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Introduction

The solution of simple optimization
problems is quite formalized. When the qual-
ity of a solution is judged by one criterion, the
problem has a single definite solution. If the
task is multi-criteria (vector), then as a result
of optimization, a set (Pareto area) of accepta-
ble solutions is obtained. But of these, you
usually need to choose only one. Since the
points of the Pareto set are formally incompa-
rable, then in order to solve the problem, it is
fundamentally necessary to involve infor-
mation about the preferences of the decision
maker (DM). When solving a specific prob-
lem of vector optimization, the decision
maker creates his own model of the objective
function (utility function) in accordance with
his preferences. Thus, the solution of multi-
criteria problems is subjective in nature.

Nevertheless, it is possible, if not to
eliminate, then at least significantly reduce
the influence of subjective factors on the re-
sult of solving a multi-criteria problem [1-3].
It is assumed that there are some invariants,
rules that are usually common to all decision
makers, regardless of their individual inclina-
tions, and which they equally adhere to in a
given situation. The inevitable subjectivity of
the decision maker has its limits [4-6]. In
business decisions, a person must be rational

in order to be able to convince others, explain
the motives for his choice, the logic of his
subjective model. Therefore, any preferences
of the decision maker must be within a certain
rational system. This is what makes formali-
zation possible.

The works of [6-13] considered the ex-
isting consensus models of minimum costs to
increase the efficiency of decision-making by
decision-makers. Different consensus models
are considered, for example, with distribu-
tional robust random constraint (DRO-
MCCM). The presented studies recommend
using these models in a supply chain manage-
ment scenario involving pricing of new prod-
ucts. A comparison and analysis of the sensi-
tivity of the proposed models and their effec-
tiveness was carried out. However, formal-
ized methods of solving multi-criteria prob-
lems remain unconsidered.

Main part

The optimization problem is to choose
the conditions that allow the object of study in
a given situation to show its best properties.
The conditions on which the properties of an
object depend are quantitatively expressed by
some variables x = {x;}i~,, specified in the
domain of X and called optimization argu-
ments. The decision-making situation de-
pends on external influences r . These
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influences do not depend on us, they are set
from outside, but it is known that they can
take their values from a compact set R. It is
usually believed that calculations are carried
out with a given and known vector of external
influences 7° € R, on which, ultimately, de-
pends specific decision-making situation.

In turn, each of the properties of the ob-
ject from the area M is quantitatively de-
scribed using the variable y,, k € [1,s], the
value of which characterizes the quality of the
object in relation to this property. The indica-
tors, called quality criteria, form a vector
y = {Vx}r=1 € M. Its components quantita-
tively express the assessment of the object
properties for a given set of optimization ar-
guments x = {x;}1-; € X.

The objective function y = f(x) con-
nects the quality criteria vector with the opti-
mization arguments. This function is a model
of the decision maker's utility function in a
given situation. With some reservations, the
optimization problem is formulated as finding
such a combination of arguments from the do-
main of their definition, in which the objec-
tive function acquires an extreme value:

X *=arg %Jg(rf(x) -
YEM

€ER

If, without loss of generality, we as-
sume that “better” means “less”, then in prac-
tice, for a fixed r = r? € R and guaranteed
y € M, the expression x *= arg T;lel}’lf(x)

is applied.

For system linking in multi-criteria
tasks, instead of y = f(x), the scalar convo-
lution of the vector of partial criteria Y =
fly(x)] is usually used as an objective func-
tion, where y is the s -dimensional vector of
criteria y = {yx }5=1- Scalar convolution acts
as a tool for the act of criteria composition.

When solving a specific vector optimi-
zation problem, the decision maker chooses a
model of the objective function in the form of
a scalar convolution that is adequate to the
given situation and assigns its parameters in
accordance with his preferences. The most
commonly used additive (linear) scalar con-
volution:

Y[y()] = Xi=1 axyi (),

where a,; are the weight coefficients deter-
mined by the decision maker based on his util-
ity function in a given situation. The Laplace
principle in decision theory consists in the ex-
tremization of a linear scalar convolution. The
principle of optimality is a rule that allows
one to calculate a certain unified numerical
measure of the effectiveness of a solution (the
act of composition of criteria) based on the
values of the criteria. The disadvantage (spec-
ificity) of using linear scalar convolution is
the possibility of “compensating” one crite-
rion at the expense of others.

In some cases, the decision maker con-
siders the multiplicative scalar convolution
adequate to the given situation:

Yyl = [Ti=1 yie (),

the extremization of which expresses Pascal's
principle. This principle is adequate in tasks
with a cumulative effect, when the action of
some efficiency factors, as it were, enhances
or reduces the influence of other factors.
When maximizing partial criteria, the zero
value of any of them completely suppresses
the contribution of all others to the overall ef-
ficiency of the solution. In the aerospace in-
dustry, such an approach can be partly justi-
fied when each criterion (for example, relia-
bility and safety) is critical and no improve-
ment in other criteria can compensate for its
low value. If at least one of the partial criteria
is equal to zero, then the global criterion is
also equal to zero.

The disadvantage of using multiplica-
tive scalar convolution is that a very expen-
sive and very efficient system can have the
same score as a cheap and low efficient one.
Let's compare such "weapon systems™ as an
atomic bomb and a slingshot, which, at a low
cost, has some damaging factor. Guided by
the multiplicative convolution, you can
choose a slingshot to equip the army. Simi-
larly to the Laplace principle, one can gener-
alize the Pascal principle by introducing
weight coefficients:

Y[yl = = [y ()1
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The Charnes-Cooper concept is based
on the principle of "closer to the ideal (uto-
pian) point". In the space of criteria, under
given conditions and constraints, an a priori
unknown ideal vector y‘¢ is determined, for
which the optimization problem is solved s
times (according to the number of partial cri-
teria), each time with one (next) criterion, as
if there were no others at all. The sequence of
"single-criterion” solutions of the original
multi-criteria problem gives the coordinates
of the unattainable ideal  vector
yid = {y;{d Z=1'

After that, the objective function Y (y)
is introduced as a measure of approximation
to the ideal vector in the space of optimized
criteria in the form of some non-negative
function of the vector y‘¢ — y, for example,
in the form of the square of the Euclidean
norm of this vector:

o]

y k=1 yll<d

The disadvantage of this method is the
cumbersome procedure for determining the
coordinates of an ideal vector. It is important
that the possibility of violation of restrictions
is not excluded. In addition to those listed,
other types of scalar convolutions are also
used in practical research [1].

One of the most important provisions of
the theory of decision making under many cri-
teria is that there is no best solution in some
absolute sense. The decision taken can be
considered the best only for the given deci-
sion maker (DM) in accordance with the goal
set by him and taking into account the specific
situation. Normative models for solving
multi-criteria problems are based on the hy-
pothesis of the existence in the minds of deci-
sion makers of a certain utility function [4],
measured both in nominal and ordinal scales.
The reflection of this utility function is the
trade-off scheme and its model in a given sit-
uation — a scalar convolution of partial criteria
Y[y(x)], which allows constructively solving
the problem of multi-criteria optimization.

In the concept of optimality, in addition
to criteria, restrictions play an equally

important role, both in terms of optimization
arguments and in terms of decision efficiency
criteria. Even small changes can significantly
affect the solution [14]. In addition, the very
concept of a decision-making situation is
evaluated by a measure of the dangerous ap-
proximation of individual partial criteria to
their maximum permissible values. This is the
basis for a possible approach to the formaliza-
tion of the solution of multi-criteria problems.

In our case, the subject of research is
such a subtle substance as an imaginary utility
function that arises in the mind of the decision
maker when solving a specific multi-criteria
problem. If it exists, then each decision maker
has his own utility function. Nevertheless, it
Is possible to obtain the prerequisites for set-
ting a single type of meaningful model of the
objective function if we identify and analyze
some general patterns observed in the process
of making multi-criteria decisions by differ-
ent decision makers in different situations.

Formalization

Under some external influences, a situ-
ation may arise when one or more partial cri-
teria approach their limitations. It is logical to
consider the difference between the current
value of the criterion and its maximum allow-
able value as a measure of the intensity of the
situation:

o (X): A Y (X)’ Py € [01 Ak]’ ke [1’ S]’

where A = {A}5-, is the vector of maxi-
mum admissible minimized criteria.

If a multi-criteria decision is made in a
tense situation, then this means that under
given external conditions r° € R, one or
more partial criteria y, (x), k € [1,s], as are-
sult of solving x, may be dangerously close to
their limit values Ay, k € [1,s], that is,
pr(x) = 0. And if one of them reaches the
limit (or goes beyond it), then this event is not
compensated by the possible low level of the
remaining criteria — usually violation of any
of the restrictions is not allowed.

In this situation, it is necessary to pre-
vent in every possible way the dangerous in-
crease of the most unfavorable (ie, closest to
its limit) partial criterion, not taking much
into account the behavior of the others at this
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time. And in a very tense situation (the first
polar case: p,(x) = 0 ) the decision maker
generally leaves in the field of view only this
one, the most unfavorable partial criterion,
not paying attention to the rest.

Therefore, an adequate expression of
the trade-off scheme in the case of a tense sit-
uation is the minimax (Chebyshev) model:

X* =arg min maxyk—(x).

xeX ke[l,s] Ak (l)

In less stressful situations, it is neces-
sary to return to the simultaneous satisfaction
of other criteria, considering the contradictory
unity of all the interests and goals of the sys-
tem. At the same time, the decision maker
varies his assessment of gain according to one
criteria and loss according to others, depend-
ing on the situation. In intermediate cases,
trade-off schemes are chosen that give differ-
ent degrees of partial alignment of relative
partial criteria. With a decrease in the inten-
sity of the situation, preferences for individual
criteria are aligned.

And, finally, in the second polar case
(px(x) = 1), the situation is so calm that the
partial criteria are small and there is no threat
of violation of the constraints. The decision
maker here believes that a unit of worsening
of any of the relative partial criteria is fully
compensated by an equivalent unit of im-
provement of any of the others. This case cor-
responds to an economical compromise
scheme that provides the minimum total
losses for given conditions according to rela-
tive partial criteria. Such a scheme is ex-
pressed by the integral optimality model:

¥ (%)
A ®)

The analysis shows that compromise
schemes are grouped at two poles, reflecting
different principles of optimality: 1) egalitar-
ian — the principle of uniformity and 2) utili-
tarian — the principle of economy.

The application of the principle of uni-
formity expresses the desire uniformly, i.e.,
equally reduce the level of all relative criteria
during the functioning of the system under

S
x*=argmin »_
k=1

xeX

study. An important implementation of the
principle of uniformity is the Chebyshev
model (1), the polar scheme of this group.
This scheme forces us to minimize the worst
(the largest under the minimized criteria), re-
ducing it to the level of the others, i.e., level-
ing all relative partial criteria. The disad-
vantages of egalitarian schemes of uniformity
include their "diseconomy”. Ensuring the
level of relative criteria that is closest to each
other is often achieved by significantly in-
creasing their total level. In addition, some-
times even a slight deviation from the princi-
ple of uniformity can significantly reduce one
or more important criteria.

The principle of economy, which is
based on the possibility of compensating for
some deterioration in quality according to
some criteria by a certain improvement in oth-
ers, is devoid of these shortcomings. The po-
lar scheme of this group is realized by the in-
tegral optimality model (2). The utility
scheme provides a minimum summary level
of relative criteria. A common disadvantage
of schemes of the principle of economy is the
possibility of a sharp differentiation of the
level of individual criteria.

The performed analysis reveals a regu-
larity due to which the decision maker varies
his choice from the integral optimality model
(2) in calm situations to the minimax model
(1) in tense ones. In intermediate cases, the
decision maker chooses compromise schemes
that give different degrees of satisfaction of
individual criteria, in accordance with the
given situation. If we accept the conclusions
from the above analysis as a logical basis for
formalizing the choice of a trade-off scheme,
then various constructive concepts can be pro-
posed, one of which is the concept of a non-
linear trade-off scheme.

The Concept of a Nonlinear Com-
promise Scheme

In contrast to the concept of Charnes-
Cooper based on the principle "closer to the
utopian point™, we will consider such an ap-
proach to the formalization of solutions to
multi-criteria problems, in which the principle
"away from restrictions" is fulfilled.
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From the standpoint of a systematic ap-
proach, it is advisable to replace the problem
of choosing a compromise scheme with an
equivalent problem of synthesizing a certain
unified scalar convolution of partial criteria,
which in various situations would automati-
cally express adequate principles of optimal-
ity. Separate models of trade-off schemes are
combined into a single integral model, the
structure of which is adapted to the situation
of making a multi-criteria decision. Require-
ments for the synthesized function Y[y (x)]:

e it must be smooth and differentiable;

e in tense situations, it should express
the minimax principle;

e in calm conditions — the principle of
integral optimality;

e in intermediate cases should lead to
Pareto-optimal solutions, giving different
measures of partial satisfaction of the criteria.

In other words, such a universal convo-
lution should be the expression of a trade-off
scheme that adapts to the situation. It can be
said that adaptation and the ability to adapt are
the main content essence of the study of
multi-criteria systems. In order for the princi-
ple “away from restrictions” to be fulfilled for
anyr € R, it is necessary that the expression
for scalar convolution explicitly include the
characteristics of the intensity of the situation.
Several functions can be considered that sat-
isfy the above requirements. The simplest of
them in the case of minimized criteria is the
scalar convolution

V()= ALA -y (o]

Thus, a nonlinear trade-off scheme is
proposed, which corresponds to the vector op-
timization model, which explicitly depends on
the characteristics of the intensity of the situ-
ation:

S
x*=argminy’ A [A -y, (X)]".
xeX =) (3)
It can be seen from this expression that
if any of the partial criteria, for example yi(x),
starts to come close to its limit A4;, i.e. the sit-
uation becomes tense, then the corresponding

Aq
term ¥; = Ai—yi(x)

mized will increase so much that the problem
of minimizing the entire sum will be reduced
to minimizing only the given worst term, i.e.,
ultimately, the criterion y;(x). This is equiv-
alent to the action of the minimax model (1).
If the partial criteria are far from their limits
A; , i.e., the situation is calm, then model (3)
acts equivalent to the integral optimality
model (2). In intermediate situations, various
degrees of partial alignment of the criteria are
obtained.

The non-linear trade-off scheme has the
property of continuous adaptation to the situ-
ation of making a multi-criteria decision. It
has been repeatedly emphasized above that
the choice of a compromise scheme is the pre-
rogative of a person, a reflection of his sub-
jective utility function in solving a specific
multi-criteria problem. Nevertheless, we
managed to identify some general patterns
and, on this objective basis, construct a uni-
versal scalar convolution of criteria, the form
of which follows from meaningful ideas about
the essence of the phenomenon under study.

The solution of a multi-criteria problem
according to a nonlinear scheme of compro-
mises is carried out in a formalized manner,
without the direct participation of the decision
maker. This solution is basic and intended for
general use. If such a task is solved in the in-
terests of a particular person, then the basic
solution can only be adjusted in accordance
with the informal preferences of the decision
maker.

The above analysis refers to the case of
minimized criteria, where "better" means
"less". For maximizable criteria, the unified
scalar convolution has the form:

Y(y): ZS_: B[V (X)_ B.17,

in the sum being mini-

where By, are the minimum allowable values
of the criteria to be maximized.

lllustration Example

Consider the problem of distributing a
limited global resource of fuel between air-
craft when performing flights to different cit-
ies. For each flight there is a lower limit,
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below which it is pointless to allocate fuel, the
plane simply will not reach its destination.
This is the essence of the lower bound for
each partial resource. If this flight receives
fuel in excess of the known lower limit, then
it has the opportunity to freely maneuver
along the echelons, bypass a thunderstorm
front, go to an alternate airfield, etc. On the
other hand, it is also impossible to increase a
partial resource indefinitely, there is an upper
limit for it. This is understandable, if only be-
cause each aircraft has a certain tank capacity,
more than which it cannot physically take fuel
on board.

Considering the given set of re-
strictions, it is required to distribute the global
resource of the system between objects in
such a way that the most efficient operation of
the entire system as a whole is ensured. We
will solve this problem within the framework
of the concept of a nonlinear trade-off
scheme. We represent the objective function
in the form:

f (p) = Z pimin(pi - pimin)_l
i=1
where p = {p;}i-, is the vector of partial re-
sources, pEX,=[0,P] ; Poin
{P; min} i=1 is the lower constraint vector of

partial resources. It is clear that )7, p; = P,
where P is the global resource to be distrib-
uted.

The presented objective function is
nothing more than an expression of the scalar
convolution of the vector of maximized par-
tial criteria p = {p;}j=, according to the non-
linear compromise scheme (NSC) in the prob-
lem of multi-criteria optimization [2].

Indeed, in the problem under consider-
ation, resources p;, i € [1,n] have a dual na-
ture. On the one hand, they can be considered
as independent variables, arguments of objec-
tive function f(p) of optimization. On the
other hand, it is logical for each of the objects
to strive to maximize its partial resource, to go
as far as possible from a dangerous limitation
Pi min 1IN Order to increase the efficiency of its
functioning.

From this point of view, resources
Pi = Pimin Can be considered as partial crite-
ria for the quality of the functioning of the
corresponding objects. These criteria are sub-
ject to maximization, they are limited from
below, non-negative and contradictory (an in-
crease in one resource is possible only at the
expense of a decrease in others).

Based on the foregoing, the problem of
vector optimization of the distribution of lim-
ited resources, taking into account the isoper-
imetric  constraint for the arguments

*.pi = P, takes the form

p*=argmin f(p) =argmin Zn: Pimin (Pi = pimin)717i p=P
peXp PeXp i=1 i-1

This problem can be solved both analyt-
ically, using the method of indefinite La-
grange multipliers, and numerically, if the an-
alytical solution turns out to be difficult.

The analytical solution provides for the
construction of the Lagrange function in the
form:

L(p.2)= T(P)+ A(Z P, ~P)

where A is the indefinite Lagrange multiplier,
and the solution of the system of equations

AP o epmn

op;

oL(p,A) =«

ek S b e A —P=0
oA E P .

Numerical example

To perform two flights (n =2), the air-
port has fuel with a total volume of P =12
tons (conditional figures). The minimum re-
quirement for the first run is p; = pimin= 2
tons, for the second run p, = pymin= 5 tons.
These are the lower bounds for partial re-
sources.

The task is set: to obtain a solution for a
compromise-optimal distribution of fuel be-
tween flights.

We solve the problem of vector optimi-
zation of the distribution of limited resources
analytically using the method of indefinite
Lagrange multipliers.
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We build the Lagrange function:
L(p! ﬂ’) = Pimin ( P - plmin)_1 +
+ p2min(p2 - p2min)_1+/1( Pt P, - P) )

We get a system of equations:

oL(p,4) 2
apl plmln ( pl plmln ) +
oL(p,4) 2
SRR g -, A=0
apz pZmln ( pz pZmln) +
p+p,—P=0

Substituting numeric data
~2(p,-2)*+1=0
~5(p,—-5)7?+4=0
p,+p,-12=0

and solving this system by the Gauss method
(successive elimination of variables), we ob-
tain p; *=3,94 tons, p, *=8,06 tons.

In more complex cases, numerical
methods or a computer program for multi-ob-
jective optimization are used [1].
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Voronin A.M., Melnychenko P.1., Chuba 1.V., Kulyk S.V., Oliinyk Y.O.
FORMALIZED METHOD OF THE SOLUTION OF MULTI-CRITERIA PROBLEMS

Multi-criteria (vector) optimization involves finding a set (Pareto area) of acceptable
solutions. You usually only need to choose one of them. Since the points of the Pareto set are
formally incomparable, in order to solve the problem, it is fundamentally necessary to involve
information about the preferences of the person making the decision. When solving a specific
problem of vector optimization, the decision-maker creates his own model of the objective func-
tion (utility function) according to his preferences. Thus, the solution of multi-criteria problems
is subjective in nature. The article proposes a formalized method for solving multi-criteria
problems.

A model of multi-criteria optimization is obtained, which allows the object to realize all
the goals set in the entire range of possible situations. A systematic approach to the problem of
vector optimization made it possible to combine models of individual trade-off schemes into a
single integral structure that adapts to the situation of making a multi-criteria decision. The
advantage of the concept of a non-linear trade-off scheme is the possibility of making a multi-
criteria decision formally, without the direct participation of a person. At the same time, on a
single ideological basis, both tasks that are important for general use, and those which main
content essence is the satisfaction of individual preferences of decision makers, are solved. The
apparatus of the nonlinear trade-off scheme, developed as a formalized tool for studying sys-
tems with conflicting criteria, makes it possible to practically solve multi-criteria problems of
a wide class.

Keywords: optimization, multi-criteria, utility function, scalar convolution, formaliza-
tion, situation, nonlinear trade-off scheme.
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®OPMAJII3OBAHUII METOJ PO3B’SI3YBAHHSI BATATOKPUTEPIAJIBHHUX
3AIAY

bacamoxpumepianvua (6exmopHna) onmumizayis nepeddbayae 3Haxo0HceHHsA Habopy (00-
aacmi [lapemo) nputinamuux piwens. 3 Hux, 3a3euuail, nompiorno eubpamu auwe oote. Ocki-
JIbKU MOYKU MHOXMCuHU Tlapemo gpopmanvio HenopieHsaHHi, mo 0/ 8UpiueHHs 3a0ayi NPUHYU-
no8o HeoOXiOHO 3anyyamu ingopmayilo npo nepesazu ocodu, sika npuimac piwenns. llpu eu-
PiulenHi KOHKpemHuoi 3a0ayi 6eKmMopHoi onmumizayii ocoda, aKa NPUIMAE piulenHsl, CMeopE
6I1ACHY MOOeb Yinb08oi yHKYIT ((pyHKYIi Kopuchocmi) 6ionogioHo 00 c8oix ynodobans. Taxum
YUHOM, piulenHs 6a2amoKpumepianbHux 3a0a4 Hocums cyo'ekmugnuil xapakmep. B cmammi
3anponoHO8aHO PopManizoeanuti Memoo po3s sa3y8anHs 6A2amoKpUmepiaIbHuUx 3a0ad.

Ompumano modenb bacamokpumepianvHoi onmumizayii, AKa 00380J5€ peanizysamu
06’ekmy 6ci nocmasneni yini y 6cbomy cnekmpi modxicaueux cumyayiv. Cucmemuuii nioxio 0o
npoobemMu 8eKMOPHOi OnmMuMizayii 00360au8 00 €OHamu MoOei OKpeMux KOMIPOMICHUX CXeM
8 €OUHY YINICHY CMPYKMYPY, WO a0anmyemvcs 00 Cumyayii nputinamms 6azamokpumepiaib-
Ho2o piwennus. Ilepeeacoro KoHyenyii HeNTHIUHOI KOMNPOMICHOI CXeMU € MONCIUBICIMb NPULI-
HAMmMSA 6a2amoxpumepiaibHo20 pileHHs hopmanvho, 6e3 npamoi yuacmi atoounu. Boonouac
HA €OUHI C8IMORNIALOHIN OCHOBI BUPIULYIOMbCA SIK 3A2ATbHOKOPUCHT 3A80AHHS, MAK [ Mi, OCHO-
BHOI 3MICIOBOI0 CYMHICIO SAKUX € 3A0080JIeHHsL IHOUBIOVAILHUX YNOO00OAaHb 0CiO, SKI npuli-
Maroms piutenHs. Anapam HeniHiuHOI KOMAPOMICHOT cxeMu, po3podaieHull K PopManizo8aHull
IHCMpYMeHm 0715 OOCIIONCEHHS CUCTNEM I3 KOHDIIKMHUMU KPUMEPIAMU, 0AE 3MO2Y NPAKMUYHO
PpO38’A3ysamu 6a2amoxkpumepianbHi 3a0a4i WUpoKo20 Kidacy.

Knrouogi cnoea: onmumizayis, 6acamokpumepianoHa onmumizayis, QYHKYis KOPUCHO-
cmi, CKauapHa 320pmKa, popmanizayis, cumyayis, HeaiHiluHa KOMAPOMICHA CXeMd.



