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Introduction 
The solution of simple optimization 

problems is quite formalized. When the qual-

ity of a solution is judged by one criterion, the 

problem has a single definite solution. If the 

task is multi-criteria (vector), then as a result 

of optimization, a set (Pareto area) of accepta-

ble solutions is obtained. But of these, you 

usually need to choose only one. Since the 

points of the Pareto set are formally incompa-

rable, then in order to solve the problem, it is 

fundamentally necessary to involve infor-

mation about the preferences of the decision 

maker (DM). When solving a specific prob-

lem of vector optimization, the decision 

maker creates his own model of the objective 

function (utility function) in accordance with 

his preferences. Thus, the solution of multi-

criteria problems is subjective in nature. 

Nevertheless, it is possible, if not to 

eliminate, then at least significantly reduce 

the influence of subjective factors on the re-

sult of solving a multi-criteria problem [1-3]. 

It is assumed that there are some invariants, 

rules that are usually common to all decision 

makers, regardless of their individual inclina-

tions, and which they equally adhere to in a 

given situation. The inevitable subjectivity of 

the decision maker has its limits [4-6]. In 

business decisions, a person must be rational 

in order to be able to convince others, explain 

the motives for his choice, the logic of his 

subjective model. Therefore, any preferences 

of the decision maker must be within a certain 

rational system. This is what makes formali-

zation possible. 

The works of [6-13] considered the ex-

isting consensus models of minimum costs to 

increase the efficiency of decision-making by 

decision-makers. Different consensus models 

are considered, for example, with distribu-

tional robust random constraint (DRO-

MCCM). The presented studies recommend 

using these models in a supply chain manage-

ment scenario involving pricing of new prod-

ucts. A comparison and analysis of the sensi-

tivity of the proposed models and their effec-

tiveness was carried out. However, formal-

ized methods of solving multi-criteria prob-

lems remain unconsidered. 

Main part 
The optimization problem is to choose 

the conditions that allow the object of study in 

a given situation to show its best properties. 

The conditions on which the properties of an 

object depend are quantitatively expressed by 

some variables 𝑥 = {𝑥𝑖}𝑖=1
𝑛 , specified in the 

domain of 𝑋  and called optimization argu-

ments. The decision-making situation de-

pends on external influences 𝑟 . These 
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influences do not depend on us, they are set 

from outside, but it is known that they can 

take their values from a compact set 𝑅. It is 

usually believed that calculations are carried 

out with a given and known vector of external 

influences 𝑟0 ∈ 𝑅, on which, ultimately, de-

pends specific decision-making situation. 

In turn, each of the properties of the ob-

ject from the area 𝑀  is quantitatively de-

scribed using the variable 𝑦𝑘 , 𝑘 ∈ [1, 𝑠], the 

value of which characterizes the quality of the 

object in relation to this property. The indica-

tors, called quality criteria, form a vector  

𝑦 = {𝑦𝑘}𝑘=1
𝑠 ∈ 𝑀 . Its components quantita-

tively express the assessment of the object 

properties for a given set of optimization ar-

guments 𝑥 = {𝑥𝑖}𝑖=1
𝑛 ∈ 𝑋. 

The objective function 𝑦 = 𝑓(𝑥)  con-

nects the quality criteria vector with the opti-

mization arguments. This function is a model 

of the decision maker's utility function in a 

given situation. With some reservations, the 

optimization problem is formulated as finding 

such a combination of arguments from the do-

main of their definition, in which the objec-

tive function acquires an extreme value: 

 𝑥 ∗= 𝑎𝑟𝑔  𝑒𝑥𝑡𝑟
𝑥∈𝑋
𝑦∈𝑀

𝑓(𝑥) |
𝑟 ∈ 𝑅

. 

If, without loss of generality, we as-

sume that “better” means “less”, then in prac-

tice, for a fixed 𝑟 = 𝑟о ∈ 𝑅  and guaranteed 

𝑦 ∈ 𝑀, the expression 𝑥 ∗= 𝑎𝑟𝑔  𝑚𝑖𝑛
𝑥∈𝑋

𝑓(𝑥) 

is applied. 

For system linking in multi-criteria 

tasks, instead of 𝑦 = 𝑓(𝑥), the scalar convo-

lution of the vector of partial criteria 𝑌 =
𝑓[𝑦(𝑥)] is usually used as an objective func-

tion, where 𝑦 is the 𝑠 -dimensional vector of 

criteria 𝑦 = {𝑦𝑘}𝑘=1
𝑠 . Scalar convolution acts 

as a tool for the act of criteria composition. 

When solving a specific vector optimi-

zation problem, the decision maker chooses a 

model of the objective function in the form of 

a scalar convolution that is adequate to the 

given situation and assigns its parameters in 

accordance with his preferences. The most 

commonly used additive (linear) scalar con-

volution: 

 𝑌[𝑦(𝑥)] = ∑ 𝑎𝑘𝑦𝑘(𝑥)𝑠
𝑘=1 , 

where 𝑎𝑘  are the weight coefficients deter-

mined by the decision maker based on his util-

ity function in a given situation. The Laplace 

principle in decision theory consists in the ex-

tremization of a linear scalar convolution. The 

principle of optimality is a rule that allows 

one to calculate a certain unified numerical 

measure of the effectiveness of a solution (the 

act of composition of criteria) based on the 

values of the criteria. The disadvantage (spec-

ificity) of using linear scalar convolution is 

the possibility of “compensating” one crite-

rion at the expense of others. 

In some cases, the decision maker con-

siders the multiplicative scalar convolution 

adequate to the given situation: 

 𝑌[𝑦(𝑥)] = ∏ 𝑦𝑘(𝑥)𝑠
𝑘=1 , 

the extremization of which expresses Pascal's 

principle. This principle is adequate in tasks 

with a cumulative effect, when the action of 

some efficiency factors, as it were, enhances 

or reduces the influence of other factors. 

When maximizing partial criteria, the zero 

value of any of them completely suppresses 

the contribution of all others to the overall ef-

ficiency of the solution. In the aerospace in-

dustry, such an approach can be partly justi-

fied when each criterion (for example, relia-

bility and safety) is critical and no improve-

ment in other criteria can compensate for its 

low value. If at least one of the partial criteria 

is equal to zero, then the global criterion is 

also equal to zero. 

The disadvantage of using multiplica-

tive scalar convolution is that a very expen-

sive and very efficient system can have the 

same score as a cheap and low efficient one. 

Let's compare such "weapon systems" as an 

atomic bomb and a slingshot, which, at a low 

cost, has some damaging factor. Guided by 

the multiplicative convolution, you can 

choose a slingshot to equip the army. Simi-

larly to the Laplace principle, one can gener-

alize the Pascal principle by introducing 

weight coefficients: 

 𝑌[𝑦(𝑥)] = ∏ [𝑦𝑖(𝑥)]𝑠
𝑖=1

𝑎𝑖. 
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The Charnes-Cooper concept is based 

on the principle of "closer to the ideal (uto-

pian) point". In the space of criteria, under 

given conditions and constraints, an a priori 

unknown ideal vector 𝑦𝑖𝑑  is determined, for 

which the optimization problem is solved 𝑠 

times (according to the number of partial cri-

teria), each time with one (next) criterion, as 

if there were no others at all. The sequence of 

"single-criterion" solutions of the original 

multi-criteria problem gives the coordinates 

of the unattainable ideal vector  

𝑦𝑖𝑑 = {𝑦𝑘
𝑖𝑑}

𝑘=1

𝑠
. 

After that, the objective function 𝑌(𝑦) 

is introduced as a measure of approximation 

to the ideal vector in the space of optimized 

criteria in the form of some non-negative 

function of the vector 𝑦𝑖𝑑 − 𝑦, for example, 

in the form of the square of the Euclidean 

norm of this vector: 
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The disadvantage of this method is the 

cumbersome procedure for determining the 

coordinates of an ideal vector. It is important 

that the possibility of violation of restrictions 

is not excluded. In addition to those listed, 

other types of scalar convolutions are also 

used in practical research [1]. 

One of the most important provisions of 

the theory of decision making under many cri-

teria is that there is no best solution in some 

absolute sense. The decision taken can be 

considered the best only for the given deci-

sion maker (DM) in accordance with the goal 

set by him and taking into account the specific 

situation. Normative models for solving 

multi-criteria problems are based on the hy-

pothesis of the existence in the minds of deci-

sion makers of a certain utility function [4], 

measured both in nominal and ordinal scales. 

The reflection of this utility function is the 

trade-off scheme and its model in a given sit-

uation – a scalar convolution of partial criteria 

𝑌[𝑦(𝑥)], which allows constructively solving 

the problem of multi-criteria optimization. 

In the concept of optimality, in addition 

to criteria, restrictions play an equally 

important role, both in terms of optimization 

arguments and in terms of decision efficiency 

criteria. Even small changes can significantly 

affect the solution [14]. In addition, the very 

concept of a decision-making situation is 

evaluated by a measure of the dangerous ap-

proximation of individual partial criteria to 

their maximum permissible values. This is the 

basis for a possible approach to the formaliza-

tion of the solution of multi-criteria problems. 

In our case, the subject of research is 

such a subtle substance as an imaginary utility 

function that arises in the mind of the decision 

maker when solving a specific multi-criteria 

problem. If it exists, then each decision maker 

has his own utility function. Nevertheless, it 

is possible to obtain the prerequisites for set-

ting a single type of meaningful model of the 

objective function if we identify and analyze 

some general patterns observed in the process 

of making multi-criteria decisions by differ-

ent decision makers in different situations. 

Formalization 
Under some external influences, a situ-

ation may arise when one or more partial cri-

teria approach their limitations. It is logical to 

consider the difference between the current 

value of the criterion and its maximum allow-

able value as a measure of the intensity of the 

situation: 

 
( ) ( )    ,,1,,0, skAxyAx kkkkk −= 

 

where 𝐴 = {𝐴𝑘}𝑘=1
𝑠  is the vector of maxi-

mum admissible minimized criteria. 

If a multi-criteria decision is made in a 

tense situation, then this means that under 

given external conditions 𝑟𝑜 ∈ 𝑅 , one or 

more partial criteria 𝑦𝑘(𝑥), 𝑘 ∈ [1, 𝑠], as a re-

sult of solving x, may be dangerously close to 

their limit values 𝐴𝑘, 𝑘 ∈ [1, 𝑠] , that is, 

𝜌𝑘(𝑥) → 0. And if one of them reaches the 

limit (or goes beyond it), then this event is not 

compensated by the possible low level of the 

remaining criteria – usually violation of any 

of the restrictions is not allowed. 

In this situation, it is necessary to pre-

vent in every possible way the dangerous in-

crease of the most unfavorable (ie, closest to 

its limit) partial criterion, not taking much 

into account the behavior of the others at this 
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time. And in a very tense situation (the first 

polar case: 𝜌𝑘(𝑥) ≈ 0  ) the decision maker 

generally leaves in the field of view only this 

one, the most unfavorable partial criterion, 

not paying attention to the rest. 

Therefore, an adequate expression of 

the trade-off scheme in the case of a tense sit-

uation is the minimax (Chebyshev) model: 

 
 

( )
.maxminarg*

,1
k

k

skXx A

xy
x



=

 (1) 

In less stressful situations, it is neces-

sary to return to the simultaneous satisfaction 

of other criteria, сonsidering the contradictory 

unity of all the interests and goals of the sys-

tem. At the same time, the decision maker 

varies his assessment of gain according to one 

criteria and loss according to others, depend-

ing on the situation. In intermediate cases, 

trade-off schemes are chosen that give differ-

ent degrees of partial alignment of relative 

partial criteria. With a decrease in the inten-

sity of the situation, preferences for individual 

criteria are aligned. 

And, finally, in the second polar case 

(𝜌𝑘(𝑥) ≈ 1 ), the situation is so calm that the 

partial criteria are small and there is no threat 

of violation of the constraints. The decision 

maker here believes that a unit of worsening 

of any of the relative partial criteria is fully 

compensated by an equivalent unit of im-

provement of any of the others. This case cor-

responds to an economical compromise 

scheme that provides the minimum total 

losses for given conditions according to rela-

tive partial criteria. Such a scheme is ex-

pressed by the integral optimality model: 
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The analysis shows that compromise 

schemes are grouped at two poles, reflecting 

different principles of optimality: 1) egalitar-

ian – the principle of uniformity and 2) utili-

tarian – the principle of economy. 

The application of the principle of uni-

formity expresses the desire uniformly, i.e., 

equally reduce the level of all relative criteria 

during the functioning of the system under 

study. An important implementation of the 

principle of uniformity is the Chebyshev 

model (1), the polar scheme of this group. 

This scheme forces us to minimize the worst 

(the largest under the minimized criteria), re-

ducing it to the level of the others, i.e., level-

ing all relative partial criteria. The disad-

vantages of egalitarian schemes of uniformity 

include their "diseconomy". Ensuring the 

level of relative criteria that is closest to each 

other is often achieved by significantly in-

creasing their total level. In addition, some-

times even a slight deviation from the princi-

ple of uniformity can significantly reduce one 

or more important criteria. 

The principle of economy, which is 

based on the possibility of compensating for 

some deterioration in quality according to 

some criteria by a certain improvement in oth-

ers, is devoid of these shortcomings. The po-

lar scheme of this group is realized by the in-

tegral optimality model (2). The utility 

scheme provides a minimum summary level 

of relative criteria. A common disadvantage 

of schemes of the principle of economy is the 

possibility of a sharp differentiation of the 

level of individual criteria. 

The performed analysis reveals a regu-

larity due to which the decision maker varies 

his choice from the integral optimality model 

(2) in calm situations to the minimax model 

(1) in tense ones. In intermediate cases, the 

decision maker chooses compromise schemes 

that give different degrees of satisfaction of 

individual criteria, in accordance with the 

given situation. If we accept the conclusions 

from the above analysis as a logical basis for 

formalizing the choice of a trade-off scheme, 

then various constructive concepts can be pro-

posed, one of which is the concept of a non-

linear trade-off scheme. 

The Concept of a Nonlinear Com-
promise Scheme 

In contrast to the concept of Charnes-

Cooper based on the principle "closer to the 

utopian point", we will consider such an ap-

proach to the formalization of solutions to 

multi-criteria problems, in which the principle 

"away from restrictions" is fulfilled. 
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From the standpoint of a systematic ap-

proach, it is advisable to replace the problem 

of choosing a compromise scheme with an 

equivalent problem of synthesizing a certain 

unified scalar convolution of partial criteria, 

which in various situations would automati-

cally express adequate principles of optimal-

ity. Separate models of trade-off schemes are 

combined into a single integral model, the 

structure of which is adapted to the situation 

of making a multi-criteria decision. Require-

ments for the synthesized function 𝑌[𝑦(𝑥)]: 
• it must be smooth and differentiable; 

• in tense situations, it should express 

the minimax principle; 

• in calm conditions – the principle of 

integral optimality; 

• in intermediate cases should lead to 

Pareto-optimal solutions, giving different 

measures of partial satisfaction of the criteria. 

In other words, such a universal convo-

lution should be the expression of a trade-off 

scheme that adapts to the situation. It can be 

said that adaptation and the ability to adapt are 

the main content essence of the study of 

multi-criteria systems. In order for the princi-

ple “away from restrictions” to be fulfilled for 

any𝑟 ∈ 𝑅, it is necessary that the expression 

for scalar convolution explicitly include the 

characteristics of the intensity of the situation. 

Several functions can be considered that sat-

isfy the above requirements. The simplest of 

them in the case of minimized criteria is the 

scalar convolution 

 

( ) ( ) 
=

−
−=

s

k

kkk xyAAyY
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1

. 

Thus, a nonlinear trade-off scheme is 

proposed, which corresponds to the vector op-

timization model, which explicitly depends on 

the characteristics of the intensity of the situ-

ation: 

 

( ) 
=

−


−=

s

k

kkk
Xx

xyAAx
1

1
.minarg*

 (3) 

It can be seen from this expression that 

if any of the partial criteria, for example yi(x), 

starts to come close to its limit 𝐴𝑖, i.e. the sit-

uation becomes tense, then the corresponding 

term 𝑌𝑖 =
𝐴𝑖

𝐴𝑖−𝑦𝑖(𝑥)
 in the sum being mini-

mized will increase so much that the problem 

of minimizing the entire sum will be reduced 

to minimizing only the given worst term, i.e., 

ultimately, the criterion 𝑦𝑖(𝑥). This is equiv-

alent to the action of the minimax model (1). 

If the partial criteria are far from their limits 

𝐴𝑖 , i.e., the situation is calm, then model (3) 

acts equivalent to the integral optimality 

model (2). In intermediate situations, various 

degrees of partial alignment of the criteria are 

obtained. 

The non-linear trade-off scheme has the 

property of continuous adaptation to the situ-

ation of making a multi-criteria decision. It 

has been repeatedly emphasized above that 

the choice of a compromise scheme is the pre-

rogative of a person, a reflection of his sub-

jective utility function in solving a specific 

multi-criteria problem. Nevertheless, we 

managed to identify some general patterns 

and, on this objective basis, construct a uni-

versal scalar convolution of criteria, the form 

of which follows from meaningful ideas about 

the essence of the phenomenon under study. 

The solution of a multi-criteria problem 

according to a nonlinear scheme of compro-

mises is carried out in a formalized manner, 

without the direct participation of the decision 

maker. This solution is basic and intended for 

general use. If such a task is solved in the in-

terests of a particular person, then the basic 

solution can only be adjusted in accordance 

with the informal preferences of the decision 

maker. 

The above analysis refers to the case of 

minimized criteria, where "better" means 

"less". For maximizable criteria, the unified 

scalar convolution has the form: 

 

( ) ( )
=

−−=
s

k

kkk BxyByY
1

1 ,][

 

where 𝐵𝑘 are the minimum allowable values 

of the criteria to be maximized. 

Illustration Example 
Consider the problem of distributing a 

limited global resource of fuel between air-

craft when performing flights to different cit-

ies. For each flight there is a lower limit, 
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below which it is pointless to allocate fuel, the 

plane simply will not reach its destination. 

This is the essence of the lower bound for 

each partial resource. If this flight receives 

fuel in excess of the known lower limit, then 

it has the opportunity to freely maneuver 

along the echelons, bypass a thunderstorm 

front, go to an alternate airfield, etc. On the 

other hand, it is also impossible to increase a 

partial resource indefinitely, there is an upper 

limit for it. This is understandable, if only be-

cause each aircraft has a certain tank capacity, 

more than which it cannot physically take fuel 

on board. 

Considering the given set of re-

strictions, it is required to distribute the global 

resource of the system between objects in 

such a way that the most efficient operation of 

the entire system as a whole is ensured. We 

will solve this problem within the framework 

of the concept of a nonlinear trade-off 

scheme. We represent the objective function 

in the form: 

 

=

−−=
n

i

iii ppppf
1

1

minmin )()(

, 

where 𝑝 = {𝑝𝑖}𝑖=1
𝑛  is the vector of partial re-

sources, 𝑝 ∈ 𝑋𝑝 = [0, 𝑃] ; 𝑃𝑚𝑖𝑛 =

{𝑃𝑖 𝑚𝑖𝑛} 𝑖=1
𝑛

 
 is the lower constraint vector of 

partial resources. It is clear that ∑ 𝑝𝑖 = 𝑃𝑛
𝑖=1 , 

where 𝑃 is the global resource to be distrib-

uted. 

The presented objective function is 

nothing more than an expression of the scalar 

convolution of the vector of maximized par-

tial criteria 𝑝 = {𝑝𝑖}𝑖=1
𝑛  according to the non-

linear compromise scheme (NSC) in the prob-

lem of multi-criteria optimization [2]. 

Indeed, in the problem under consider-

ation, resources 𝑝𝑖, 𝑖 ∈ [1, 𝑛] have a dual na-

ture. On the one hand, they can be considered 

as independent variables, arguments of objec-

tive function 𝑓(𝑝)  of optimization. On the 

other hand, it is logical for each of the objects 

to strive to maximize its partial resource, to go 

as far as possible from a dangerous limitation 

𝑝𝑖 𝑚𝑖𝑛 in order to increase the efficiency of its 

functioning. 

From this point of view, resources  

𝑝𝑖 ≥ 𝑝𝑖𝑚𝑖𝑛 can be considered as partial crite-

ria for the quality of the functioning of the 

corresponding objects. These criteria are sub-

ject to maximization, they are limited from 

below, non-negative and contradictory (an in-

crease in one resource is possible only at the 

expense of a decrease in others). 

Based on the foregoing, the problem of 

vector optimization of the distribution of lim-

ited resources, taking into account the isoper-

imetric constraint for the arguments 
∑ 𝑝𝑖 = 𝑃𝑛

𝑖=1  , takes the form 
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This problem can be solved both analyt-

ically, using the method of indefinite La-

grange multipliers, and numerically, if the an-

alytical solution turns out to be difficult.  

The analytical solution provides for the 

construction of the Lagrange function in the 

form: 
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where 𝜆 is the indefinite Lagrange multiplier, 

and the solution of the system of equations 
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Numerical example 
To perform two flights (𝑛 =2), the air-

port has fuel with a total volume of 𝑃  =12 

tons (conditional figures). The minimum re-

quirement for the first run is 𝑝1 ≥ 𝑝1𝑚𝑖𝑛= 2 

tons, for the second run 𝑝2 ≥ 𝑝2𝑚𝑖𝑛= 5 tons. 

These are the lower bounds for partial re-

sources. 

The task is set: to obtain a solution for a 

compromise-optimal distribution of fuel be-

tween flights. 

We solve the problem of vector optimi-

zation of the distribution of limited resources 

analytically using the method of indefinite 

Lagrange multipliers. 
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We build the Lagrange function: 

 

( )

)()(

)(,

21

1

min22min2

1

min11min1

Pppppp

ppppL

−++−+

+−=

−

−





. 

We get a system of equations: 
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Substituting numeric data 
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and solving this system by the Gauss method 

(successive elimination of variables), we ob-

tain 𝑝1 ∗=3,94 tons, 𝑝2 ∗=8,06 tons. 

In more complex cases, numerical 

methods or a computer program for multi-ob-

jective optimization are used [1]. 
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Voronin A.M., Melnychenko P.I., Chuba I.V., Kulyk S.V., Oliinyk Y.O. 

FORMALIZED METHOD OF THE SOLUTION OF MULTI-CRITERIA PROBLEMS 

Multi-criteria (vector) optimization involves finding a set (Pareto area) of acceptable 

solutions. You usually only need to choose one of them. Since the points of the Pareto set are 

formally incomparable, in order to solve the problem, it is fundamentally necessary to involve 

information about the preferences of the person making the decision. When solving a specific 

problem of vector optimization, the decision-maker creates his own model of the objective func-

tion (utility function) according to his preferences. Thus, the solution of multi-criteria problems 

is subjective in nature. The article proposes a formalized method for solving multi-criteria 

problems. 

A model of multi-criteria optimization is obtained, which allows the object to realize all 

the goals set in the entire range of possible situations. A systematic approach to the problem of 

vector optimization made it possible to combine models of individual trade-off schemes into a 

single integral structure that adapts to the situation of making a multi-criteria decision. The 

advantage of the concept of a non-linear trade-off scheme is the possibility of making a multi-

criteria decision formally, without the direct participation of a person. At the same time, on a 

single ideological basis, both tasks that are important for general use, and those which main 

content essence is the satisfaction of individual preferences of decision makers, are solved. The 

apparatus of the nonlinear trade-off scheme, developed as a formalized tool for studying sys-

tems with conflicting criteria, makes it possible to practically solve multi-criteria problems of 

a wide class. 

Keywords: optimization, multi-criteria, utility function, scalar convolution, formaliza-

tion, situation, nonlinear trade-off scheme. 

 

Воронін А.М., Мельниченко П.І., Чуба І.В., Кулик С.В., Олійник Я.О. 

ФОРМАЛІЗОВАНИЙ МЕТОД РОЗВ’ЯЗУВАННЯ БАГАТОКРИТЕРІАЛЬНИХ 

ЗАДАЧ 

Багатокритеріальна (векторна) оптимізація передбачає знаходження набору (об-

ласті Парето) прийнятних рішень. З них, зазвичай, потрібно вибрати лише одне. Оскі-

льки точки множини Парето формально непорівнянні, то для вирішення задачі принци-

пово необхідно залучати інформацію про переваги особи, яка приймає рішення. При ви-

рішенні конкретної задачі векторної оптимізації особа, яка приймає рішення, створює 

власну модель цільової функції (функції корисності) відповідно до своїх уподобань. Таким 

чином, рішення багатокритеріальних задач носить суб'єктивний характер. В статті 

запропоновано формалізований метод розв’язування багатокритеріальних задач.  

Отримано модель багатокритеріальної оптимізації, яка дозволяє реалізувати 

об’єкту всі поставлені цілі у всьому спектрі можливих ситуацій. Системний підхід до 

проблеми векторної оптимізації дозволив об’єднати моделі окремих компромісних схем 

в єдину цілісну структуру, що адаптується до ситуації прийняття багатокритеріаль-

ного рішення. Перевагою концепції нелінійної компромісної схеми є можливість прий-

няття багатокритеріального рішення формально, без прямої участі людини. Водночас 

на єдиній світоглядній основі вирішуються як загальнокорисні завдання, так і ті, осно-

вною змістовою сутністю яких є задоволення індивідуальних уподобань осіб, які прий-

мають рішення. Апарат нелінійної компромісної схеми, розроблений як формалізований 

інструмент для дослідження систем із конфліктними критеріями, дає змогу практично 

розв’язувати багатокритеріальні задачі широкого класу. 

Ключові слова: оптимізація, багатокритеріальна оптимізація, функція корисно-

сті, скалярна згортка, формалізація, ситуація, нелінійна компромісна схема. 


