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Introduction

The task of anomaly detection involves
finding rare items or events that are
inconsistent with the vast majority of the
data. Practically, this is applied to identify
everything from financial fraud and new
forms of cyber attacks to faulty machinery.
While these applications seem distinct, they
all share the common challenge of operating
without target variables.

Anomalies can be broadly categorized
into three distinct types. The most basic form
is the point anomaly (also termed global
anomaly), which is an individual data point
that is statistically deviant when compared to
the entire dataset (e.g., a single,
exceptionally large financial transaction). In
contrast, contextual anomalies (or
conditional anomalies) are instances that are
unusual only within a specific environment
or condition, a frequent occurrence in time-
series data; a sudden temperature spike in
winter is a classic example. Finally,
collective anomalies represent a more
complex case where a group of related data
points behaves abnormally as a unit, even if
the individual points seem normal. These
collective deviations, which disturb the
overall data distribution, are common in
dynamic systems like network traffic and
usually demand sophisticated pattern-
detection algorithms.

A primary challenge in outlier detection
is the lack of a clear, predefined definition for
what constitutes an anomaly. This ambiguity is
often compounded by the need to search for
these outliers within large, high-dimensional
datasets. The Isolation Forest algorithm has
gained significant popularity as it is well-suited
to these challenges.

Isolation Forest is an unsupervised,
tree-based method for identifying anomalies.
In the same way a Random Forest is an
ensemble of Decision Trees, an Isolation
Forest is a collection of Isolation Trees.
However, these trees are constructed
differently; rather than using a metric like
Gini impurity, they are built using a process
of random feature selection and random
splitting [1].

To grasp how anomaly scores are
calculated, it is crucial to first understand
this fundamental building block. For
simplicity, a dataset of 1000 transactions
(instances) will be analyzed, considering
only two variables: the transaction amount
(x1) and the time of day (x5).

To create an Isolation Tree, the process
starts with all or a sample of instances in the
root node. Fig. 1 below shows a sample of
256 instances (more on that number later).

The underlying principle is that an
anomalous instance, being "different," is
easier to separate from the rest of the data.
Therefore, during the random partitioning
process, it will require fewer splits to be
isolated, resulting in a shorter path length
within the tree. An Isolation Forest leverages
an ensemble of these trees to average out the
variability of any single random tree.This
ensemble of trees is used to calculate a final
anomaly score, s(x,n), for each instance x.
The score is derived from E/h(x)], which
represents the average path length of
instance x across all Isolation Trees (where
h(x) is its path length in one tree). The
calculation  also  includes c¢(m), a
normalization factor based on the sample
size n. This normalization is critical because
the average path lengths for all instances
naturally grow longer as the sample size (and
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thus the tree depth) increases. The anomaly
score can be calculated using the following

formula:
— E[h(x)
s(z,n) =2 )

The anomaly score s is normalized to a
value between 0 and 1. This score can be
interpreted based on three primary outcomes:

High Anomaly Probability (s — 1):
This occurs when the instance's average path
length E/h(x)] is significantly shorter than
the average path length c(n).

Low Anomaly Probability (s — 0):
This occurs when the instance's average path
length E/h(x)] is longer than c(n).

Indeterminate (s = 0.5): This result is
produced when the instance's average path
length E/h(x)] is approximately equal to the
average path length c(n) [2].

Put simply, a score nearing 1 strongly
suggests an anomaly because it indicates the
instance was isolated much more easily (with
a shorter path) than expected for the dataset.

Fig. 2 below gives some intuition for
why this process isolates outliers. Instances
A, B, and C seem different from the other
transactions.

Fig. 1. The process for creating an Isolation Tree. Instances are isolated in leaf nodes by
recursively splitting instances using a random feature and value in that feature’s range

Amount

Time of day

Fig. 2. Scatter plot of transactions

Based on Fig. 2, B will likely be
isolated first as it can be separated from the
other transactions using one split from either
feature. A would take one split from x2. C
may take longer as it would need to isolate it

using both features. That is, C has both a
normal amount and time but not a normal
amount for that time of day.

The important point is that, on average,
B will take fewer splits than A, A fewer
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splits than C, and all three points will take
fewer splits than the other transactions.

Literature review and problem
statement

Recent research on anomaly detection
concentrates on methods that scale to large,
heterogeneous data without labels, remain
stable under drift, and provide controls that
practitioners can tune. A central line of work
keeps developing Isolation Forest by
addressing structural artifacts, extending it to
streaming settings, and coupling it with
representation learning.

Lesouple et al. analyze structural issues
that appear in extended tree variants and
introduce Generalized Isolation Forest. Their
design removes empty branches and mitigates
partition artifacts, which leads to more stable
scoring while preserving the efficiency that
makes isolation-based methods attractive for
high-volume workloads. Results reported in
their study indicate competitive accuracy with
stronger control over how trees are
constructed and how scores are normalized,
clarifying where implementation details
matter in practice [3].

For continuous data streams, Togbe et
al. study anomaly detection with a stream-
ready variant implemented in scikit-
multiflow. They compare Isolation Forest to
Half-Space Trees on real streams and
examine resource trade-offs such as memory
footprint and update latency, which
determine feasibility in production pipelines
that operate under sliding windows and

prequential evaluation. Their evidence
positions  isolation-based  detectors as
practical building blocks in streaming

toolkits. ~ An  associated  open-source
implementation further illustrates how to
deploy these ideas in Python ecosystems [4].

Problem statement. The goal here is to
determine  whether a  straightforward,
reproducible configuration of Isolation
Forest can deliver stable and actionable
anomaly signals in batch, large-scale
measurements without labels. Concretely,
this study focuses on three tasks that mirror
the actual workflow in this project: align
contamination-based thresholds with a

manageable review volume and a zero-
referenced decision score; verify that results
remain consistent under routine data
cleaning and reasonable parameter settings;
and provide lightweight visual explanations
that relate flagged observations to the
underlying features. This keeps the literature
insights grounded in the exact conditions of
the simulations and the type of outputs
intended for analysts to use.

The purpose and objectives of
the study

The purpose of this study is to build
and validate a simple, reproducible Isolation
Forest workflow that produces reliable
anomaly flags in batch, large-scale
multivariate data without labels and that can
be operated with clear, practical controls.
The work implements a concise Python
pipeline in which data are cleaned, a small
set of continuous indicators is selected, the
model is trained with n_estimators = 100,
max_samples = 256, and contamination =
0.01, and the outputs are inspected through
two diagnostics: decision scores over time
with a zero-referenced threshold and a
two-feature scatter that contrasts flagged and
normal points. The objectives are to confirm
that the contamination setting yields a
manageable alert volume, to check that
flagged observations form coherent patterns
rather than isolated noise, to verify that
results remain stable under modest changes
to parameters and random seed, and to
provide lightweight visual explanations that
help an analyst understand why specific
observations were flagged. Success is
defined as achieving stable anomaly volumes
at the chosen operating point, obtaining
interpretable patterns in both diagnostics,
reproducing the results from clean code, and
meeting typical runtime and memory
constraints for repeated batch runs.

Results of the research

The  dataset of air  quality
measurements from a sensor in Kyiv was
used in the research [6]. In the context of
this dataset, an anomaly can be considered a
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sensor reading that indicates unusually high
levels of pollution.

These parameters were used to train
the Isolation Forest. Here are three values
below:

n_estimators 1is the number of
Isolation Trees used in the ensemble. A
value of 100 is used in the Isolation Forest
paper. Through experimentation, the
researchers found this to produce good
results over a variety of datasets.

contamination 1is the percentage of

data points that expected to be anomalies.
i number of
instances used to train each Isolation Tree. A
value of 256 is commonly used as it allows
us to avoid using a maximum tree size
stopping criteria. This is because it can be
expected reasonable maximum tree sizes of
log(256) = 8.

Unlike  other  parameters,  the
contamination value often lacks a rigid
statistical justification and is typically set
based on estimation. Its origin can be domain
knowledge from prior analyses; for instance,
if previous studies identified that 1% of
readings signaled high pollution levels.
Alternatively, the value might be dictated by
resource  constraints.  Visualizing  the
anomaly scores will later demonstrate how
this contamination parameter adjusts the
final results.

sample size 1S the

# Parameters

n _estimators = 100
trees
contamination = 0.01 # Expected
proportion of anomalies

sample size = 256 # Number of
samples used to train each tree

# Number of

Here is the code of how the training of
the Isolation Forest was set up.

# Train Isolation Forest

iso forest =
IsolationForest (n estimators=n estim
ators,

contamination=contamination,

max_ samples=sample size,

random_ state=42)

iso forest.fit (features)

The model provides two distinct
outputs. The decision function method
computes the raw anomaly score for each
instance, consistent with the theoretical
framework previously discussed. In contrast,
the predict method returns a binary
classification (e.g., -1 or 1) that is
determined by the contamination
parameter. In our case, this means the 1% of
instances with the scores indicating the
highest anomaly likelihood are assigned a
value of -1, while all other instances receive
a value of 1.

The trained model has two useful
functions:
decision_function will calculate the anomaly
score in a similar way to what it was
discussed previosuly.
predict will provide a binary label based on
the contamination values. In our case, the
1% of instances with the worst anomaly
scores will be given a value of -1. The other
instances are given a value of 1.

The scatter plot highlights 80 instances
in red, which correspond to the data points
with the lowest anomaly scores. These are
flagged as potential outliers that warrant
further investigation. Here is the code for
anomaly scores calculation:

# Calculate anomaly
classify anomalies
data=data.loc[features.index] .copy ()
data['anomaly score']=

iso forest.decision function (feature
s)

data['anomaly']=iso forest.predict (f
eatures)
data['anomaly'].value counts ()

scores and

The scores shown in the plot are
adjusted values, not the raw scores. The
adjustment is based on the contamination
parameter. First, an offset is calculated, which
corresponds to the anomaly score percentile
defined by the contamination value (in this
case, the 0.99 percentile). The final displayed
score is then computed as offset - score.
This adjustment effectively shifts the decision
boundary, making it simple to interpret: all
scores below zero are now considered
potential anomalies.
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The scatter plot successfully highlights
which instances are potential anomalies, but
it provides no insight into the underlying
reasons for their classification. To
understand the features or behaviors that led
to an instance being flagged, additional
analysis is necessary.

To examine how flagged points relate
to the pollution indicators, the plot of a two-

dimensional scatter of PMZ2.5 against the
AQI (NowCast) was implemented. Normal
observations are shown in green and
anomalies in red, with slight transparency to
reduce overplotting. This view helps reveal
whether anomalous readings cluster at high
particulate levels, high AQI values, or in
specific combinations of the two.
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concentrations are a key driver of anomaly
scores. That said, not all anomalies sit at the
upper right. A portion appears at moderate
AQI with disproportionately high PM2.5, or
at moderate PM2.5 with unexpectedly high
AQI suggesting unusual combinations rather
than simple extremes. This pattern implies
that interactions between the two indicators,
and possibly unmodeled context such as time
of day, weather, or district effects, also
contribute to why certain observations are
classified as anomalies.

Conclusions

The simulations on Kyiv air-quality
data using PM2.5 and AQI confirm that
Isolation Forest can surface rare and
operationally ~ meaningful  observations
without labels. With contamination set to
0.01, the detector produced a small,
manageable set of candidates, and the
decision scores aligned with the built-in zero
threshold used for labeling. In the time plot,
anomalies concentrated within  several
contiguous intervals, which is consistent with
short episodes of unusual air conditions rather
than isolated single-point glitches. In the
PM2.5-AQI scatter, many flagged points
appeared where both indicators were elevated,
but a noticeable share involved atypical
combinations, such as moderate AQI paired
with disproportionately high PM2.5 or vice
versa. This pattern suggests that interaction
effects, not just univariate extremes, drive a
meaningful portion of the alerts.

The approach showed three practical
strengths in this setting. It handled multiple
features jointly without requiring
distributional assumptions, which allowed
the model to detect complex anomaly shapes
rather than only large z-scores on single
variables. It scaled comfortably to thousands
of observations with near-linear runtime,
making repeated retraining feasible. It
provided a direct way to control alert volume
through the contamination parameter, which
is helpful for matching detection output to
analyst capacity.

There are important caveats. Because
trees are built with randomness, smaller
samples can yield unstable rankings, so

larger or aggregate views of the data are
preferable for consistent results. The method
identifies candidates rather than causes;
understanding why a reading is flagged still

requires follow-up diagnostics, such as
contrasting flagged points with typical
PM2.5-AQI ranges, checking

meteorological context, or segmenting by
district and time. The fixed contamination
setting governs expected alert volume rather
than true anomaly prevalence, so realized
rates can drift if the underlying distribution
changes.

Overall, the results indicate that
Isolation Forest is a strong first-line detector
for unsupervised anomaly screening on
environmental data. It efficiently highlights
unusual episodes and nonstandard PM2.5—
AQI combinations while keeping the analyst
workload predictable. For deployment, the
findings support pairing the detector with
lightweight interpretability steps, optional
feature scaling, and simple operational
safeguards such as per-district models or
rolling recalibration of the threshold to
maintain stable performance under changing
conditions.
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Kalashnyk M.O.

MACHINE LEARNING-BASED ANOMALY DETECTION WITH ISOLATION
FOREST IN LARGE-SCALE DATA ANALYSIS

This paper presents an applied study of unsupervised anomaly detection with Isolation
Forest on large multivariate sensor data. The study implements a concise Python workflow
that acquires city-scale measurements for Kyiv, merges reference metadata, removes invalid
records, selects two continuous indicators, and trains Isolation Forest with parameters.
Temporal analysis shows that anomalies concentrate in contiguous intervals rather than
isolated single points, while a two-feature projection indicates that many flags coincide with
jointly high values and others arise from atypical value combinations, highlighting
multivariate effects.

The study documents practical advantages of Isolation Forest, including minimal
distributional assumptions, direct control of alert volume via the contamination parameter,
and near-linear scaling that supports repeated retraining. It also notes limitations, such as
sensitivity on small samples due to random tree construction, dependence on threshold
calibration that can drift across datasets, and limited inherent explainability of individual
alerts. Configuration guidance, robustness checks, and lightweight diagnostics are provided
to support deployment and to maintain stable performance under changing conditions.

Keywords: anomaly detection; Isolation Forest; unsupervised learning; threshold
calibration; multivariate analysis; scalable analytics, interpretability.

Kananmunk M.O.

BUSIBJIEHHSI AHOMAJIIM HA
JOIIOMOI'OI0O AJITOPUTMY
BEJIUKOTI'O OBCAT'Y

L[n cmammsa npedcmasnie npukiaone O00CNIONCEHHS HEKOHMPOIbOBAHO20 BUSBIEHHS
anomaniti 3a oonomozoio Isolation Forest na eenukux 6a2amosUMIpHUX CEHCOPHUX OQAHUX.
Peanizoeano piwenns mosoro Python, axe npayioe 3 oanumu 3 OAMUUKIE MOHIMOPUHRY
sakocmi nogimps 6 micmi Kuesi, 00’eonye 006i0k06i MemaoaHi, 6UOANAE HEKOPEKMHI 3aNUCU,
obupae 06a HenepepsHi IHOUKAmMopu ma HABYAe 3a 00nomozorw arcopmumy Isolation Forest
i3 3a0anumu napamempamu. Yacoeuii ananiz nOKA3ve, w0 AHOMANIi KOHYEHMPYIOMbC 6
CYMIDICHUX THMepBanax, a He € i301b08AHUMU NOOOUHOKUMU MOUYKAMU, MOOI SIK NPOEKYisd Ha
061 03HAKU 6KA3YE, WO 6azamo cnpaylo8ans 30iearomucs 3i CRiIbHO BUCOKUMU 3HAYEHHAMU, 4
[HWI BUHUKAIOMb Yepe3 Hemunosi KoMOIHayii 3HaueHb, wo NiOKpecaroe 0azamosumipti
eppexmu. [ocniodcennss O0oxymenmye npaxmuuni nepesaeu Isolation Forest, 6xkiouno 3
MIHIMATOHUMU  NPUNYWEHHAMY W0oO00 pPO3NOOITY OAHUX, HNPAMUM KOHMpOLeM 00cA2y
cnosiujenb ma matice  JIHIUHUM — MACWmaOy8aHHAM, WO  RIOMPUMYE  NOBMOPHE
nepenasyanmus. Bono maxooic 3a3nauae oomedcents, maxi Ak Yymiaugicmes Ha MAanux eudIpKax
yepe3 BUNAOKO8Y N0OYO08Y Oepes, 3aNeAHCHICMb 60 KaliOpYy8aHHSA NOpocy, fKe Modice

OCHOBI MAHIMHHOI'O HABYAHHA 3A
ISOLATION FOREST B AHAJII3I JAHHUX
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«Opetighyeamuy Ha pizHUX Habopax Oaunux, ma ooOMmediceHy 60Y008aH) NOACHIOBAHICMb
OKpemux eusasienux awmomaniu. Haoano pexomenoayii 3 KoHghicypyeanHs, nepegipku Ha
cmiluKicms ma npocmi IHCMpyMeHmu OJisi NIOMPUMKU BNPOBAONCEHHS MA 30epedceHHs.
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Bcmyn

Komepmiitni  3D-mkepena, Taki sK
Maxar Precision3D [1], ta Bi3yami3amii B
Google Maps/Earth [2] HagaoTh BUCOKOSI-
KiCHI MoJeni penbedy, aje IX BUKOPUCTAH-
HA B aKaJeMIUYHHUX EKCIepUMEHTax oOme-
JKEHE JIIEH31IMH, JOCTYIIOM Ta OXOIJICH-
HAIM a0o X € ckiagHuMu. BinrBopenus 3D
dbopmMu 00’ekTa 31 300paKCHHS MEHIIOI
PO3MIpPHOCTI Ja€ 3MOTY OTPUMYBATH J0ja-
TKOBY TIPOCTOPOBY 1H(OpMAIliFO PO CIIEHY
3a MIHIMaAJIBHAX BUMOT JO BXIJHHX JaHUX.
3pocTtaHHs OOCSriB CYyNMYTHUKOBUX 300pa-
KEHb 1 JOCTYIHOCTI KapTorpagidyHux cep-
BICIB MOPOJIXKY€E 3alUT Ha MPOCTY, BIATBO-
pIOBaHY Ta 3ICTaBHY OLIHKY TIJIUOMHH 3
oauHOYHUX 2D-3HIMKIB. TpanmuiiitHo 3a-
BJIaHHS IJIMOUHHOTO MOJIEITIOBaHHS
pPO3B’SI3YIOTh 3a JONOMOror (ororpamme-
Tpii Ta TEXHOJOTIH AMCTAHLIMHOIO 30HAY-
BaHHS, HAaIlPUKJIAJ, aepo Ja3epHOro CKaHy-
BaHHs, LiDAR, a TakoX 13 3aly4eHHSIM
CYNyTHUKOBUX MOJENeil BHCOT penbedy
(DEM/DSM). Boxanouac KOMepIIiiiHi
3D-cepBicH X04Y 1 HaJalOTh TOTOBI OOy 10-
BU penbedy, ane oOMeXeH1 BapTiCTIo, Ji-
LEH31HHUMH yMOBaMHU Ta TEPUTOPIATIbLHUM
MOKPHUTTSM, L0 YCKJIaJHIOE MaciTaboBaHe
HAayKOBE BIATBOPEHHS JJIi OKPEMHUX perio-
HiB. KapTu BHCOT JONOBHIOIOTH JaHi IpPO
MICIIE€BICTh, OJTHAK 1XHS TOYHICTH 1 MPOCTO-
pOBE PO3pI3HEHHS BapPIIOIOTh 3AJIEKHO Bif

ceHcopa ta macmrady 30opy manux [3]. Ha
puc. 1 mpencraBineHo kinacuuny 3D-peKoH-
CTPYKIIiI0 00'€KTa, 110 MOMEPEAHBO MOTpPe-
Oye GaraTopakypcHOi 3HOMKH 3 BiTOMUMH
napamerpamMu kamepu. [lomiTHO, mo Ha-
BiTh TPhOX 300pa)K€Hb HE BHCTAYa€ s
noOynoBH sIKicHOT 3D-Moeri.

Opnak mosiBa Bi3yasllbHUX TpaHCOp-
MepiB [4] 1 Benukux HAOOPIB JaHMX Jaja
3MOTY OILIHIOBAaTH ITTMOUHY 3 OJHOTO 300pa-
KCHHSI.

Puc. 1. Kinacuyna pekoHCTpyKIlist 00’ €KTa CI10-
CTEpEKEHHS

[Tonpu e, O1BIIICT CY4YaCHUX MO-
JieJiell MOHOKYJISIPHOI TJIMOMHU HaBUAIHCS
Ha 3arajbHO 3MICTOBHHMX, CHUHTETUYHUX
Habopax mpanux MPI-Sintel [5], Spring [6]
Ta 1HIII, [0 HTPU3BOJAUTH O JOMEHHOTO
3CYBY MiJ 4ac 3aCTOCYBaHHsS /10 CYIyTHH-
KOBHUX CIICH: 3MIHIOIOTHCSI T€OMETPisl, TEK-
CTypH, MacmTad, OCBITJIEHHS; A0 TOrO X
eTaJOHHAa METpUYHa IIMOMHA I 300pa-
xeHb Google Maps HenocTynHa JJis mps-
moi Bamigauii. Tomy meToro po6oTH craio
[IEPEHECEHHs] HaBYaHHS 13 3arajJbHUX Ha-
OOopiB Ha JOMEH CYNyTHUKOBHX 3HIMKIB.



