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Introduction 
Specificities of In-the-Loop Testing. 

Figure 1 provides a schematic view of the life 

cycle of an avionic embedded system. After 

the system specification and design phases, 

software and hardware components are devel-

oped and individually tested before software 

and hardware integration testing proceeds. At 

the end of the development process, the target 

system – together with additional avionic em-

bedded systems and with hydraulic, mechani-

cal, and other systems – is embedded into an 

aircraft prototype (Iron Bird). Later, a flight 

test program is performed. Once certification 

has been passed, production and maintenance 

processes are entered. The application logic 

does not need further functional validation, 

but hardware testing activities are still neces-

sary to reveal manufacturing and aging prob-

lems. 

This paper focuses on in-the-loop test-

ing phases that occur during the development 

process. We introduce below the specificities 

of in-the-loop testing, as they have an impact 

on the languages analyzed in this paper [5-9]. 

Materials and methods 
The Various Forms of In-the-Loop 

Testing: 

• An avionic system is tightly coupled 

to its environment. Testing the functional 

logic requires producing a large volume of 

data that, in the operational environment, 

would come from other avionic systems and 

physical sensors. 

• In-the-loop testing addresses this 

problem by having a model of the environ-

ment to produce the data. The model of the 

environment receives the outputs of the 

system under test (e.g., commands to actua-

tors) and computes the next inputs accord-

ingly. In the case of a control system, compu-

tation must typically account for the physical 

rules governing the dynamics of the con-

trolled aircraft elements. 

As shown in Figure 1, in-the-loop test-

ing comes in various forms: model-in-the-

loop (MiL), software-in-the-loop (SiL) and 

hardware-in-the-loop (HiL). 

MiL testing is performed at the early 

phases of system development: neither the 

software, nor the hardware components exist 

yet, and the tested artifact is a model of the 

system. 

In SiL testing, the actual software is 

considered. Re-targeting occurs when the 

software is compiled for a different hardware 

than the target one (e.g., using a desktop com-

piler). Re-hosting is preferred for better rep-

resentativeness: the binary code is the same as 

the one in the actual system, and it runs on an 

emulator of the target hardware. 

Finally, HiL testing uses the actual soft-

ware running on the target hardware. 

For complex systems, the MiL / SiL / 

HiL classification might be too schematic. 

Hybrid forms of in-the-loop testing can be 

considered, where the tested artifact includes 

system components having different levels of 

development. For example, one component is 

included as a model (MiL), while another one 

is finalized (HiL). Integrating components 

with such different levels may however raise 

difficult interconnection and timing issues. 

Methods for evaluation of reliability in-

dicators: 
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To determine the reliability indicators, 

two methods are used: non-parametric when 

you have an unknown type of the law of dis-

tribution of operating time before failure, 

which includes a direct assessment of the re-

liability indicators from selected data; 

parametric when you have a known type of 

the distribution law. 

Formulas for determining reliability in-

dicators for parametric and non-parametric 

methods are given in Table 1.

 

Fig. 1. The life-cycle of an avionic embedded system and the existing types of testing activities

Point and integral assessments of relia-

bility indicators are performed in accordance 

with GOSTs. In the parametric evaluation of 

reliability indicators, processing of results of 

operational observations consists in selection 

of fault model (observation plan) and type of 

distribution function (exponential, Weibull, 

normal, logarithmic normal, gamma, etc.), 

evaluation of distribution law parameters, 

verification of acceptance of empirical distri-

bution with its mathematical model (Pearson, 

Kolmogorov criteria) and evaluation of relia-

bility indicators by parameters of the most ad-

equate distribution law. Formulas for deter-

mining confidence limits of reliability indica-

tors and variance of point estimates of relia-

bility indicators and parameters for different 

distributions are used to evaluate the accuracy 

of the description. Non-parametric estimates 

of the main reliability indicators are made de-

pending on the fault model directly according 

to the data of operational observations.
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Table 1. Main indicators of reliability 

Reliability indicator Formulas for calculating reliability indicators 

Name Designation Parametric method Nonparametric method 

Probability 

of uptime 

P(t) 
∫ f(t)dt
∞

t

 
N − n(t)

N
= Nui/N 

Operating 

time before 

failures 

Taverage ∫ tf(t)dt
∞

0

 1/N∑ti[NUN]

N

i=1

 

Failure rate λ(t) f(t)

P(t)
 

n(t + ∆t) − n(t)

∆t[N − n(t)]
=

∆nj

Nuj∆tj
 

Distribution 

density 

f(t) 
f(t) = −

1

P(t)

dP(t)

dt
 

n(t + ∆t) − n(t)

N × ∆t
=

∆nj

N × ∆tj
 

Mean time 

between 

failures 

Tf 
∫ P(t)dt
t

0

 1/n0∑ti

N

i=1

 

Fault flow 

parameter 

ω(t) 
lim
∆t→0

My(t, t + ∆t)

∆t
 

∑ ri(t + ∆t)
N
i=1 − ∑ ri(t)

N
i=1

N × ∆t
= ∆nj/tsum j 

y-

percentage 

resource 

Tr.y 
1 − ∫ f(t)dt = y

Tr

0

/100 

n(t(i)) + 1

N
≤ 1 − y/100 

n(t) – number of failures during time t; N – number of observed articles; Nuj – number of 

engines operable to the ј interval, ∆nj – number of failures in the ј interval of ∆tj operating 

time, n0 – number of failures that occurred during the period of observing; ti – operating 

time of the 1st article; ri(t) – number of failures of the “i” object to operating time t; tsumj – 

total operating time of engines in “j” interval; NUN – observation plan according to GOST 

(N – number of products under supervision, U – non-recoverable and non-replaceable failed 

products). 

There are several different methods for 

evaluating the parameters of distribution 

laws, of which the best known are moment, 

quantile, and maximum likelihood methods. 

Each of these methods can be effectively ap-

plied only in a particular case, using a reason-

able compromise between the difficulty of ob-

taining an estimate and its accuracy. 

Consider obtaining evaluation of pa-

rameters εi, i =  1, s  of the distribution law 

F (θ, ε) using the listed methods. 

According to the moment method, in 

the presence of theoretical moment 

characteristics exist, unknown distribution 

parameters can be expressed through s empir-

ical moments. This approach leads to a system 

of equations 

{∫θif(θ, ε1, ε2, … , εs)dθ = mi
∗ , i = 1, s (1) 

where f(θ, ε) is the distribution density of the 

random variable θ; mi
∗ – are empirical initial 

moments. 

Getting the estimation of distribution 

parameters by the modified quantile method 

is obtained by minimizing the functional 

Ф(F(θ, ε) − F∗(θ)) → min, (2) 
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where Ф(∙) is the objective function; F∗(θ) is 

the empirical distribution law. 

This operation is carried out by methods 

of approximating or minimizing the functions 

of many variables. 

The modified quantile method is usu-

ally applied if the distribution function is ex-

pressed in elementary functions. You can also 

use this method to find estimates of distribu-

tion parameters that do not have initial mo-

ments. 

The most efficient evaluations are given 

by the maximum likelihood method, accord-

ing to which parameters are determined from 

the condition of the maximum logarithm of 

the likelihood function 

LnL(ε⃗) → min, (3) 
or 

{
d

dε⃗
θif(θ, ε1, ε2, … , εs)dθ = 0 , i = 1, s, (4) 

where L(ε⃗) = f(θ1,  θ2, … , θr; ε⃗ ) =
∏ f(θj, ε⃗)
r
j=1  is the likelihood function, it is 

also the mutual distribution density of inde-

pendent random variables θj, j = 1, r . 

Tables 1, 2 give the expressions for 

evaluating the parameters of distributing 

laws, most commonly used in reliability the-

ory and their mean square errors. 

Statistical methods of testing hypothe-

ses using the Pearson’s consent criteria, Kol-

mogorov or others are used to select the ap-

propriate distribution [1-4]. 

In Pearson's criterion, the measure of 

divergence is taken as the value 𝑥20, the ex-

perimental value of which is determined by 

the formula 

𝑥0
2 =∑

(Ri − Pi)
2

rPi

k

i=0

(5) 

where Pi = F(θ∗i) − F(θ
∗
i−1)  is the hypo-

thetical probability of falling into the interval 

[θ∗i−1, θ
∗
i); Ri  – the number of statisticians 

that fell into the interval [θ∗i−1, θ
∗
i); k – num-

ber of intervals k~√r
3

. 

If the measured value by sample is 𝑥20 

with the significance level 𝛼, then the hypoth-

esis is accepted. With an even value of de-

grees of freedom 𝑣 = k − s − 1, the probabil-

ity of accepting the hypothesis 𝛼0 = 𝑃(𝑥
2 ≥

𝑥20) can be found by the expression 

𝑃(𝑥2 ≥ 𝑥20) =
1

Г (
𝑣
2 2

v
2)
∫ 𝑥

v
2
−1e−

x
2d𝑥 =

∞

x0
2

e−
x
2∑

𝑥0
i

i! 2i

v
2
−1

i=1

(6)

 

In the Kolmogorov criterion, the proba-

bility of accepting the hypothesis is 

α0 = P(D ≥ D0) = 1 − k(√rD0) (7) 

where D0 = m(F(θ∗i) − F
∗(θ∗i−1)); 𝑘(𝑧) =

1 + 2∑ (−1)𝑖𝑒𝑥𝑝(−2𝑖2𝑧2)∞
𝑗=1  Kolmogorov 

distribution.

 

Table 2. Evaluating parameters of distribution laws 

Distribution law Analytical expression for the distribution density 

Method of moments (MM) 

Maximum likelihood method (MLM) 

1 2 

Normal 1

S√2π
exp(−

(x − m)2

2S2
) − ∞ < x < ∞;  S > 0 

m = m1
∗ =

1

r∑ xi
r
i=1

  S2 = μ2
∗ = 1/r∑xi

2

r

i=1

− (∑xi

r

i=1

)2 

m = ml
∗ S2 = μ2

∗  
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Continuation of table 2 

1 2 

Lognormal 1

xSL√2π
exp(−

(ln x − m)2

2SL
2 )  0 < x < ∞; SL > 0 

mL = 2 lnm1
∗ −1/2 lnm2

∗  SL
2 = lnm2

∗ − 2 lnm1
∗  

mL =
1

r
∑ln xi = M[ln x] =  mL

∗

r

i=1

;  SL
2

=
1

r
∑(ln xi − mL)

2 = D[ln x]

r

i=1

= S∗2 

Gamma distribution 1

βαG(α)
xα−1e−x/β 0 > x > ∞ α > 0 β > 0 

α =
m1
∗2

μ2
∗  β =

μ2
∗

m1
∗  

β is determined from the solution of the equation 

− lnβ − ψ(
m1
∗

β
) + mL

∗ = 0;  α = m1
∗/β 

where ψ(x) =
d

dz
ln G(z) = −C − 1/z + ∑ (

1

k(z+k)
)∞

k=1  

Beta distribution G(a + b)

G(a)G(b)
xα−1(1 − x)b−1 0 < x < 1;  a > 0; b > 0 

a =
m1
∗2 −m1

∗m2
∗2

m2
∗ −m1

∗2  b = a/m1
∗ − a 

a and b are determined from the solution of the system of equa-

tions 

{
 
 

 
 Ψ(a + b) − Ψ(a) + 1/r∑ln xi = 0

r

i=1

Ψ(a − b) − Ψ(b) + 1/r∑ln(1 − xi) = 0

r

i=1
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Ending of table 2 

1 2 

Weibull distribution Cαxα−1e−Cx
α
 0 < x < ∞; C > 0;  α > 0 

G2(1 + 1/α)

G(1 + 1/α)
−
m∗2

m2
∗ = 0 C = [

G(1 + 1/α)

m1
∗ ]

α

 

α is determined from the solution of the equation 

1

α
+

1

r∑ ln xi
r
i=1

−
α1/r∑ xi

α−1r
i=1

1/r∑ xi
αr

i=1

= 0 C =
1

1/r∑ xi
αr

i=1

 

Exponential distribu-

tion 

λe−λx 0 < x < ∞;  λ > 0 

λ = 1/m1
∗  

λ =
1

1/r∑ xi
r
i=1

= 1/m1
∗  

The GOST provides methods for evalu-

ating reliability indicators with a small num-

ber of observations using additional infor-

mation. Evaluation of reliability indicators of 

both the product as a whole and its compo-

nents is carried out by combining experi-

mental information obtained as a result of op-

erational observations or tests and additional 

information taken from the operation of ana-

log products, analysis of reliability during de-

sign and other sources. 

Stakeholders: 

Historically, the aircraft manufacturer 

was in charge of all the integration activity for 

avionic embedded systems. It received com-

ponents from the aircraft equipment provider. 

Then it integrated these into systems, until 

complete multi- system integration within the 

aircraft. 

Nowadays, there is a shift of activity 

from the aircraft manufacturer towards the 

equipment providers, as the latter are asked to 

participate in the first integration phase. Thus, 

the aircraft manufacturer would now directly 

receive an integrated avionic embedded sys-

tem: the equipment providers are becoming 

system providers. When looking at Figure 1, 

the horizontal line delimiting the intervention 

of the providers has a tendency to move up-

ward. 

The aircraft manufacturer historically 

has the needed expertise for setting up the in-

the-loop testing activity. This activity, now 

becoming the responsibility of an avionic sys-

tem provider, opens an opportunity for collab-

oration between the two. A new type of inter-

action emerges, comprising the exchange of 

information on the tests that were executed by 

the system provider and the aircraft manufac-

turer [10]. The exchange could concern test 

specifications, test procedures implementing 

the test specifications, or test data traces mon-

itored during the execution of the procedures. 

Naturally, each actor has its own inter-

nal tools and test platforms that it uses for test-

ing. Inherent incompatibilities between them 

severely limit the exchanges that can be done. 

In practice, a test cannot be easily ported from 

one environment to the other. 

The difficulties encountered during 

these new types of interactions between the 

different stakeholders have motivated our 

analysis. 

The Interfaces of the System under 

Test: 

In the field of avionics, the interfaces of 

an avionic embedded system are more or less 

formally presented in an Interface Control 

Document (ICD). This name is generic and 

does not define a standard. Each enterprise is 
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free to define its own ICD format, or even dif-

ferent formats for different aircraft programs. 

Whatever the specific format, the document 

contains information on the interfaces at sev-

eral hierarchical levels (Figure 2), similar to 

those present in the OSI model. 

At the lowest level, that of physical con-

nections, the connectors of the system under 

test are presented and given unique identifi-

ers. The pins of each connector are presented 

as well. Afterwards, the buses and lines that 

pass through the physical connections are in-

dicated. At a low logical level, the messages 

are mentioned. Finally, at the highest logical 

level, the application parameters and signals 

are described. These represent the data used 

and produced by the embedded software. A 

signal corresponds to an instance of an appli-

cation parameter encoded on a specific bus. 

For example, the aircraft speed can be sent to 

two neighbors, using respectively an AFDX 

connection for the first and an ARINC 429 for 

the second. 

Several types of system network ele-

ments are used in the field of avionics for the 

communication between components, such as 

the following communication buses: 

• Discrete, 

• Analog, 

• AFDX (Avionics Full-Duplex 

Switched Ethernet), 

• ARINC 429 (Aeronautical Radio, 

Incorporated), 

• MIL-STD-1553B, 

• … 

For example, let us assume that an avi-

onic embedded component possesses on its 

interface a connector with a pin conforming 

to the ARINC 429 standard. This pin is used, 

naturally, for an ARINC 429 bus. In turn, the 

ARINC 429 bus communicates several 

ARINC 429 labels, where each label deter-

mines the set of application parameters that 

constitute the payload of the message. One of 

these parameters could be the speed of the air-

craft. Figure 2 shows what a corresponding 

ICD would look like. 

As mentioned before, the information is 

organized in a hierarchical manner inside the 

ICD. There is a tree structure with connectors 

at the top and application parameters at the 

bottom. Because such parameters are func-

tionally meaningful to avionics engineers, 

they are often called engineer variables. We 

will refer to them as such in the rest of this 

paper. 

The ICD can contain additional infor-

mation to that presented in the example, like 

the data type of the engineer variable, its max-

imum and minimum values, the encoding that 

was used, or its value refresh rate. As many 

in-house formats of ICD exist, the supplied 

information at the various levels can be more 

or less detailed. In this paper, we assume that 

the available information is sufficient for a 

target perimeter of tests. 

In a system, several instances of a same 

engineer variable can be present. For exam-

ple, such is the case when a component pro-

duces an engineer variable that is consumed 

by several neighboring components. Note that 

the corresponding interfaces can be of differ-

ent types. Also, the component producing the 

parameter may be duplicated within the sys-

tem for redundancy purposes. 

Sample of Test Languages 
Table 3 gives an overview of the chosen 

sample of test languages. The sample consists 

of: 

• four proprietary languages from the 

avionic domain, which shall be named PL2, 

PL3 and PL4; 

• TestML from the automotive do-

main, and TTCN-3 (Testing and Test Control 

Notation Version 3) from the networking and 

telecommunication domain 

The four proprietary test languages, 

from PL1 to PL4, have been chosen because 

they represent languages currently employed 

in the avionics industry. The first one repre-

sents the offer of Cassidi-an Test & Services 

on the U-TEST™ Real-Time System integra-

tion test plat-form [4]. To the best of our 

knowledge, no public test language exists that 

shows all the characteristics exhibited by 

these four, and as such, their inclusion was 

deemed necessary. The fact that we cannot 

disclose some information does not have a 

strong im-pact on this paper, as our interest is 

to discuss general concepts and features of 
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test languages. In the discussion, we will feel 

free to use examples of pseudo-code. They 

will not disclose the precise syntax of propri-

etary languages but suffice to capture the es-

sence of the identified features. 

For comparison purposes, the sample 

also includes two languages out-side the field 

of avionics. 

TestML is issued from a research pro-

ject in the automotive domain. Its aim was to 

investigate the design of an exchange lan-

guage, in the sense shown by Figure 4. The 

multiplicity of proprie-tary languages yields 

the need for many language translators, but if 

a common exchange language is used then the 

number of required translators is re-duced. 

TestML is the only language of our sample 

that is not operationally used in the industry. 

It is a research product and its connection to 

proprietary lan-guages is not implemented. 

However, it represents an attempt to synthe-

size con-cerns arising from the in-the-loop 

testing practice, so that its consideration was 

deemed relevant to us.

 
Table 3. The chosen sample of test languages 

Test lan-

guage 

Industrial 

domain of 

use 

Types of 

testing ac-

tivities 

Types of test-

ing sub-activi-

ties 

Based on ex-

isting lan-

guage 

 

Specification 

Compiled 

/Interpreted 

Standardiza-

tion status 

PL1 

Avionics 

industry 

In-the-loop 

testing 

Model / Soft-

ware 

/ Hardware-in-

the- loop 

✓ 

(OOPL: C++) 
Use of libraries Compiled 

- 

PL2 
Model-in-the-

loop 

✓ 

(OOPL) 

Modification of 

the grammar / 

Use 

of libraries 

Interpreted PL3 

Hardware-in-

the- 

loop 

✓ 

(HSPL) 
Use of libraries 

PL4 

Software / 

Hardware-in-

the- 

loop 

- PL4 grammar 

TestML 

[7] 

 

Automotive 

industry 

Model / Soft-

ware/ 

Hardware-in-

the- loop 

- XML Schemas - 

TTCN-3 

[8] 

Networking 

and tele-

communi-

cations 

Distributed 

systems and 

communi-

cation pro-

tocols test-

ing 

- - 
TTCN-3 gram-

mar 
Compiled 

✓ 

[9] 
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SYSTEMS 

In this article, we have analyzed six test languages. Four proprietary languages have 
been identified that are currently used in avionics for cyclic testing of embedded avionics sys-
tems at different levels of integration and maturity of the system under test. We use the Eclipse 
Modeling Framework with the Ecore specialized modeling language to formalize various con-
cepts of interest. This will allow us to access a number of existing tools to create custom editors, 
validators, and code generators. Test engineers will have a rich environment to define their 
own test models based on the meta-model. We propose to abstract from existing proprietary 
implementation solutions and work at a common design level. For this, mature model design 
methods exist and can be used. The proposed approach is to share high-level test specifications 
and automatically maintain the entire code design and production chain. 

Keywords: information support, programming languages, meta-model, integrated mod-
ular avionics. 

 

Коваленко Ю.В., Кудренко С.О. 

МЕТОДОЛОГІЯ ДЛЯ ТЕСТУВАННЯ МОВ ДЛЯ ВБУДОВАНИХ СИСТЕМ 
АВІОНІКИ 

У цій статті ми проаналізували шість тестових мов. Було визначено чотири вла-
сні мови, які зараз використовуються в авіоніці для циклічного тестування вбудованих 
систем авіоніки на різних рівнях інтеграції та зрілості системи, що тестується. Ми 
використовуємо Eclipse Modeling Framework зі спеціалізованою мовою моделювання 
Ecore для формалізації різних цікавих концепцій. Це дозволить нам отримати доступ до 
ряду існуючих інструментів для створення спеціальних редакторів, валідаторів і гене-
раторів коду. Інженери-випробувачі матимуть багате середовище для визначення вла-
сних тестових моделей на основі метамоделі. Ми пропонуємо абстрагуватися від існу-
ючих пропрієтарних рішень реалізації та працювати на загальному рівні проектування. 
Для цього існують і можуть бути використані методи розробки зрілих моделей. Запро-
понований підхід полягає в тому, щоб надати спільний доступ до специфікацій тесту-
вання високого рівня та автоматично підтримувати весь ланцюжок розробки та виро-
бництва коду. 

Ключові слова: інформаційне забезпечення, мови програмування, метамодель, ін-
тегрована модульна авіоніка. 
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