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Introduction

IoT request flows are characterized by
irregularity, stochastic nature, and the
presence of short-term spikes, which
complicates the maintenance of stable
infrastructure functioning [10, 11]. Under
such conditions, traditional load balancing
mechanisms that make decisions based on
current resource metric values often fail to
provide the necessary level of adaptability
and efficiency [1, 6, 12].

The problem is further exacerbated by
the fact that cloud node overloading occurs
due to sudden changes in IoT data arrival
intensity, preventing balancing mechanisms
from reacting in time to potential
degradation in Quality of Service (QoS).
Furthermore, in the context of ensuring the
cyber-resilience of IoT systems, the
overloading of individual nodes constitutes a
critical security threat. Resource exhaustion
is often accompanied not only by reduced
service availability but also by increased
infrastructure vulnerability to Denial-of-
Service (DoS/DDoS) attacks. Under such
conditions, the system loses the capability to
filter malicious traffic, rendering it an easy
target for attackers. Consequently, there is a
need to employ methods capable of short-
term forecasting of future load parameters
and ensuring the preventive distribution of
requests among cloud infrastructure nodes
[7, 8].

In view of the above, this paper
proposes a load balancing algorithm based
on the predicted integral node load index.
The integral index forms a generalized
assessment of the state of computational
resources by combining indicators of CPU
load, RAM usage, disk operation intensity,
and network activity [3]. Subsequent
forecasting of this index allows the balancer
to account for the expected node load in the
immediate time interval and ensure a rational
distribution of incoming requests. Thus, the
application of the predicted integral node
load index contributes to enhancing the
reliability and efficiency of cloud system
functioning under conditions of highly
dynamic IoT traffic and variable resource
characteristics.

Problem statement

Cloud infrastructure processing data
from numerous IoT devices consists of a set
of computational nodes, each possessing
limited resources of CPU, RAM, disk
subsystem, and network interface. Let

N = {nq,ny, ..., N}

be the set of cloud platform nodes , and

st}

be the set of incoming IoT requests arriving
at the system in real time.

T = {tl' tz,

For each node n;, an integral load
index ILI;(t) is determined (calculation
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provided in Formula 1) as an aggregated
assessment of its resource utilization at time
t [9]. Since the load generated by IoT
devices is stochastic and prone to sharp
fluctuations, it is necessary to consider not
only the current but also the expected value
of this index. It is assumed that a short-term
forecasting model is available, providing an
estimate of ILL;(t+A4) for a certain
prediction interval A.

Formally, the problem consists of
selecting a mapping function

A:T - N,
which satisfies the following requirements:

1. Minimization of predicted node overload
(see forecasting model in Formula 2):

minmax  ILL(t + A).
Nn;EN

4

2. Ensuring load distribution uniformity:
minVar (lﬁll(t +4), o IR (E + A)).

3. Minimization of expected request service
time:

min Z p(t;) - RT (A(t;)),
t;eT
where:
tj is a specific request from set T;

p(t;) is the probability or frequency of this
request's arrival;

RT (A(tj)) is the estimated response time of

the node to which the request is assigned.

4. Adherence to resource constraints:

RAM;(t + 4) < RAM; 1nqy,
an- € N.

Thus, the formulation of the load
balancing problem in an IoT cloud
environment reduces to selecting an optimal
request routing strategy based on the
predicted integral node load index, which
allows for accounting for the dynamic nature
of IoT traffic and ensuring efficient

computational resource utilization [2, 5].
In this context, the goal is to determine an
optimal  routing  function A:T — Nthat
assigns each incoming request to a specific
cloud node in a way that minimizes overload
risks, balances the predicted load across
nodes, and reduces the expected service time.
Such formulation explicitly defines the
decision  variable  and  optimization
objectives, thereby completing the formal
problem statement.].

Main material

In cloud systems, the operational state
of a node is determined simultaneously by
several — parameters, each  affecting
performance in its own way: processor
resources dictate computation speed, RAM
determines data volumes processable without
disk access, disk operation intensity affects
data access latency, and network bandwidth
influences the timeliness of information
exchange. Consequently, analyzing each
metric separately does not yield a holistic
assessment of the node's real state.

Therefore, an Integral Load Index
(ILT) is introduced, which combines all these
parameters into a single numerical criterion.
It serves as a wunified generalized
characteristic of node loading and reflects its
capacity to process additional requests in the
nearest time interval. Such an index is a
convenient tool in load balancing tasks, as it
enables node comparison via a single
numerical indicator, provides a
comprehensive resource state assessment, is
suitable =~ for  subsequent  short-term
forecasting by time-series models, and can
serve as a formal criterion for selecting the
optimal node for request routing. The
integral load index is defined as:

ILL;(t) = wy - CPU;(t) + w, - RAM;(¢) )
+W3 ° IOL(t) + W4_ ° NETl(t),

where:

CPU;(t) - processor load of node n;;
RAM;(t) - RAM usage of node n;;

10;(t) - disk operation intensity of node n;;

NET;(t) - network load of node n;;
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Wy, Wy, W3, W, - importance  weighting
coefficients. The weighting coefficients
wy, wy, w3, w, reflect the sensitivity of the
integral index to variations in individual
resource metrics. They can be determined in
two ways: (1) manually, based on expert
assessment and the dominant workload type,
or (2) automatically—through optimization
procedures, for example by minimizing the
mean-squared error of the load prediction
model. In both cases, normalization is
applied SO that Yw; = 1. Such
parameterization allows the model to adapt
to different types of IoT traffic and improves
the accuracy of the integral index
forecasting.

It is worth noting that the use of the
predicted integral index also enables the
resolution of related cybersecurity tasks.
Anomalous load growth scenarios, identified
via deviations of ILI(t) from typical patterns,
often correlate with the aberrant behavior of
compromised IoT devices (e.g., within
botnets) or direct hostile activity. Thus,
analyzing the index dynamics creates a
foundation for early threat detection,
allowing for the integration of load balancing
mechanisms  with  security = monitoring
systems.

Since the load in cloud systems
oriented towards processing loT data streams
changes with high frequency and has a
pronounced stochastic character, it is
advisable not only to measure the integral
index ILI but also to forecast it over a short
time interval. The predicted index value
allows accounting for expected load
dynamics and forming preventive decisions
regarding request routing. For this purpose, a
sequential forecasting model is used, which
operates on time series of resource metrics
and provides an estimate of the future node
state.

Let ILI;(t) - be the current value of the
integral index of node n;. Then the forecast
for interval 4 is defined as:

ILL;(t + 4) = fprea ILL(), ILL(t — 1), ...), (2)

where f,,.q - is the short-term forecasting
model, specifically based on a Recurrent
Neural Network (RNN) of the LSTM type
[4]. The obtained predicted index value is
used in the balancing algorithm as a key
criterion for determining the node's capacity
to process additional requests in the
immediate time interval.

The algorithm utilizes predicted values
of the integral index to determine a node's
capacity to accept new requests. The lower
the I£1;(t + A), the more suitable the node is.
Request  distribution is  performed
proportionally to the “availability” of nodes,
determined by the function:

Score(n;) = m. (3)
The graphical interpretation of the

proposed algorithm's logic is presented in
Fig. 1.

Algorithm Steps:
Input

1. Set of nodes N = {nq,n,, ...,n;}
2. Stream of requests T = {ty,t, ..., tin}
3. Forecast time interval 4

Step 1. Telemetry Collection

4. For each node n;:

5 Read CPUj(t), RAM;(t), 1O;(t), NET;(t);
6. Calculate current ILI;(t).

Step 2. Forecasting

7. For each node n;:

8. Based on history ILI;(t), ILI;(t — 1), ...;
9. Obtain forecast using LSTM model;
10. SILI; = ILI;(t + A).

Step 3. Candidate Evaluation

11. For each node n;:

12. Calculate node suitability as:

13. core(n;) = 1/SILI;.

Step 4. Request Distribution

14. For each new request t; € T:
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Step 5
Repeat

Waiting A
Update the model

Repeat

Step 4
Request Distribution
Routing t;
to the node wi-

th max Score

Step 1
Telemetry Collection
CPU, RAM, 1/0, NET
Calculate ILI(t)

Step 2
Forecasting
LSTM model

Evaluation ILI(t + A)

Step 3
Evaluation

Node suitability:
Score = 1/ILI

Fig. 1: Cyclic scheme of the request routing algorithm

15. Select node n with maximum Score(n),
calculated according to formula (3);

16. Assigntj — n.
Step 5. Repeat

17. After interval A update telemetry;
18. Retrain/update model if necessary;

19. Repeat Steps 1-4.

Conclusions

The paper develops and formalizes a
load balancing algorithm in cloud
environments oriented towards processing
IoT traffic. The proposed approach differs
from traditional methods by utilizing a
predicted integral load index, enabling a
transition from reactive resource
management to preventive management.

Main research results:

1. Metric for node state assessment
developed. The concept of an integral index
is introduced, aggregating CPU, RAM, disk
operations, and network activity indicators,
providing a comprehensive assessment of the
node's request processing capacity.

2. Forecasting mechanism integrated.
The use of a short-term forecasting model
(specifically LSTM) allows for accounting
for the stochastic nature of IoT traffic and
mitigating the impact of sudden peak loads
on system stability.

3. Routing strategy optimized. The
formalized problem of minimizing expected
service time and load variance ensures
uniform resource distribution and adherence
to QoS requirements.

4. Cloud environment fault tolerance
enhanced. It is demonstrated that the
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proposed prediction-based routing approach
mitigates the risks of service degradation
caused by both technical faults and
intentional interference, providing an
additional layer of infrastructure protection.

Directions for further research include:

- Adaptation of weighting coefficients:
Development of a mechanism for dynamic
weight change (wj...wyq) in the ILI
calculation formula depending on the type of
incoming tasks (e.g., increasing CPU weight
for computational tasks or I/O for data
processing tasks).

- Comparative analysis of forecasting
models: Investigation of the efficiency of
other neural network architectures (e.g.,
GRU or Transformer) to improve forecast
accuracy over longer time intervals.

- Experimental validation: Imple-
mentation of the proposed algorithm in a real
cluster (e.g., Kubernetes) to assess
forecasting overhead and measure real
system energy consumption.
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Shklyar O.I., Balanyuk Y.V., Kudrenko S.O.

LOAD BALANCING AND CLOUD NODE RESILIENCE ENHANCEMENT
ALGORITHM BASED ON PREDICTED INTEGRAL INDEX

The paper addresses the problem of load balancing in cloud environments designed for
processing stochastic 1oT traffic. It is established that traditional reactive methods are insufficiently
effective under conditions of sharp fluctuations in request intensity. An adaptive routing algorithm
based on the predicted integral node load index is proposed. This index aggregates CPU, RAM, disk
1/O, and network activity metrics into a single criterion. An LSTM recurrent neural network model is
used to forecast node states. The problem of minimizing expected service time and overload is
formalized. The implementation of the proposed approach enables preventive resource distribution,
thereby enhancing system stability. Furthermore, the proposed approach significantly contributes to
the cybersecurity and resilience of cloud infrastructure. Within loT ecosystems, node saturation
frequently leads to compromised service availability and heightened susceptibility to Denial-of-Service
(DoS) attacks. Leveraging the predicted integral load index facilitates not only the optimized
allocation of computational resources but also the early detection of load anomalies attributed to
aberrant 1oT device behavior or hostile actions. This fosters the integration of load balancing with
security monitoring frameworks, bolstering cloud fault tolerance and minimizing service degradation
risks arising from both systemic failures and malicious intent.

Keywords: cloud computing; Internet of Things (loT); load balancing; integral index;
forecasting, security monitoring, LSTM; neural network; resource optimization; response time;
stochastic traffic; QoS; routing.

Mxasp O.I., baaaniok 10.B., Kyipenko C.O.

AJITOPUTM BAJIAHCYBAHHSAI HABAHTAXEHHSA TA HNIABUINEHHA
CTIMKOCTI XMAPHHMX BY3JIB HA OCHOBI TIIPOT'HO30BAHOI'O
IHTEI'PAJIBHOI'O IHAEKCY

Y pobomi pose’azano 3a0avy OGANAHCYBAHHA HABAHMAIICEHHS Y XMAPHUX Cepedosuuyax,
opienmosanux na oopodxy cmoxacmuunoeo loT-mpagixy. Bcmanoeneno, wo mpaouyiini peaxmugni
Memoou € HeOOCMAmHbO epeKMUSHUMU 8 YMOBAX PI3KUX KOIUGAHb IHMEHCUBHOCMI 3anumis.
3anpononosarno adanmusHuill aneopumm Mapwipymuzayii, wo 0a3yemevcsi HA NPOSHO308AHOMY
iHmezpanvHomy iHOekci Hasanmadicenns gysna. Llei indexc aepeeye mempuku CPU, RAM, ouckosux
onepayiii ma mepedcesoi akmueHocmi 6 cOunHull Kpumepit. st nepedbawenHs cmawy 6y3lie
BUKOPUCIAHO MOOelb peKypeHmHoi Heuponnoi mepeosici LSTM. Dopmanizosano 3adavy minimizayii
OUIKYBAHO20 YACY 00CHY208Y8AHHA MA NEPEBAHMANCEHHS. Bukopucmants 3anpononosanoco nioxody
00360J1€ 3a0e3neyumu npPeeeHmueHULl po3nodil pecypcis, niosuwyiouu cmadilbHiCmb CUCTEMU.
Jlooamxosoio nepesacoio 3anponoHo8ano20 Ni0X00y € U020 peresaHmHicms 00 3aOe3nedeHis
Kibepbesnexku ma cmitikocmi xmapHoi ingppacmpykmypu. ¥ konmexcmi loT-cucmem nepeganmaiceHHs
OKPEeMUX Y38 YACO CYNPOBOONCYEMbCSL SHUNCCHHAM PI6HL OOCIYNHOCI Cepeicie ma Ni0GUeHHIM
ypasmweocmi 00 amax muny 6iomMo6a 8 00C1y208y8aHni. Buxopucmanns npoenozoeano2o
IHMe2panbHO20 IHOEKCY HABAHMANCEHHS OAE€ 3MO2Y He Julie ONMUMIZY8amu po3nooii OOUUCTIOBALIbHUX
pecypcis, a Ui CB0EUACHO BUABIAMU AHOMANbHI CYEHAPIi 3POCHAHHSA HABAHMANCEHHS, WO MOXCYMb
oymu nog’sizami 3 HekopekmHolw noesedinkorw loT-npucmpoie abo eopoxcoro axmusuicmio. Lle
Cmeoproe NIOIpyHmsa O inmezpayii Mexawizmieé OalaHCYBAHHA HABAHMANCEHHS 3 CUCmeMamu
MOHImMoOpun2y 0e3nexu, nioGUWYIOUY BIOMOBOCMIUKICIb XMAPHO2O Cepedosuya ma 3MEeHULyroYU
pusukuy oecpadayii cep8icie nio Oi€r0 K MEeXHOLeHHUX, MAK [ 3yMUCHUX 6NIUBIE.

Kniouosi cnosa: xmapni oouucnenns; Inmepnem peueii (loT); 6arancysanus Ha8aHmMaNiCeHHs:,
iHmezpanvuull  iHOeKc, NpocHO3Veanus, MoHimopune Oesnexu; LSTM; mnetiponna mepesica;
onmumizayis pecypcie, uac 6ioeyky, cmoxacmuunuti mpagix, QoS; mapwpymuzayis.



