації зі знайдених перших m 
рядків матриці [Ak,n-k] і для кожної з них 
перевіряємо – чи виконується умова 
(12). Якщо вона виконується для всіх 
комбінацій, переходимо до Кроку 5. Ін-
акше вилучаємо поточний рядок am,n-k і, 
якщо S(am,n-k) < 2n-k – 1, переходимо до 
Кроку 3 (для пошуку нового рядка зі 
збільшеним значенням S(am,n-k)). Якщо ж 
S(am,n-k) = 2n-k – 1 (тобто увесь рядок 
складається з самих одиниць), перехо-
димо до Кроку 6. 

Крок 5. Якщо m = k, то процес по-
будови породжувальної матриці для на-
даного значення d* є вдалим, і алгоритм 
завершує свою роботу. Інакше збільшує-
мо значення m на одиницю та переходимо 
до Кроку 2. 

Крок 6. Зменшуємо значення m на 
одиницю. Якщо отримуємо нуль, алго-
ритм завершує роботу з висновком, що 
для наданого значення кодової відстані d* 
побудувати правильну матрицю немож-
ливо. Інакше переходимо до Кроку 3. 

Обчислювальна складність даного 
алгоритму оцінюється як О(2k(n-k-1)/k!), 

тобто є дуже близькою до складності ме-
тоду повного перебору, який, як було вка-
зано вище, потребує виконання 

 операцій. 
Е6. Метод можна спростити (і, як 

наслідок, прискорити), якщо замінити в 
розглянутому алгоритмі Крок 6 на на-
ступний: 

Крок 6*. Алгоритм завершує роботу 
з висновком, що для наданого значення 
кодової відстані d* побудувати правильну 
матрицю неможливо. 

Назвемо модифікований таким чи-
ном алгоритм спрощеним, а метод, який 
він реалізує – спрощеним методом на-
рощування. 

Суть спрощеного алгоритму полягає 
в тому, що породжувальна матриця буду-
ється лише за один прохід зверху до низу 
без додаткових спроб змінити вже знайде-
ні прийнятні рядки. Тобто розглядається 
лише один правильний варіант гладкої 
породжувальної матриці – перший, "як 
склалося". 

Звісно, спрощений алгоритм не га-
рантує, що перевірене ним значення ко-
дової відстані d* є найбільшим. Тобто 
отримане за його допомогою значення 
кодової відстані, строго кажучи, є не мак-
симальною кодовою відстанню , а 
лише його нижньою оцінкою . Але, 
як свідчать експерименти, в багатьох ви-
падках ця оцінка  збігається з вели-
чиною , а якщо ні, то ніколи не відрі-
зняється більш, ніж на одиницю. Проте 
оцінка обчислювальної складності спро-
щеного методу має вже значно нижчий 
порядок – O(2n). 

Е7. Ще більше прискорити обчис-
лення можливо, якщо всі комбінації, 
перевірені на Кроці 4, запам’ятовувати і 
використовувати для наступних значень 
m. Це призведе до збільшення потрібної
пам’яті, суттєвого – для великих значень 
k, але дозволить зменшити кількість по-
трібних операцій, хоча й не усуне сту-
пеневий порядок оцінки обчислювальної 
складності O(2n). 
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Таблиця 1. 

Пояснення щодо евристики Е7 

Таблиця 1 ілюструє реалізацію ці-
єї евристики. Наприклад, нам потрібно 
перевірити 4-й рядок матриці [Ak,n-k], 
тобто m = 4 (8-й рядок у таблиці, в за-
гальному випадку – 2m-1). Виконуючи 
порозрядне додавання за модулем 2 
змісту 4-го рядка послідовно зі всіма 
попередніми вже порахованими рядка-
ми допоміжної таблиці з 1-го по 7-й, 
розміщуємо отримані значення у рядках 
з номерами з 9-го (8+1) по 15-й (8+7) (в 
загальному випадку – з (2m-1+1)-го по 
(2m–1)-й рядок). Якщо в кожному з об-
числених рядків число одиниць ви-
явиться не меншим за питому кодову 
відстань, 4-й рядок вважається прийня-
тним та записується в питому матрицю 
[Ak,n-k], а рядки з 9-го по 15-й допоміж-
ної таблиці зберігаються для подальшо-
го пошуку 5-го та наступних рядків ма-

триці. В іншому випадку генерується 
наступне значення 4-го рядку матриці 
згідно Кроку 2 або Кроку 3, і перевірка 
повторюється. 

Як видно з наведеного прикладу, ро-
змір допоміжної таблиці складає (2k – 1) 
рядків. Але наступна евристика дозволяє 
скоротити це значення удвічі. 

Е8. Оскільки під час пошуку остан-
нього рядку матриці [Ak,n-k] результати 
комбінування поточного рядка з усіма 
попередніми в подальшому не знадоб-
ляться, для даного значення m = k запов-
нювати допоміжну таблицю не потрібно. 
Тоді розмір допоміжної таблиці склада-
тиме (2k-1 – 1)  2k-1 рядків. 

4. Оцінка потрібних обчислю-
вальних ресурсів 

До основних видів обчислювальних 
ресурсів, витрати яких потрібно оцінити в 
першу чергу, відносяться обсяг пам'яті та 
машинний час. 

4.1. Оцінка потрібної пам’яті 
Оцінімо витрати на пам'ять для про-

грами, яка функціонує згідно алгоритму, 
що використовує Е7 та Е8. 

Якщо в програмі для зберігання ря-
дків породжувальних матриць використо-
вуються 32-бітні (4-байтні) змінні (така 
програма здатна обчислювати матриці для 
яких параметр (n – k) може сягати значень 
до 32), об’єм пам’яті потрібної для збері-
гання допоміжної таблиці Mk можна оці-
нити знизу виразом, який залежить лише 
від параметру k: 

Мk = M(k) > 22 · 2k-1[байтів] = 2k+1 [б]  

= 2k-9 [Кб] =2k-19 [Мб] = 2k-29 [Гб]. (13) 

Оскільки зберігання інших змінних 
потребує суттєво менше пам’яті, їх зага-
льним об’ємом можна знехтувати. 

Отже, згідно (13) для пошуку поро-
джувальної матриці, наприклад, для 
(64, 32)-коду програмі буде потрібно 
пам’яті трохи більше за 232-29 Гб = 23 Гб = 
8 Гб. 

4.2. Оцінка потрібного часу 
обчислень 

Оцінити обчислювальний час, пот-
рібний для пошуку породжувальних мат-

першого рядку. Якщо всі можливі при-
пущення перебрано, приходимо до ви-
сновку, що для наданих значень n і k на-
дане значення d* досягнути неможливо.

З наведеного методу випливає на-
ступний алгоритм.

Крок 1. Сформуємо перший (m = 1) 
рядок a1,n-k питомої гладкої породжуваль-
ної матриці [Ak,n-k]. Внаслідок вимог (8) і
(10), а також того факту, що в діагональ-
ній матриці одна одиниця вже присутня, 
такий рядок завжди є послідовністю з
d* – 1 одиниць, яким передує n – k – d* + 1
нулів (див. приклад (11)).

Крок 2. Формуємо m-й рядок am,n-k
матриці [Ak,n-k] таким чином, щоб викону-
валися умови: S(am,n-k) > S(am-1,n-k) та
w(am,n-k) d* – 1. Переходимо до Кроку 4.

Крок 3. Замінюємо знайдений рані-
ше m-й рядок a*

m,n-k матриці [Ak,n-k] таким
новим рядком am,n-k, щоб виконувалися
умови: S(am,n-k) > S(a*

m,n-k) та w(am,n-k) 
d* – 1. 

Крок 4. Знаходимо всі можливі лі-
нійні комбінації зі знайдених перших m
рядків матриці [Ak,n-k] і для кожної з них
перевіряємо – чи виконується умова
(12). Якщо вона виконується для всіх
комбінацій, переходимо до Кроку 5. Ін-
акше вилучаємо поточний рядок am,n-k і, 
якщо S(am,n-k) < 2n-k – 1, переходимо до
Кроку 3 (для пошуку нового рядка зі
збільшеним значенням S(am,n-k)). Якщо ж
S(am,n-k) = 2n-k – 1 (тобто увесь рядок
складається з самих одиниць), перехо-
димо до Кроку 6. 

Крок 5. Якщо m = k, то процес по-
будови породжувальної матриці для на-
даного значення d* є вдалим, і алгоритм
завершує свою роботу. Інакше збільшує-
мо значення m на одиницю та переходимо
до Кроку 2.

Крок 6. Зменшуємо значення m на
одиницю. Якщо отримуємо нуль, алго-
ритм завершує роботу з висновком, що
для наданого значення кодової відстані d*

побудувати правильну матрицю немож-
ливо. Інакше переходимо до Кроку 3.

Обчислювальна складність даного
алгоритму оцінюється як О(2k(n-k-1)/k!),

тобто є дуже близькою до складності ме-
тоду повного перебору, який, як було вка-
зано вище, потребує виконання

операцій.
Е6. Метод можна спростити (і, як

наслідок, прискорити), якщо замінити в
розглянутому алгоритмі Крок 6 на на-
ступний: 

Крок 6*. Алгоритм завершує роботу
з висновком, що для наданого значення
кодової відстані d* побудувати правильну
матрицю неможливо.

Назвемо модифікований таким чи-
ном алгоритм спрощеним, а метод, який
він реалізує – спрощеним методом на-
рощування. 

Суть спрощеного алгоритму полягає
в тому, що породжувальна матриця буду-
ється лише за один прохід зверху до низу
без додаткових спроб змінити вже знайде-
ні прийнятні рядки. Тобто розглядається
лише один правильний варіант гладкої
породжувальної матриці – перший, "як
склалося".

Звісно, спрощений алгоритм не га-
рантує, що перевірене ним значення ко-
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лише його нижньою оцінкою . Але, 
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щеного методу має вже значно нижчий
порядок – O(2n). 
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використовувати для наступних значень
m. Це призведе до збільшення потрібної
пам’яті, суттєвого – для великих значень
k, але дозволить зменшити кількість по-
трібних операцій, хоча й не усуне сту-
пеневий порядок оцінки обчислювальної
складності O(2n). 
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риць не є тривіальною задачею. Крім чис-
ленних евристик, використаних для ско-
рочення цього часу, а також технік та 
прийомів, застосованих при оптимізації 
коду, на час обчислень також суттєво 
впливає використання кешу 3-го рівня 
центрального процесора, на якому вико-
нуватиметься програма. Тому для приб-
лизної оцінки цієї величини пропонується 
використовувати змішаний емпірично-
теоретичній підхід. 

Аналіз експериментальних даних 
свідчить, що чинник випадковості, який 
суттєво впливає на фактичний час обчис-
лень, більш помітний при зміні або лише 
параметру k, або лише n – k. При одночас-
ному збільшенні обох цих параметрів, тоб-
то, при збільшенні параметра n, випадко-
вий характер залежності менш впливовий. 
Тому пропонується побудувати апрокси-
маційну залежність як функцію від однієї 
цієї змінної – n. Оскільки оцінка обчислю-
вальної складності використаного в про-
грамі спрощеного методу має порядок 
O(2n), спробуємо апроксимувати зверху 
емпіричні дані за допомогою виразу: 

Tn = T(n) < B·2n , (14) 
де Tn – час розрахунку коду довжи-

ною n, B – константа, яку необхідно піді-
брати емпіричним шляхом. 

Висновки 
В роботі розглянуто алгоритм по-

шуку найкращого коригуючого лінійного 
блокового (n, k)-коду для заданих параме-
трів n і k шляхом перебору комбінацій, 
придатний для виконання на високопро-
дуктивних обчислювальних системах. 
Запропоновано спрощений метод наро-
щування, який дозволяє збільшити наоч-
ність та суттєво підвищити швидкодію 
алгоритму, при втраті точності не гірше 
за одиницю значення максимальної кодо-
вої відстані. Наведено приблизні оцінки 
пам’яті та часу обчислень, потрібних для 
виконання алгоритму, які будуть корис-
ними під час подальшої реалізації алгори-
тму на високопродуктивних обчислюва-
льних засобах. 
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ПЕРЕБОРУ КОМБІНАЦІЙ КОДОВИХ СЛІВ 

Робота присвячена питанням пошуку найкращих кодів, здатних виправляти мак-
симальну можливу кількість помилок для заданої розмірності. Здійснювати такий по-
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ням високопродуктивного обчислювального обладнання. Обґрунтовано основні теоре-
тичні положення. Запропоновано повний та спрощений алгоритми, що реалізують 
метод нарощування. При цьому спрощений алгоритм дозволяє збільшити наочність та 
суттєво підвищити швидкодію при втраті точності не гірше за одиницю значення 
максимальної кодової відстані. Наведено приблизні оцінки пам’яті та часу обчислень, 
потрібних для виконання алгоритму, які будуть корисними під час подальшої реалізації 
алгоритму на високопродуктивних обчислювальних засобах. Знайдено верхню оцінку 
потрібних обчислювальних ресурсів двох основних видів – обсягу пам'яті та машинного 
часу, як функцій від параметрів розмірності завадостійкого коду. 
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Hilgurt S.Ya., Davydenko A.M. 
EVALUATION OF THE POSSIBILITIES OF CREATING INTERFERENCE-
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The work is devoted to the issues of finding the best codes capable of correcting the 
maximum possible number of errors for a given dimension. It is proposed to carry out such 
work by searching for possible combinations of code words using high-performance compu-
ting equipment. The main theoretical provisions are substantiated. Full and simplified algo-
rithms are proposed that implement the method of building up, which allows improving the 
clarity and to significantly increase the speed of the algorithm, while losing accuracy not 
worse than the unit value of the maximum code distance. Approximate estimates of the 
memory and computation time required for the execution of the algorithm are given, which 
will be useful during the further implementation of the algorithm on high-performance com-
puting devices. An upper estimate of the required computational resources of two main types 
is found – the amount of memory and machine time, as functions of the dimensionality param-
eters of the noise-resistant code. 
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