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Introduction 
The task of anomaly detection involves 

finding rare items or events that are 
inconsistent with the vast majority of the 
data. Practically, this is applied to identify 
everything from financial fraud and new 
forms of cyber attacks to faulty machinery. 
While these applications seem distinct, they 
all share the common challenge of operating 
without target variables. 

Anomalies can be broadly categorized 
into three distinct types. The most basic form 
is the point anomaly (also termed global 
anomaly), which is an individual data point 
that is statistically deviant when compared to 
the entire dataset (e.g., a single, 
exceptionally large financial transaction). In 
contrast, contextual anomalies (or 
conditional anomalies) are instances that are 
unusual only within a specific environment 
or condition, a frequent occurrence in time-
series data; a sudden temperature spike in 
winter is a classic example. Finally, 
collective anomalies represent a more 
complex case where a group of related data 
points behaves abnormally as a unit, even if 
the individual points seem normal. These 
collective deviations, which disturb the 
overall data distribution, are common in 
dynamic systems like network traffic and 
usually demand sophisticated pattern-
detection algorithms. 

A primary challenge in outlier detection 
is the lack of a clear, predefined definition for 
what constitutes an anomaly. This ambiguity is 
often compounded by the need to search for 
these outliers within large, high-dimensional 
datasets. The Isolation Forest algorithm has 
gained significant popularity as it is well-suited 
to these challenges.  

Isolation Forest is an unsupervised, 
tree-based method for identifying anomalies. 
In the same way a Random Forest is an 
ensemble of Decision Trees, an Isolation 
Forest is a collection of Isolation Trees. 
However, these trees are constructed 
differently; rather than using a metric like 
Gini impurity, they are built using a process 
of random feature selection and random 
splitting [1]. 

To grasp how anomaly scores are 
calculated, it is crucial to first understand 
this fundamental building block. For 
simplicity, a dataset of 1000 transactions 
(instances) will be analyzed, considering 
only two variables: the transaction amount 
( ) and the time of day ( ).  

To create an Isolation Tree, the process 
starts with all or a sample of instances in the 
root node. Fig. 1 below shows a sample of 
256 instances (more on that number later). 

The underlying principle is that an 
anomalous instance, being "different," is 
easier to separate from the rest of the data. 
Therefore, during the random partitioning 
process, it will require fewer splits to be 
isolated, resulting in a shorter path length 
within the tree. An Isolation Forest leverages 
an ensemble of these trees to average out the 
variability of any single random tree.This 
ensemble of trees is used to calculate a final 
anomaly score, s(x,n), for each instance x. 
The score is derived from E[h(x)], which 
represents the average path length of 
instance x across all Isolation Trees (where 
h(x) is its path length in one tree). The 
calculation also includes c(n), a 
normalization factor based on the sample 
size n. This normalization is critical because 
the average path lengths for all instances 
naturally grow longer as the sample size (and 



Проблеми інформатизації та управління, 3(83)`2025 49 

thus the tree depth) increases. The anomaly 
score can be calculated using the following 
formula: 

The anomaly score s is normalized to a 
value between 0 and 1. This score can be 
interpreted based on three primary outcomes: 

High Anomaly Probability ( ): 
This occurs when the instance's average path 
length E[h(x)] is significantly shorter than 
the average path length c(n). 

Low Anomaly Probability ( ): 
This occurs when the instance's average path 
length E[h(x)] is longer than c(n). 

Indeterminate (s = 0.5): This result is 
produced when the instance's average path 
length E[h(x)] is approximately equal to the 
average path length c(n) [2]. 

Put simply, a score nearing 1 strongly 
suggests an anomaly because it indicates the 
instance was isolated much more easily (with 
a shorter path) than expected for the dataset. 

Fig. 2 below gives some intuition for 
why this process isolates outliers. Instances 
A, B, and C seem different from the other 
transactions. 

Fig. 1. The process for creating an Isolation Tree. Instances are isolated in leaf nodes by 
recursively splitting instances using a random feature and value in that feature’s range 

Fig. 2. Scatter plot of transactions 
Based on Fig. 2, B will likely be 

isolated first as it can be separated from the 
other transactions using one split from either 
feature. A would take one split from x2. C 
may take longer as it would need to isolate it 

using both features. That is, C has both a 
normal amount and time but not a normal 
amount for that time of day. 

The important point is that, on average, 
B will take fewer splits than A, A fewer 
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Isolation Forest is an unsupervised,
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In the same way a Random Forest is an
ensemble of Decision Trees, an Isolation
Forest is a collection of Isolation Trees.
However, these trees are constructed
differently; rather than using a metric like
Gini impurity, they are built using a process
of random feature selection and random
splitting [1].

To grasp how anomaly scores are
calculated, it is crucial to first understand
this fundamental building block. For
simplicity, a dataset of 1000 transactions 
(instances) will be analyzed, considering 
only two variables: the transaction amount 
( ) and the time of day ( ).  

To create an Isolation Tree, the process
starts with all or a sample of instances in the
root node. Fig. 1 below shows a sample of
256 instances (more on that number later).

The underlying principle is that an
anomalous instance, being "different," is
easier to separate from the rest of the data.
Therefore, during the random partitioning 
process, it will require fewer splits to be
isolated, resulting in a shorter path length
within the tree. An Isolation Forest leverages
an ensemble of these trees to average out the 
variability of any single random tree.This
ensemble of trees is used to calculate a final
anomaly score, s(x,n), for each instance x. 
The score is derived from E[h(x)], which
represents the average path length of
instance x across all Isolation Trees (where 
h(x) is its path length in one tree). The 
calculation also includes c(n), a
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splits than C, and all three points will take 
fewer splits than the other transactions. 

Literature review and problem 
statement 

Recent research on anomaly detection 
concentrates on methods that scale to large, 
heterogeneous data without labels, remain 
stable under drift, and provide controls that 
practitioners can tune. A central line of work 
keeps developing Isolation Forest by 
addressing structural artifacts, extending it to 
streaming settings, and coupling it with 
representation learning. 

Lesouple et al. analyze structural issues 
that appear in extended tree variants and 
introduce Generalized Isolation Forest. Their 
design removes empty branches and mitigates 
partition artifacts, which leads to more stable 
scoring while preserving the efficiency that 
makes isolation-based methods attractive for 
high-volume workloads. Results reported in 
their study indicate competitive accuracy with 
stronger control over how trees are 
constructed and how scores are normalized, 
clarifying where implementation details 
matter in practice [3]. 

For continuous data streams, Togbe et 
al. study anomaly detection with a stream-
ready variant implemented in scikit-
multiflow. They compare Isolation Forest to 
Half-Space Trees on real streams and 
examine resource trade-offs such as memory 
footprint and update latency, which 
determine feasibility in production pipelines 
that operate under sliding windows and 
prequential evaluation. Their evidence 
positions isolation-based detectors as 
practical building blocks in streaming 
toolkits. An associated open-source 
implementation further illustrates how to 
deploy these ideas in Python ecosystems [4]. 

Problem statement. The goal here is to 
determine whether a straightforward, 
reproducible configuration of Isolation 
Forest can deliver stable and actionable 
anomaly signals in batch, large-scale 
measurements without labels. Concretely, 
this study focuses on three tasks that mirror 
the actual workflow in this project: align 
contamination-based thresholds with a 

manageable review volume and a zero-
referenced decision score; verify that results 
remain consistent under routine data 
cleaning and reasonable parameter settings; 
and provide lightweight visual explanations 
that relate flagged observations to the 
underlying features. This keeps the literature 
insights grounded in the exact conditions of 
the simulations and the type of outputs 
intended for analysts to use. 

The purpose and objectives of 
the study 

 
The purpose of this study is to build 

and validate a simple, reproducible Isolation 
Forest workflow that produces reliable 
anomaly flags in batch, large-scale 
multivariate data without labels and that can 
be operated with clear, practical controls. 
The work implements a concise Python 
pipeline in which data are cleaned, a small 
set of continuous indicators is selected, the 
model is trained with n_estimators = 100, 
max_samples = 256, and contamination = 
0.01, and the outputs are inspected through 
two diagnostics: decision scores over time 
with a zero-referenced threshold and a 
two-feature scatter that contrasts flagged and 
normal points. The objectives are to confirm 
that the contamination setting yields a 
manageable alert volume, to check that 
flagged observations form coherent patterns 
rather than isolated noise, to verify that 
results remain stable under modest changes 
to parameters and random seed, and to 
provide lightweight visual explanations that 
help an analyst understand why specific 
observations were flagged. Success is 
defined as achieving stable anomaly volumes 
at the chosen operating point, obtaining 
interpretable patterns in both diagnostics, 
reproducing the results from clean code, and 
meeting typical runtime and memory 
constraints for repeated batch runs. 

Results of the research 
The dataset of air quality 

measurements from a sensor in Kyiv was 
used in the research  [6]. In the context of 
this dataset, an anomaly can be considered a 
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sensor reading that indicates unusually high 
levels of pollution. 

These parameters were used to train 
the Isolation Forest. Here are three values 
below:  

n_estimators is the number of 
Isolation Trees used in the ensemble. A 
value of 100 is used in the Isolation Forest 
paper. Through experimentation, the 
researchers found this to produce good 
results over a variety of datasets.  

contamination is the percentage of 
data points that expected to be anomalies.  

sample_size is the number of 
instances used to train each Isolation Tree. A 
value of 256 is commonly used as it allows 
us to avoid using a maximum tree size 
stopping criteria. This is because it can be 
expected reasonable maximum tree sizes of 
log(256) = 8. 

Unlike other parameters, the 
contamination value often lacks a rigid 
statistical justification and is typically set 
based on estimation. Its origin can be domain 
knowledge from prior analyses; for instance, 
if previous studies identified that 1% of 
readings signaled high pollution levels. 
Alternatively, the value might be dictated by 
resource constraints. Visualizing the 
anomaly scores will later demonstrate how 
this contamination parameter adjusts the 
final results. 
# Parameters 
n_estimators = 100  # Number of 
trees 
contamination = 0.01  # Expected 
proportion of anomalies 
sample_size = 256  # Number of 
samples used to train each tree 

Here is the code of how the training of 
the Isolation Forest was set up.  

# Train Isolation Forest 
iso_forest = 
IsolationForest(n_estimators=n_estim
ators,                     
contamination=contamination,
max_samples=sample_size,           
random_state=42) 
iso_forest.fit(features) 
 

The model provides two distinct 
outputs. The decision_function method 
computes the raw anomaly score for each 
instance, consistent with the theoretical 
framework previously discussed. In contrast, 
the predict method returns a binary 
classification (e.g., -1 or 1) that is 
determined by the contamination 
parameter. In our case, this means the 1% of 
instances with the scores indicating the 
highest anomaly likelihood are assigned a 
value of -1, while all other instances receive 
a value of 1. 

The trained model has two useful 
functions:  
decision_function will calculate the anomaly 
score in a similar way to what it was 
discussed previosuly. 
predict will provide a binary label based on 
the contamination values. In our case, the 
1% of instances with the worst anomaly 
scores will be given a value of -1. The other 
instances are given a value of 1. 

The scatter plot highlights 80 instances 
in red, which correspond to the data points 
with the lowest anomaly scores. These are 
flagged as potential outliers that warrant 
further investigation. Here is the code for 
anomaly scores calculation: 
# Calculate anomaly scores and 
classify anomalies 
data=data.loc[features.index].copy() 
data['anomaly_score']= 
iso_forest.decision_function(feature
s) 
data['anomaly']=iso_forest.predict(f
eatures) 
data['anomaly'].value_counts() 

The scores shown in the plot are 
adjusted values, not the raw scores. The 
adjustment is based on the contamination 
parameter. First, an offset is calculated, which 
corresponds to the anomaly score percentile 
defined by the contamination value (in this 
case, the 0.99 percentile). The final displayed 
score is then computed as offset - score. 
This adjustment effectively shifts the decision 
boundary, making it simple to interpret: all 
scores below zero are now considered 
potential anomalies. 

splits than C, and all three points will take
fewer splits than the other transactions.

Literature review and problem 
statement
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ready variant implemented in scikit-
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referenced decision score; verify that results 
remain consistent under routine data
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that relate flagged observations to the
underlying features. This keeps the literature 
insights grounded in the exact conditions of 
the simulations and the type of outputs 
intended for analysts to use. 

The purpose and objectives of 
the study 

The purpose of this study is to build
and validate a simple, reproducible Isolation
Forest workflow that produces reliable
anomaly flags in batch, large-scale
multivariate data without labels and that can
be operated with clear, practical controls.
The work implements a concise Python
pipeline in which data are cleaned, a small
set of continuous indicators is selected, the 
model is trained with n_estimators = 100, 
max_samples = 256, and contamination =
0.01, and the outputs are inspected through
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with a zero-referenced threshold and a 
two-feature scatter that contrasts flagged and
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that the contamination setting yields a
manageable alert volume, to check that 
flagged observations form coherent patterns
rather than isolated noise, to verify that
results remain stable under modest changes
to parameters and random seed, and to
provide lightweight visual explanations that
help an analyst understand why specific
observations were flagged. Success is 
defined as achieving stable anomaly volumes
at the chosen operating point, obtaining 
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reproducing the results from clean code, and
meeting typical runtime and memory
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Results of the research
The dataset of air quality

measurements from a sensor in Kyiv was
used in the research [6]. In the context of 
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The scatter plot successfully highlights 
which instances are potential anomalies, but 
it provides no insight into the underlying 
reasons for their classification. To 
understand the features or behaviors that led 
to an instance being flagged, additional 
analysis is necessary. 

To examine how flagged points relate 
to the pollution indicators, the plot of a two-

dimensional scatter of PM2.5 against the 
AQI (NowCast) was implemented. Normal 
observations are shown in green and 
anomalies in red, with slight transparency to 
reduce overplotting. This view helps reveal 
whether anomalous readings cluster at high 
particulate levels, high AQI values, or in 
specific combinations of the two. 

Fig. 3 - Anomaly scores 

Fig. 4 - PM2.5 vs AQI with anomaly labels 
From the PM2.5 vs AQI scatter 

(Fig.4), many flagged points cluster where 
PM2.5 is elevated and AQI is high, 
indicating that extreme particulate 
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concentrations are a key driver of anomaly 
scores. That said, not all anomalies sit at the 
upper right. A portion appears at moderate 
AQI with disproportionately high PM2.5, or 
at moderate PM2.5 with unexpectedly high 
AQI, suggesting unusual combinations rather 
than simple extremes. This pattern implies 
that interactions between the two indicators, 
and possibly unmodeled context such as time 
of day, weather, or district effects, also 
contribute to why certain observations are 
classified as anomalies. 

Conclusions 
The simulations on Kyiv air-quality 

data using PM2.5 and AQI confirm that 
Isolation Forest can surface rare and 
operationally meaningful observations 
without labels. With contamination set to 
0.01, the detector produced a small, 
manageable set of candidates, and the 
decision scores aligned with the built-in zero 
threshold used for labeling. In the time plot, 
anomalies concentrated within several 
contiguous intervals, which is consistent with 
short episodes of unusual air conditions rather 
than isolated single-point glitches. In the 
PM2.5–AQI scatter, many flagged points 
appeared where both indicators were elevated, 
but a noticeable share involved atypical 
combinations, such as moderate AQI paired 
with disproportionately high PM2.5 or vice 
versa. This pattern suggests that interaction 
effects, not just univariate extremes, drive a 
meaningful portion of the alerts. 

The approach showed three practical 
strengths in this setting. It handled multiple 
features jointly without requiring 
distributional assumptions, which allowed 
the model to detect complex anomaly shapes 
rather than only large z-scores on single 
variables. It scaled comfortably to thousands 
of observations with near-linear runtime, 
making repeated retraining feasible. It 
provided a direct way to control alert volume 
through the contamination parameter, which 
is helpful for matching detection output to 
analyst capacity. 

There are important caveats. Because 
trees are built with randomness, smaller 
samples can yield unstable rankings, so 

larger or aggregate views of the data are 
preferable for consistent results. The method 
identifies candidates rather than causes; 
understanding why a reading is flagged still 
requires follow-up diagnostics, such as 
contrasting flagged points with typical 
PM2.5–AQI ranges, checking 
meteorological context, or segmenting by 
district and time. The fixed contamination 
setting governs expected alert volume rather 
than true anomaly prevalence, so realized 
rates can drift if the underlying distribution 
changes. 

Overall, the results indicate that 
Isolation Forest is a strong first-line detector 
for unsupervised anomaly screening on 
environmental data. It efficiently highlights 
unusual episodes and nonstandard PM2.5–
AQI combinations while keeping the analyst 
workload predictable. For deployment, the 
findings support pairing the detector with 
lightweight interpretability steps, optional 
feature scaling, and simple operational 
safeguards such as per-district models or 
rolling recalibration of the threshold to 
maintain stable performance under changing 
conditions. 
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Kalashnyk M.O. 
MACHINE LEARNING-BASED ANOMALY DETECTION WITH ISOLATION
FOREST IN LARGE-SCALE DATA ANALYSIS 

This paper presents an applied study of unsupervised anomaly detection with Isolation 
Forest on large multivariate sensor data. The study implements a concise Python workflow 
that acquires city-scale measurements for Kyiv, merges reference metadata, removes invalid 
records, selects two continuous indicators, and trains Isolation Forest with parameters. 
Temporal analysis shows that anomalies concentrate in contiguous intervals rather than 
isolated single points, while a two-feature projection indicates that many flags coincide with 
jointly high values and others arise from atypical value combinations, highlighting 
multivariate effects. 

The study documents practical advantages of Isolation Forest, including minimal 
distributional assumptions, direct control of alert volume via the contamination parameter, 
and near-linear scaling that supports repeated retraining. It also notes limitations, such as 
sensitivity on small samples due to random tree construction, dependence on threshold 
calibration that can drift across datasets, and limited inherent explainability of individual 
alerts. Configuration guidance, robustness checks, and lightweight diagnostics are provided 
to support deployment and to maintain stable performance under changing conditions. 

Keywords: anomaly detection; Isolation Forest; unsupervised learning; threshold 
calibration; multivariate analysis; scalable analytics; interpretability. 

Калашник М.О. 
ВИЯВЛЕННЯ АНОМАЛІЙ НА ОСНОВІ МАШИННОГО НАВЧАННЯ ЗА 
ДОПОМОГОЮ АЛГОРИТМУ ISOLATION FOREST В АНАЛІЗІ ДАНИХ
ВЕЛИКОГО ОБСЯГУ 

Ця стаття представляє прикладне дослідження неконтрольованого виявлення 
аномалій за допомогою Isolation Forest на великих багатовимірних сенсорних даних. 
Реалізовано рішення мовою Python, яке працює з даними з датчиків моніторингу 
якості повітря в місті Києві, об’єднує довідкові метадані, видаляє некоректні записи, 
обирає два неперервні індикатори та навчає за допомогою алгортиму Isolation Forest 
із заданими параметрами. Часовий аналіз показує, що аномалії концентруються в 
суміжних інтервалах, а не є ізольованими поодинокими точками, тоді як проекція на 
дві ознаки вказує, що багато спрацювань збігаються зі спільно високими значеннями, а 
інші виникають через нетипові комбінації значень, що підкреслює багатовимірні 
ефекти. Дослідження документує практичні переваги Isolation Forest, включно з 
мінімальними припущеннями щодо розподілу даних, прямим контролем обсягу 
сповіщень та майже лінійним масштабуванням, що підтримує повторне 
перенавчання. Воно також зазначає обмеження, такі як чутливість на малих вибірках 
через випадкову побудову дерев, залежність від калібрування порогу, яке може 
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«дрейфувати» на різних наборах даних, та обмежену вбудовану пояснюваність 
окремих виявлених аномалій. Надано рекомендації з конфігурування, перевірки на 
стійкість та прості інструменти для підтримки впровадження та збереження 
стабільної продуктивності в умовах, що змінюються. 

Ключові слова: виявлення аномалій; Isolation Forest; неконтрольоване навчання; 
калібрування порогу; багатовимірний аналіз; масштабована аналітика; 
інтерпретованість. 
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Вступ 
Комерційні 3D-джерела, такі як 

Maxar Precision3D [1], та візуалізації в 
Google Maps/Earth [2] надають високоя-
кісні моделі рельєфу, але їх використан-
ня в академічних експериментах обме-
жене ліцензіями, доступом та охоплен-
ням або ж є складними. Відтворення 3D 
форми об’єкта зі зображення меншої 
розмірності дає змогу отримувати дода-
ткову просторову інформацію про сцену 
за мінімальних вимог до вхідних даних. 
Зростання обсягів супутникових зобра-
жень і доступності картографічних сер-
вісів породжує запит на просту, відтво-
рювану та зіставну оцінку глибини з 
одиночних 2D-знімків. Традиційно за-
вдання глибинного моделювання 
розв’язують за допомогою фотограмме-
трії та технологій дистанційного зонду-
вання, наприклад, аеро лазерного скану-
вання, LiDAR, а також із залученням 
супутникових моделей висот рельєфу 
(DEM/DSM). Водночас комерційні 
3D-сервіси хоч і надають готові побудо-
ви рельєфу, але обмежені вартістю, лі-
цензійними умовами та територіальним 
покриттям, що ускладнює масштабоване 
наукове відтворення для окремих регіо-
нів. Карти висот доповнюють дані про 
місцевість, однак їхня точність і просто-
рове розрізнення варіюють залежно від 

сенсора та масштабу збору даних [3]. На 
рис. 1 представлено класичну 3D-рекон-
струкцію об'єкта, що попередньо потре-
бує багаторакурсної зйомки з відомими 
параметрами камери. Помітно, що на-
віть трьох зображень не вистачає для 
побудови якісної 3D-моделі. 

Однак поява візуальних трансфор-
мерів [4] і великих наборів даних дала 
змогу оцінювати глибину з одного зобра-
ження. 

Рис. 1. Класична реконструкція об’єкта спо-
стереження 

Попри це, більшість сучасних мо-
делей монокулярної глибини навчалися 
на загально змістовних, синтетичних 
наборах даних MPI-Sintel [5], Spring [6] 
та інші, що призводить до доменного 
зсуву під час застосування до супутни-
кових сцен: змінюються геометрія, тек-
стури, масштаб, освітлення; до того ж 
еталонна метрична глибина для зобра-
жень Google Maps недоступна для пря-
мої валідації. Тому метою роботи стало 
перенесення навчання із загальних на-
борів на домен супутникових знімків. 
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Kalashnyk M.O. 
MACHINE LEARNING-BASED ANOMALY DETECTION WITH ISOLATION
FOREST IN LARGE-SCALE DATA ANALYSIS

This paper presents an applied study of unsupervised anomaly detection with Isolation
Forest on large multivariate sensor data. The study implements a concise Python workflow 
that acquires city-scale measurements for Kyiv, merges reference metadata, removes invalid
records, selects two continuous indicators, and trains Isolation Forest with parameters.
Temporal analysis shows that anomalies concentrate in contiguous intervals rather than
isolated single points, while a two-feature projection indicates that many flags coincide with 
jointly high values and others arise from atypical value combinations, highlighting
multivariate effects.

The study documents practical advantages of Isolation Forest, including minimal
distributional assumptions, direct control of alert volume via the contamination parameter,
and near-linear scaling that supports repeated retraining. It also notes limitations, such as
sensitivity on small samples due to random tree construction, dependence on threshold
calibration that can drift across datasets, and limited inherent explainability of individual
alerts. Configuration guidance, robustness checks, and lightweight diagnostics are provided 
to support deployment and to maintain stable performance under changing conditions.

Keywords: anomaly detection; Isolation Forest; unsupervised learning; threshold 
calibration; multivariate analysis; scalable analytics; interpretability.

Калашник М.О.
ВИЯВЛЕННЯ АНОМАЛІЙ НА ОСНОВІ МАШИННОГО НАВЧАННЯ ЗА
ДОПОМОГОЮ АЛГОРИТМУ ISOLATION FOREST В АНАЛІЗІ ДАНИХ
ВЕЛИКОГООБСЯГУ

Ця стаття представляє прикладне дослідження неконтрольованого виявлення
аномалій за допомогою Isolation Forest на великих багатовимірних сенсорних даних. 
Реалізовано рішення мовою Python, яке працює з даними з датчиків моніторингу
якості повітря в місті Києві, об’єднує довідкові метадані, видаляє некоректні записи, 
обирає два неперервні індикатори та навчає за допомогою алгортиму Isolation Forest 
із заданими параметрами. Часовий аналіз показує, що аномалії концентруються в
суміжних інтервалах, а не є ізольованими поодинокими точками, тоді як проекція на
дві ознаки вказує, що багато спрацювань збігаються зі спільно високими значеннями, а
інші виникають через нетипові комбінації значень, що підкреслює багатовимірні
ефекти. Дослідження документує практичні переваги Isolation Forest, включно з
мінімальними припущеннями щодо розподілу даних, прямим контролем обсягу
сповіщень та майже лінійним масштабуванням, що підтримує повторне
перенавчання. Воно також зазначає обмеження, такі як чутливість на малих вибірках
через випадкову побудову дерев, залежність від калібрування порогу, яке може


