
44

UDC 044.9. 629.7.05 DOI: 10.18372/2073-4751.70.16846

Kovalenko Yu.B., Candidate of Sciences in Pedagogy,

оrcid.оrg/0000-0002-6714-4258,

Kudrenko S.O., Candidate of Sciences in Technology,

оrcid.оrg/0000-0002-0759-3908

METHODOLOGY FOR TESTING LANGUAGES FOR EMBEDDED

AVIONICS SYSTEMS

National Aviation University

yleejulee22@gmail.com

stanislava@i.ua

Introduction
Specificities of In-the-Loop Testing.

Figure 1 provides a schematic view of the life

cycle of an avionic embedded system. After

the system specification and design phases,

software and hardware components are devel-

oped and individually tested before software

and hardware integration testing proceeds. At

the end of the development process, the target

system – together with additional avionic em-

bedded systems and with hydraulic, mechani-

cal, and other systems – is embedded into an

aircraft prototype (Iron Bird). Later, a flight

test program is performed. Once certification

has been passed, production and maintenance

processes are entered. The application logic

does not need further functional validation,

but hardware testing activities are still neces-

sary to reveal manufacturing and aging prob-

lems.

This paper focuses on in-the-loop test-

ing phases that occur during the development

process. We introduce below the specificities

of in-the-loop testing, as they have an impact

on the languages analyzed in this paper [5-9].

Materials and methods
The Various Forms of In-the-Loop

Testing:

• An avionic system is tightly coupled

to its environment. Testing the functional

logic requires producing a large volume of

data that, in the operational environment,

would come from other avionic systems and

physical sensors.

• In-the-loop testing addresses this

problem by having a model of the environ-

ment to produce the data. The model of the

environment receives the outputs of the

system under test (e.g., commands to actua-

tors) and computes the next inputs accord-

ingly. In the case of a control system, compu-

tation must typically account for the physical

rules governing the dynamics of the con-

trolled aircraft elements.

As shown in Figure 1, in-the-loop test-

ing comes in various forms: model-in-the-

loop (MiL), software-in-the-loop (SiL) and

hardware-in-the-loop (HiL).

MiL testing is performed at the early

phases of system development: neither the

software, nor the hardware components exist

yet, and the tested artifact is a model of the

system.

In SiL testing, the actual software is

considered. Re-targeting occurs when the

software is compiled for a different hardware

than the target one (e.g., using a desktop com-

piler). Re-hosting is preferred for better rep-

resentativeness: the binary code is the same as

the one in the actual system, and it runs on an

emulator of the target hardware.

Finally, HiL testing uses the actual soft-

ware running on the target hardware.

For complex systems, the MiL / SiL /

HiL classification might be too schematic.

Hybrid forms of in-the-loop testing can be

considered, where the tested artifact includes

system components having different levels of

development. For example, one component is

included as a model (MiL), while another one

is finalized (HiL). Integrating components

with such different levels may however raise

difficult interconnection and timing issues.

Methods for evaluation of reliability in-

dicators:

Проблеми інформатизації та управління, 2(70)’2022 45

To determine the reliability indicators,

two methods are used: non-parametric when

you have an unknown type of the law of dis-

tribution of operating time before failure,

which includes a direct assessment of the re-

liability indicators from selected data;

parametric when you have a known type of

the distribution law.

Formulas for determining reliability in-

dicators for parametric and non-parametric

methods are given in Table 1.

Fig. 1. The life-cycle of an avionic embedded system and the existing types of testing activities

Point and integral assessments of relia-

bility indicators are performed in accordance

with GOSTs. In the parametric evaluation of

reliability indicators, processing of results of

operational observations consists in selection

of fault model (observation plan) and type of

distribution function (exponential, Weibull,

normal, logarithmic normal, gamma, etc.),

evaluation of distribution law parameters,

verification of acceptance of empirical distri-

bution with its mathematical model (Pearson,

Kolmogorov criteria) and evaluation of relia-

bility indicators by parameters of the most ad-

equate distribution law. Formulas for deter-

mining confidence limits of reliability indica-

tors and variance of point estimates of relia-

bility indicators and parameters for different

distributions are used to evaluate the accuracy

of the description. Non-parametric estimates

of the main reliability indicators are made de-

pending on the fault model directly according

to the data of operational observations.

46

Table 1. Main indicators of reliability

Reliability indicator Formulas for calculating reliability indicators

Name Designation Parametric method Nonparametric method

Probability

of uptime

P(t)
∫ f(t)dt
∞

t

N − n(t)

N
= Nui/N

Operating

time before

failures

Taverage ∫ tf(t)dt
∞

0

 1/N∑ti[NUN]

N

i=1

Failure rate λ(t) f(t)

P(t)

n(t + ∆t) − n(t)

∆t[N − n(t)]
=

∆nj

Nuj∆tj

Distribution

density

f(t)
f(t) = −

1

P(t)

dP(t)

dt

n(t + ∆t) − n(t)

N × ∆t
=

∆nj

N × ∆tj

Mean time

between

failures

Tf
∫ P(t)dt
t

0

 1/n0∑ti

N

i=1

Fault flow

parameter

ω(t)
lim
∆t→0

My(t, t + ∆t)

∆t

∑ ri(t + ∆t)
N
i=1 − ∑ ri(t)

N
i=1

N × ∆t
= ∆nj/tsum j

y-

percentage

resource

Tr.y
1 − ∫ f(t)dt = y

Tr

0

/100

n(t(i)) + 1

N
≤ 1 − y/100

n(t) – number of failures during time t; N – number of observed articles; Nuj – number of

engines operable to the ј interval, ∆nj – number of failures in the ј interval of ∆tj operating

time, n0 – number of failures that occurred during the period of observing; ti – operating

time of the 1st article; ri(t) – number of failures of the “i” object to operating time t; tsumj –

total operating time of engines in “j” interval; NUN – observation plan according to GOST

(N – number of products under supervision, U – non-recoverable and non-replaceable failed

products).

There are several different methods for

evaluating the parameters of distribution

laws, of which the best known are moment,

quantile, and maximum likelihood methods.

Each of these methods can be effectively ap-

plied only in a particular case, using a reason-

able compromise between the difficulty of ob-

taining an estimate and its accuracy.

Consider obtaining evaluation of pa-

rameters εi, i = 1, s of the distribution law

F (θ, ε) using the listed methods.

According to the moment method, in

the presence of theoretical moment

characteristics exist, unknown distribution

parameters can be expressed through s empir-

ical moments. This approach leads to a system

of equations

{∫θif(θ, ε1, ε2, … , εs)dθ = mi
∗ , i = 1, s (1)

where f(θ, ε) is the distribution density of the

random variable θ; mi
∗ – are empirical initial

moments.

Getting the estimation of distribution

parameters by the modified quantile method

is obtained by minimizing the functional

Ф(F(θ, ε) − F∗(θ)) → min, (2)

Проблеми інформатизації та управління, 2(70)’2022 47

where Ф(∙) is the objective function; F∗(θ) is

the empirical distribution law.

This operation is carried out by methods

of approximating or minimizing the functions

of many variables.

The modified quantile method is usu-

ally applied if the distribution function is ex-

pressed in elementary functions. You can also

use this method to find estimates of distribu-

tion parameters that do not have initial mo-

ments.

The most efficient evaluations are given

by the maximum likelihood method, accord-

ing to which parameters are determined from

the condition of the maximum logarithm of

the likelihood function

LnL(ε⃗) → min, (3)
or

{
d

dε⃗
θif(θ, ε1, ε2, … , εs)dθ = 0 , i = 1, s, (4)

where L(ε⃗) = f(θ1, θ2, … , θr; ε⃗) =
∏ f(θj, ε⃗)
r
j=1 is the likelihood function, it is

also the mutual distribution density of inde-

pendent random variables θj, j = 1, r .

Tables 1, 2 give the expressions for

evaluating the parameters of distributing

laws, most commonly used in reliability the-

ory and their mean square errors.

Statistical methods of testing hypothe-

ses using the Pearson’s consent criteria, Kol-

mogorov or others are used to select the ap-

propriate distribution [1-4].

In Pearson's criterion, the measure of

divergence is taken as the value 𝑥20, the ex-

perimental value of which is determined by

the formula

𝑥0
2 =∑

(Ri − Pi)
2

rPi

k

i=0

(5)

where Pi = F(θ∗i) − F(θ
∗
i−1) is the hypo-

thetical probability of falling into the interval

[θ∗i−1, θ
∗
i); Ri – the number of statisticians

that fell into the interval [θ∗i−1, θ
∗
i); k – num-

ber of intervals k~√r
3

.

If the measured value by sample is 𝑥20

with the significance level 𝛼, then the hypoth-

esis is accepted. With an even value of de-

grees of freedom 𝑣 = k − s − 1, the probabil-

ity of accepting the hypothesis 𝛼0 = 𝑃(𝑥
2 ≥

𝑥20) can be found by the expression

𝑃(𝑥2 ≥ 𝑥20) =
1

Г (
𝑣
2 2

v
2)
∫ 𝑥

v
2
−1e−

x
2d𝑥 =

∞

x0
2

e−
x
2∑

𝑥0
i

i! 2i

v
2
−1

i=1

(6)

In the Kolmogorov criterion, the proba-

bility of accepting the hypothesis is

α0 = P(D ≥ D0) = 1 − k(√rD0) (7)

where D0 = m(F(θ∗i) − F
∗(θ∗i−1)); 𝑘(𝑧) =

1 + 2∑ (−1)𝑖𝑒𝑥𝑝(−2𝑖2𝑧2)∞
𝑗=1 Kolmogorov

distribution.

Table 2. Evaluating parameters of distribution laws

Distribution law Analytical expression for the distribution density

Method of moments (MM)

Maximum likelihood method (MLM)

1 2

Normal 1

S√2π
exp(−

(x − m)2

2S2
) − ∞ < x < ∞; S > 0

m = m1
∗ =

1

r∑ xi
r
i=1

 S2 = μ2
∗ = 1/r∑xi

2

r

i=1

− (∑xi

r

i=1

)2

m = ml
∗ S2 = μ2

∗

48

Continuation of table 2

1 2

Lognormal 1

xSL√2π
exp(−

(ln x − m)2

2SL
2) 0 < x < ∞; SL > 0

mL = 2 lnm1
∗ −1/2 lnm2

∗ SL
2 = lnm2

∗ − 2 lnm1
∗

mL =
1

r
∑ln xi = M[ln x] = mL

∗

r

i=1

; SL
2

=
1

r
∑(ln xi − mL)

2 = D[ln x]

r

i=1

= S∗2

Gamma distribution 1

βαG(α)
xα−1e−x/β 0 > x > ∞ α > 0 β > 0

α =
m1
∗2

μ2
∗ β =

μ2
∗

m1
∗

β is determined from the solution of the equation

− lnβ − ψ(
m1
∗

β
) + mL

∗ = 0; α = m1
∗/β

where ψ(x) =
d

dz
ln G(z) = −C − 1/z + ∑ (

1

k(z+k)
)∞

k=1

Beta distribution G(a + b)

G(a)G(b)
xα−1(1 − x)b−1 0 < x < 1; a > 0; b > 0

a =
m1
∗2 −m1

∗m2
∗2

m2
∗ −m1

∗2 b = a/m1
∗ − a

a and b are determined from the solution of the system of equa-

tions

{

 Ψ(a + b) − Ψ(a) + 1/r∑ln xi = 0

r

i=1

Ψ(a − b) − Ψ(b) + 1/r∑ln(1 − xi) = 0

r

i=1

Проблеми інформатизації та управління, 2(70)’2022 49

Ending of table 2

1 2

Weibull distribution Cαxα−1e−Cx
α
 0 < x < ∞; C > 0; α > 0

G2(1 + 1/α)

G(1 + 1/α)
−
m∗2

m2
∗ = 0 C = [

G(1 + 1/α)

m1
∗]

α

α is determined from the solution of the equation

1

α
+

1

r∑ ln xi
r
i=1

−
α1/r∑ xi

α−1r
i=1

1/r∑ xi
αr

i=1

= 0 C =
1

1/r∑ xi
αr

i=1

Exponential distribu-

tion

λe−λx 0 < x < ∞; λ > 0

λ = 1/m1
∗

λ =
1

1/r∑ xi
r
i=1

= 1/m1
∗

The GOST provides methods for evalu-

ating reliability indicators with a small num-

ber of observations using additional infor-

mation. Evaluation of reliability indicators of

both the product as a whole and its compo-

nents is carried out by combining experi-

mental information obtained as a result of op-

erational observations or tests and additional

information taken from the operation of ana-

log products, analysis of reliability during de-

sign and other sources.

Stakeholders:

Historically, the aircraft manufacturer

was in charge of all the integration activity for

avionic embedded systems. It received com-

ponents from the aircraft equipment provider.

Then it integrated these into systems, until

complete multi- system integration within the

aircraft.

Nowadays, there is a shift of activity

from the aircraft manufacturer towards the

equipment providers, as the latter are asked to

participate in the first integration phase. Thus,

the aircraft manufacturer would now directly

receive an integrated avionic embedded sys-

tem: the equipment providers are becoming

system providers. When looking at Figure 1,

the horizontal line delimiting the intervention

of the providers has a tendency to move up-

ward.

The aircraft manufacturer historically

has the needed expertise for setting up the in-

the-loop testing activity. This activity, now

becoming the responsibility of an avionic sys-

tem provider, opens an opportunity for collab-

oration between the two. A new type of inter-

action emerges, comprising the exchange of

information on the tests that were executed by

the system provider and the aircraft manufac-

turer [10]. The exchange could concern test

specifications, test procedures implementing

the test specifications, or test data traces mon-

itored during the execution of the procedures.

Naturally, each actor has its own inter-

nal tools and test platforms that it uses for test-

ing. Inherent incompatibilities between them

severely limit the exchanges that can be done.

In practice, a test cannot be easily ported from

one environment to the other.

The difficulties encountered during

these new types of interactions between the

different stakeholders have motivated our

analysis.

The Interfaces of the System under

Test:

In the field of avionics, the interfaces of

an avionic embedded system are more or less

formally presented in an Interface Control

Document (ICD). This name is generic and

does not define a standard. Each enterprise is

50

free to define its own ICD format, or even dif-

ferent formats for different aircraft programs.

Whatever the specific format, the document

contains information on the interfaces at sev-

eral hierarchical levels (Figure 2), similar to

those present in the OSI model.

At the lowest level, that of physical con-

nections, the connectors of the system under

test are presented and given unique identifi-

ers. The pins of each connector are presented

as well. Afterwards, the buses and lines that

pass through the physical connections are in-

dicated. At a low logical level, the messages

are mentioned. Finally, at the highest logical

level, the application parameters and signals

are described. These represent the data used

and produced by the embedded software. A

signal corresponds to an instance of an appli-

cation parameter encoded on a specific bus.

For example, the aircraft speed can be sent to

two neighbors, using respectively an AFDX

connection for the first and an ARINC 429 for

the second.

Several types of system network ele-

ments are used in the field of avionics for the

communication between components, such as

the following communication buses:

• Discrete,

• Analog,

• AFDX (Avionics Full-Duplex

Switched Ethernet),

• ARINC 429 (Aeronautical Radio,

Incorporated),

• MIL-STD-1553B,

• …

For example, let us assume that an avi-

onic embedded component possesses on its

interface a connector with a pin conforming

to the ARINC 429 standard. This pin is used,

naturally, for an ARINC 429 bus. In turn, the

ARINC 429 bus communicates several

ARINC 429 labels, where each label deter-

mines the set of application parameters that

constitute the payload of the message. One of

these parameters could be the speed of the air-

craft. Figure 2 shows what a corresponding

ICD would look like.

As mentioned before, the information is

organized in a hierarchical manner inside the

ICD. There is a tree structure with connectors

at the top and application parameters at the

bottom. Because such parameters are func-

tionally meaningful to avionics engineers,

they are often called engineer variables. We

will refer to them as such in the rest of this

paper.

The ICD can contain additional infor-

mation to that presented in the example, like

the data type of the engineer variable, its max-

imum and minimum values, the encoding that

was used, or its value refresh rate. As many

in-house formats of ICD exist, the supplied

information at the various levels can be more

or less detailed. In this paper, we assume that

the available information is sufficient for a

target perimeter of tests.

In a system, several instances of a same

engineer variable can be present. For exam-

ple, such is the case when a component pro-

duces an engineer variable that is consumed

by several neighboring components. Note that

the corresponding interfaces can be of differ-

ent types. Also, the component producing the

parameter may be duplicated within the sys-

tem for redundancy purposes.

Sample of Test Languages
Table 3 gives an overview of the chosen

sample of test languages. The sample consists

of:

• four proprietary languages from the

avionic domain, which shall be named PL2,

PL3 and PL4;

• TestML from the automotive do-

main, and TTCN-3 (Testing and Test Control

Notation Version 3) from the networking and

telecommunication domain

The four proprietary test languages,

from PL1 to PL4, have been chosen because

they represent languages currently employed

in the avionics industry. The first one repre-

sents the offer of Cassidi-an Test & Services

on the U-TEST™ Real-Time System integra-

tion test plat-form [4]. To the best of our

knowledge, no public test language exists that

shows all the characteristics exhibited by

these four, and as such, their inclusion was

deemed necessary. The fact that we cannot

disclose some information does not have a

strong im-pact on this paper, as our interest is

to discuss general concepts and features of

Проблеми інформатизації та управління, 2(70)’2022 51

test languages. In the discussion, we will feel

free to use examples of pseudo-code. They

will not disclose the precise syntax of propri-

etary languages but suffice to capture the es-

sence of the identified features.

For comparison purposes, the sample

also includes two languages out-side the field

of avionics.

TestML is issued from a research pro-

ject in the automotive domain. Its aim was to

investigate the design of an exchange lan-

guage, in the sense shown by Figure 4. The

multiplicity of proprie-tary languages yields

the need for many language translators, but if

a common exchange language is used then the

number of required translators is re-duced.

TestML is the only language of our sample

that is not operationally used in the industry.

It is a research product and its connection to

proprietary lan-guages is not implemented.

However, it represents an attempt to synthe-

size con-cerns arising from the in-the-loop

testing practice, so that its consideration was

deemed relevant to us.

Table 3. The chosen sample of test languages

Test lan-

guage

Industrial

domain of

use

Types of

testing ac-

tivities

Types of test-

ing sub-activi-

ties

Based on ex-

isting lan-

guage

Specification

Compiled

/Interpreted

Standardiza-

tion status

PL1

Avionics

industry

In-the-loop

testing

Model / Soft-

ware

/ Hardware-in-

the- loop

✓

(OOPL: C++)
Use of libraries Compiled

-

PL2
Model-in-the-

loop

✓

(OOPL)

Modification of

the grammar /

Use

of libraries

Interpreted PL3

Hardware-in-

the-

loop

✓

(HSPL)
Use of libraries

PL4

Software /

Hardware-in-

the-

loop

- PL4 grammar

TestML

[7]

Automotive

industry

Model / Soft-

ware/

Hardware-in-

the- loop

- XML Schemas -

TTCN-3

[8]

Networking

and tele-

communi-

cations

Distributed

systems and

communi-

cation pro-

tocols test-

ing

- -
TTCN-3 gram-

mar
Compiled

✓

[9]

References
1. Hayley J., Reynolds R., Lokhande K.,

Kuffner M., Yenson S. Human-systems inte-

gration and air traffic control. Lincoln labora-

tory journal. – № 19. – 2012. – Р. 34-49.

2. Konakhovych H., Kozlyuk I., Ko-

valenko Y. Specificity of optimization of per-

formance indicators of technical operation

and updating of radio electronic systems of

aircraft. System research and information

technologies. – 2020. – Р. 41-54.

3. Kovalenko Y. A programmable logic

controller (PLC). Programming language

structural analysis. Advances in Intelligent

Systems and Computing. – 2017. – P. 234-

242.

4. Kozlyuk I., Kovalenko Y. Reliability

of computer structures of integrated modular

aviation for hardware configurations. System

research and information technologies. –

2021. – P. 84-94.

52

5. Ghannem A., Hamdi M., Kessentini

M., Ammar H. Search based requirements

traceability recovery: A multi-objective ap-

proach. Proc. IEEE Congress on Evolutionary

Computation (CEC). – 2017. – P. 1183–1190.

6. Z. Jiang, T. Zhao, S. Wang, H. Ju.

New model-based analysis method with mul-

tiple constraints for integrated modular avion-

ics dynamic reconfiguration process. – 2020.

– 574 p.
7. Montano G., McDermid J. Human in-

volvement in dynamic reconfiguration of in-
tegrated modular avionics. 2008 IEEE/AIAA
27th Digital Avionics Systems Conference,
2008. – 2008. – Р. 4.A.2-1-4.A.2-13.

8. ARINC Specification 653. Avionics
application software standard interface. –
2018. [Electronic resource]. – Access point:
https://www.sae.org/standards/content/arinc
653p3a-1/

9. Committee, AE ARINC 664 Aircraft
Data Networks, Part7: Avionics Full Duplex
Switched Ethernet (AFDX) Network. Tech-
nical Report. – 2005. – 150 p.

10. Kovalenko Y., Kozlyuk I. Implemen-
tation of the integrated modular avionics ap-
plication development complex according to
the arinc653 standard. The Bulletin of Za-
porizhzha National University: Physical and
mathematical Sciences. – 2020. – P. 28-36.

Kovalenko Yu.B., Kudrenko S.O.

METHODOLOGY FOR TESTING LANGUAGES FOR EMBEDDED AVIONICS
SYSTEMS

In this article, we have analyzed six test languages. Four proprietary languages have
been identified that are currently used in avionics for cyclic testing of embedded avionics sys-
tems at different levels of integration and maturity of the system under test. We use the Eclipse
Modeling Framework with the Ecore specialized modeling language to formalize various con-
cepts of interest. This will allow us to access a number of existing tools to create custom editors,
validators, and code generators. Test engineers will have a rich environment to define their
own test models based on the meta-model. We propose to abstract from existing proprietary
implementation solutions and work at a common design level. For this, mature model design
methods exist and can be used. The proposed approach is to share high-level test specifications
and automatically maintain the entire code design and production chain.

Keywords: information support, programming languages, meta-model, integrated mod-
ular avionics.

Коваленко Ю.В., Кудренко С.О.

МЕТОДОЛОГІЯ ДЛЯ ТЕСТУВАННЯ МОВ ДЛЯ ВБУДОВАНИХ СИСТЕМ
АВІОНІКИ

У цій статті ми проаналізували шість тестових мов. Було визначено чотири вла-
сні мови, які зараз використовуються в авіоніці для циклічного тестування вбудованих
систем авіоніки на різних рівнях інтеграції та зрілості системи, що тестується. Ми
використовуємо Eclipse Modeling Framework зі спеціалізованою мовою моделювання
Ecore для формалізації різних цікавих концепцій. Це дозволить нам отримати доступ до
ряду існуючих інструментів для створення спеціальних редакторів, валідаторів і гене-
раторів коду. Інженери-випробувачі матимуть багате середовище для визначення вла-
сних тестових моделей на основі метамоделі. Ми пропонуємо абстрагуватися від існу-
ючих пропрієтарних рішень реалізації та працювати на загальному рівні проектування.
Для цього існують і можуть бути використані методи розробки зрілих моделей. Запро-
понований підхід полягає в тому, щоб надати спільний доступ до специфікацій тесту-
вання високого рівня та автоматично підтримувати весь ланцюжок розробки та виро-
бництва коду.

Ключові слова: інформаційне забезпечення, мови програмування, метамодель, ін-
тегрована модульна авіоніка.

https://www.sae.org/standards/content/arinc653p3a-1/
https://www.sae.org/standards/content/arinc653p3a-1/

