
34

UDC 004.418

Kudrenko S.O.,

orcid.org/0000-0002-0759-3908,

Stoliar A.L.

DATA ANALYSIS SYSTEM LOGICAL DESIGN AND

IMPLEMENTATION

National Aviation University

stanislava@i.ua

stoliarannanau@gmail.com

Introduction
Automation has the most impact on in-

formation, mainly due to the need for quick

search, processing, selection, and access to it.

In this paper, we consider a design and imple-

mentation data analysis system, more pre-

cisely, an information system for automating

sociological research processes, namely ques-

tionnaires. In work [3] the requirements had

been assessed and the required technology

stack selected. Following the definition of the

technology stack, proceeded to the allocation

of tasks and subtasks, determining the esti-

mated time to complete each task.

Problem statement
The design of single information stor-

age is one of the goals sought in data analysis

automation. When developing automated sys-

tems, having a single data storage center is

also critical to reduce individual user func-

tions.

Another necessity for the system under

development is the construction of a user in-

terface that is simple and free of excessive in-

formation and functionality.

The most successful technique or com-

bination of methods that would produce the

intended outcome was chosen to provide the

best testing quality for each method and com-

ponent of a tested program.

User Interface Design
The web application interface is the vis-

ual component of the program with which the

user interacts while using it. The user inter-

face (UI) should be straightforward, intuitive,

welcoming, consistent, and aesthetically ap-

pealing. The color scheme and overall con-

cept under which the application is created

determine the visual components. A vibrant

and cheerful design, following the concept of

space and adventure over unlimited distances,

was chosen to fulfill the objective of a good

perception of the web application's interface.

The user experience (UX) is determined

by the proper layout of interface components,

logical sequences of web application situa-

tions, and obvious outcomes of user interac-

tion with the interface.

The following components are included

in the application:

• pages for logging in and registering;

• the dashboard;

• the user's personal information page;

• a questionnaire page;

• a questionnaire creating form;

• a page with a viewer’s summary.

A user's email address and password are

required to log in. The user is forwarded to the

dashboard page after logging in. All general

analytical information is available on this

page. (fig.1). The user may view the total

number of questions that have been answered

across all questionnaires.

The percentage of the questionnaire that

has been completed is calculated on the tab

with the finished questionnaire. Some ques-

tionnaires may be completed instantly, while

others can be stopped. The percentage is de-

rived using the correlation concept, which

compares the total number of initiated ques-

tionnaires to those that are wholly finished.

There is also the option to produce a re-

port for each questionnaire. When numerous

participants complete a questionnaire, the sys-

tem user can generate a report using the ques-

tionnaire's analytical data.

mailto:stanislava@i.ua

Проблеми інформатизації та управління, 67(3)’2021 35

Fig. 1. Dashboard Page Screenshot

Two charts may be found on the dash-

board page. The graph depicting the most re-

cent activity, which shows how actively par-

ticipants finished the questionnaires. The grey

bar displays how many questionnaires have

been started by participants by the respective

date.

The number of questionnaires com-

pleted is indicated by the blue bar. If the grey

bar is greater than the blue bar, it indicates

that some of the questionnaires that have been

started have not been finished. If the blue bar

is greater than the grey bar, it indicates that

some participants completed the question-

naire a second time. When the grey and blue

bars are at the same height, the best results are

obtained.

A react-responsive package checks the

screen resolution to determine the user's cur-

rent device and render the fitting UI.

The graph on the right shows which de-

vice consumers used to respond to the ques-

tionnaire's questions. To complete the ques-

tionnaires, one of three devices: a PC, a tablet,

or a mobile phone can be used.

Just two buttons can be seen on the

taskbar. If a notice is received, the notification

indicator will appear. There is currently no ra-

tionale for notifications. It is expected to ex-

pand after the system's fundamental function-

ality has been developed and tested. The user

can log out of the system by clicking the sec-

ond button. A popup containing the button ex-

planation appears when the user hovers over

these buttons.

Server and Database Design
Express.js is used to create the server.

Express is a minimal and flexible Node.js web

application framework that provides a robust

set of features for web and mobile applica-

tions [2]. At the root of the program, a server

file is produced, which starts the server in the

static subdirectory (fig.2).

The environment variable or code can

be used to identify the port on which the

server will be built.

A web application, regardless of how

sophisticated, cannot function without data

and, as an outcome, a database. It is vital to

identify what will be stored in the database

and what the service will require before se-

lecting a database.

The objective is to acquire a broad and

full understanding of the database's architec-

ture.

There is no requirement for a relational

database in this project, thus an object data-

base was chosen instead.

For this job, MongoDB is an effective

and scalable database. MongoDB is a docu-

ment database designed for ease of develop-

ment and scaling [4]. MongoDB is a result of

the symbiotic relationship between relational

databases and key-value storage that has

proven to be quite effective.

All data are organized into collections,

and global connections between collections

have already been built.

36

The questionnaire analysis system pro-

vides the job of writing the responses of con-

sumers to a database and allowing them to be

reviewed. Questions and other data from

questionnaires are saved.

To complete this work, a form and a

function that is invoked once the form is con-

firmed should be built.

When uploading data to the cloud, the

initial step is to determine which document

will be used to store the data.

It's possible to achieve this with Mon-

goDB by utilizing a document reference and

the path to the needed document.

Collections and documents must be

used to identify the route. Collections should

come first, followed by documents. Figure 3

shows a snippet of code associated to receiv-

ing questionnaires.

Fig. 2. Server Code Screenshot

Fig. 3. Receiving Questionnaires Code Screenshot

Testing Strategy
For ensuring the maximum quality level

of testing for every method and component of

an evaluated application, the most effective

technique or combination of techniques

should be employed. In this scenario, the best

relation between the amount of time spent

testing and the quality of testing is required.

A collection of tests should be as loss-free as

possible while still covering as much of the

system's functionality as possible.

Several distinct testing methodologies

will be employed during the app's testing.

These approaches may be classified into two

groups: white-box methods and black-box

methods. The distinction among the two types

of methodologies is that black-box testing

takes place without access to the app's source

code. It simply implies that the tester has ac-

cess to the same options as the app's user. The

tester utilizes the software code to obtain the

desired effect when employing white-box ap-

proaches. For linear structural functions,

Проблеми інформатизації та управління, 67(3)’2021 37

black-box testing may be used. Black-box

tests use the strategies of comparable parti-

tions and error assumptions to verify the spec-

ifications [1].

The white-box technique should be

used to test methods of classes with a nonlin-

ear structure. When testing highly sophisti-

cated procedures, it's also required to use the

black-box technique, which involves placing

the error hypothesis [1].

This tactic will improve the system's

and procedures' dependability, which is ex-

tremely vital for the job. This strategy is ideal

for evaluating the app's interface.

After all components and methods have

been tested, the most crucial step is to test the

entire application. This step shouldn't be over-

looked since certain issues may not show up

when testing individual components sepa-

rately.

So, for testing the developed system the

following strategy was developed:

• Choosing error and conditions as-

sumption approaches;

• Testing will be done bottom-to-top

(submodules are tested first);

• Testing key functionalities and com-

ponents using the chosen methods;

• Testing other functionalities and

components using the error assumption tech-

nique.

It's also crucial to provide unit testing to

ensure that the functionality is operating

properly.

Unit testing with snapshots enables the

creation of relatively basic and easy-to-main-

tain tests, which will aid in the prevention of

issues in the development and improve the ap-

plication's reliability (fig.4).

A snapshot is produced for each test

case and is used as a reference (fig.5).

Following the application development,

a test was added to ensure that the compo-

nents render appropriately. React-testing and

jest libraries were used to shallow the compo-

nents. Only the components that are being

tested have to be rendered, hence shallow ren-

dering is required.

The assert mechanism is used to build a

snapshot for the component. It compares the

rendering result of the component to the ref-

erence snapshot. If no reference exists, one

will be established when the test is performed

for the first time.

A snapshots folder appears in the com-

ponent's folder after the test start, where all

captured snapshots would be stored. The

snapshots need to go into the git repository.

Snapshots are supplementary graphic records

that demonstrate the way the project evolved

throughout the development.

Result Evaluation
React creates the marking for each com-

ponent and monitors events that are part of the

User Timing API while in development mode

[5].

To construct a performance profile, the

programmer needs to navigate to the localhost

and use the developer tools: click the Start

profiling and refresh the page button.

This action will begin the recording of

data regarding the current page's perfor-

mance. After the webpage is fully loaded and

displayed to the user, the browser will imme-

diately stop collecting data. The red bar indi-

cates the presence of a significant CPU load

at the point in the timeframe. This may be the

cause of the app's slowness, and it's some-

thing to be investigated further.

Different activities are represented by

the colors in the graphic at the top edge of the

screen (fig.6). The decrease in efficiency that

occurs throughout diverse sorts of operations

has its own set of factors. There are certain

methods for resolving and assessing diverse

issues.

The User Timing API, which could be

utilized to add time markers in different appli-

cations, publishes metrics for React [6]. It en-

ables professionals to see the amount of time

required for a component to load or how long

it'd take for an event to occur. The browsers

do not have incorporated React debugging

tools, although some do include support for

the React API [5]. Furthermore, while all

modern browsers support the User Timing

API, the Chrome developer tools' Perfor-

mance tab went far beyond competitors, mak-

ing troubleshooting React apps in Chrome far

simpler.

38

Fig. 4. Button Unit Test Code Screenshot

Fig. 5. Button Snapshot Test Code Screenshot

Fig. 6. System Performance Results Screenshot

User Manual Development
To use the application, the user must

first signup. They may do it by inputting their

information: email, password, and personal

details. The user will gain access to all system

Проблеми інформатизації та управління, 67(3)’2021 39

features once the registration process is com-

plete. These features include the following:

Adding a questionnaire. To create a new

questionnaire, go over to the section contain-

ing a list of questionnaires and click the 'Add'

button, or go straight to the page with the

form. Afterward, the user needs to create a

form in which they would input the question-

naire's title, possibly its description, and a se-

ries of questions. The questionnaire will be in-

cluded in a database after form confirmation.

Editing a questionnaire. To modify a

questionnaire, the user must first go to the

questionnaire list, choose the questionnaire

they want to update, and click the edit button.

Afterward, the user is sent to a webpage with

a form where they may amend and conclu-

sively confirm the information. The outdated

data will then be replaced by new information

in the database.

Deleting a questionnaire. To delete a

questionnaire, the user needs to go to the page

with a list of questionnaires, choose one that

they want to remove, and click the delete but-

ton. For the user, a verification popup is dis-

played. If the user chooses to confirm, the

questionnaire will be erased from the data-

base; otherwise, nothing will change. There's

also the option of deleting many question-

naires at once. Simply pick a few question-

naires and click the delete button to remove

them.

Searching capabilities. To find a certain

questionnaire, the user needs to type the re-

quest into the system's search box. Once the

search is complete, the user will see the found

objects. If no entries are discovered, the ap-

propriate notification will appear.

Further Development Direction
Any system, including this one, has a

path to follow in order to grow and evolve.

The key features and capabilities were imple-

mented to make the system work as an MVP

during this phase of development.

There are a bunch of features that could

be incorporated to the existing system. It

would be a useful option to include notifica-

tions. Because a huge database of questions

may be incorporated within the framework of

this app and adapted into any questionnaire

style, the application's potential is fairly

broad.

Conclusions
Following the defining of the techno-

logical stack, tasks and subtasks were as-

signed, and the expected time to perform each

task was calculated.

The UX was determined by the proper

layout of interface components, logical se-

quences of web application situations, and ob-

vious outcomes of user interaction with the

interface. UI followed a bright and exciting

design concept.

The following components are included

in the application:

• pages for logging in and registering;

• the dashboard;

• the user's personal information page;

• a questionnaire page;

• a questionnaire creating form;

• a page dedicated to questionnaire

analysis;

• a page with a viewer’s summary.

It was decided what to keep in the data-

base and what the site would require before

selecting a database. The objective was to

gain a broad and thorough picture of the data-

base's structure.

The course of testing needed to check

the app’s proper functionality was decided on.

It was chosen to use white-box and black-box

methods of testing, that were described.

Basic functionality of the app was im-

plemented and the plan for future expansion

decided.

References
1. Differences between Black Box Test-

ing vs White Box Testing. – [Electronic re-

source]. Access mode: https://www.geeksfor-

geeks.org/differences-between-black-box-

testing-vs-white-box-testing

2. Fast, unopinionated, minimalist web

framework for Node.js. – [Electronic re-

source]. Access mode: https://expressjs.com

3. Kudrenko S.A. Method for complex

objects automated design on autodesk revit

based / Kudrenko S.A., Fomina N.B., Krama-

renko I.P. / Проблеми інформатизації та

управління. – 2021. – V. 65. – P. 64-74.

40

4. MongoDB. – [Electronic resource].

Access mode: https://www.mongodb.com

5. React. A JavaScript library for build-

ing user interfaces. – [Electronic resource].

Access mode: https://reactjs.org/

6. User Timing API. – [Electronic re-

source]. Access mode: https://devel-

oper.mozilla.org/en-

US/docs/Web/API/User_Timing_API

Kudrenko S.O., Stoliar A.L.

DATA ANALYSIS SYSTEM LOGICAL DESIGN AND IMPLEMENTATION

The main advantage of the automation process is that it allows to reduce the amount of

required memory, reduce the time for data processing, and reduce the number of copies of

documents when updating information.

The choice of technologies for developing an application is an important stage which has

been described in paper. Before developing the system, the requirements should be carefully

prepared and described. A well-chosen combination of technologies should ensure comfortable

work in the future at all stages of the application's existence

Obviously, the technology stack should be easily scalable, functional, correspond the lat-

est market trends. Most importantly, it has to be easily supported in the future by other devel-

opers.

React.js has a capacious and understandable API. To work with React, it is necessary to

understand a number of terms and the differences between them. Its popularity continues to

grow and it is at the heart of many projects.

Keywords: automation data analysis, Application Programming Interface, React.js,

MongoDB.

Кудренко C.О., Столяр А.Л.

ЛОГІЧНЕ ПРОЕКТУВАННЯ ТА РЕАЛІЗАЦІЯ СИСТЕМИ АНАЛІЗУ ДАНИХ

Головною перевагою процесу автоматизації є те, що він дозволяє зменшити обсяг

необхідної пам'яті, скоротити час на обробку даних та зменшити кількість копій доку-

ментів при оновленні інформації.

Вибір технологій для розробки додатків є важливим етапом, який був описаний у

роботі. Перш ніж розробляти систему аналізу даних, слід ретельно підготувати та

описати вимоги. Правильно підібрана комбінація технологій повинна забезпечити ком-

фортну роботу в майбутньому на всіх етапах існування програми

Очевидно, що стек технологій повинен бути легко масштабованим, функціональ-

ним, відповідати останнім тенденціям ринку. Найголовніше, що в майбутньому його по-

винні легко підтримувати інші розробники.

React.js має місткий і зрозумілий API. Для роботи з React необхідно розуміти ряд

термінів та відмінності між ними. Його популярність продовжує зростати, і це в ос-

нові багатьох проектів.

Ключові слова: автоматизація аналізу даних, прикладний програмний інтерфейс,

React.js, MongoDB.

