
54__

UDC 004.418

Kudrenko S.A.,

orcid.org/0000-0002-0759-3908,

Zhuravel C.V.,

orcid.org/0000-0001-6536-6298,

Fomina N.B.,

orcid.org/0000-0003-2357-6371

OVERVIEW AND JUSTIFICATION FOR CHOOSING TECHNOLOGY

STACK FOR DATA ANALYSIS SYSTEM

National Aviation University

stanislava@i.ua

sergey.zhuravel@gmail.com

nfomina@ukr.net

Introduction
All management tasks require accurate

analysis. And, since earlier dozens of factors

that a person could calculate manually took

part in the analysis of the situation, now there

are much more of these factors. In connection

with all this, there is a need to automate the

collection and processing of sociological in-

formation. The main advantage of the auto-

mation process is that it allows to reduce the

amount of required memory, reduce the time

for data processing, and reduce the number of

copies of documents when updating infor-

mation. Also, as for advantages, it allows to

find the information of interest in a short pe-

riod of time.

The introduction of the automation pro-

cess will simplify the researcher's work and

will allow him to perform his work much

faster, more complete and better.

Also, one of the requirements for the

system being developed is the creation of a

convenient user interface that is not over-

loaded with unnecessary information and

functionality.

It provides easy perception and pro-

cessing of information, providing a free out-

put of information in a more familiar form for

employees of the enterprise, such as in docu-

ment format. The common assignment of the

task is to design and develop a project, that

will be suitable and comfortable to work both

with the small amount of data required for

concrete issue and with a huge amount of

data.

Problem statement
The common assignment of the paper is

preliminary analysis of requirements and

technologies for design and develop a project,

that will be suitable and comfortable to work

both with the small amount of data required

for concrete issue and with a huge amount of

data.
The choice of technologies for develop-

ing an application is an important stage which

has been described in paper. Before develop-

ing the analyze data system, the requirements

should be carefully prepared and described. A

well-chosen combination of technologies

should ensure comfortable work in the future

at all stages of the application's existence

System Requirements
Performance Requirements. Perfor-

mance requirements determine the effective-

ness of the function’s execution under the

pointed set of conditions. There are a lot of

acceptance points, which should be reviewed

on the performance issues. For example, load

testing is used for checking the speed of how

long the application runs under the expected

user loads. The aim of load testing is to find

dangerous parts before the application de-

ployed.

The following list of performance char-

acteristics should be taken care of while de-

veloping the system:

Проблеми інформатизації та управління, 65(1)’2021 55

• user-friendliness: the system

functionality and design should be intuitive

understandable so new users should not have

any problems with onboarding;

• user satisfaction: the system should

match the user expectations. If the perfor-

mance results do not coincide with the re-

quirements, then it should be optimized;

• response time: the system should

react to the user’s actions as quickly as

possible. Ideally, the callback should be

executed immediately. For some

asynchronous actions that cannot provide

feedback in a nutshell, a load UI element must

be added during action processing.

Functional Requirements. Functional

requirements define the functionality of the

software. They are sometimes called behav-

ioral requirements. The following require-

ment are defined for the current system. The

system should have the platform menu in the

header and check whether users have access

to surveys and dashboard.

System will have a functionality to

download survey question dashboards and

charts with data in .pptx, .jpg, .jpeg, .png for-

mats.

There should be a possibility to export

all questions as a .pptx slide deck in a stand-

ardized format.

Question block should provide the gen-

eral information related to a question and a

statistical chart that displays survey data. User

will have the possibility to sort data bars via

drag and drop, change chart axes and keys,

add average lines, export chat to .png., add

confidence intervals for bars and values and

show data as percentages.

Interface Requirements. When develop-

ing a user interface, it necessary to be guided

by the UX approach and the tasks that the in-

terface should solve.

UX is a term that describes the degree

of user satisfaction from using the product.

Tasks which should be solved by the

user interface:

• user authorization;

• granting user access to the resource

and personal account;

• possibility to be tested;

• displaying the result.

As a result, the main sections of the ap-

plication were highlighted:

• dashboard page;

• login page;

• personal account with information

about the user;

• survey page;

• question analysis page.

For the direct development, there

should be used component approach.

The component approach is a program-

ming paradigm that essentially relies on the

concept of a component - an independent

module of program code intended for con-

struction. For these purposes, the React.js li-

brary is ideal because it supports the compo-

nent approach.

There should be uniform, synchronized

data between the sections and in the applica-

tion as a whole. For this purpose, the schema

of several design patterns will be used. Appli-

cation model, user interface and user interac-

tion are divided into three separate compo-

nents. So that modification of one of the com-

ponents has minimal impact on the others.

This schema forms a MVC binding.

The main purpose of applying this con-

cept is to separate the business logic from its

visualization.

Security Requirements. Besides fact

that the system should be convenient to use, it

also has to provide security to users and their

private data. In order to supply the system

safety and reliability the developer should:

• add logic to validate the input value;

• provide blocking wrong user actions

which are out of the scope;

• ensure the integrity of stored data;

• exclude the possibility of the

unauthorized access to the information.

The peculiarity of hacking resources

that it is automated, but not personalized. It

carried out in large quantities using special

programs. The owner of resource which

works with clients on the model of a web ap-

plication must be able to protect the project

from the most common methods of hacking.

Before developing a methodology for

protecting a web application from potential

56__

threats, the site should be checked for vulner-

abilities. The check is carried out manually or

automatically.

The programs will test the application

for major risks. These software products exist

in two versions: black hat, simulating the ac-

tions of hackers, and white hat, systematically

revealing all system flaws by scanning.

Some of the most effective tools are:

• scan local networks for

vulnerabilities;

• looking for the possibility of

injecting malicious code into a web page that

steals user account data and other

information. The code is injected through

vulnerabilities on the user's server or device;

• examine the configuration of a web

application and find redundant or malicious

code;

Working with web services requires the

use of a wide range of security tools. In addi-

tion to the main listed methods, the following

are often used:

• passwords encryption;

• avoiding cross-site scripting;

• control of uploading files to the

server.

Technologies and Platforms Se-
lected for Creating the System

The choice of a technology stack must

be approached very carefully and respon-

sively. It is necessary to look far ahead into

the future and predict the potential develop-

ment and fate of the project. Obviously, the

stack should be easily scalable, functional,

correspond the latest market trends. It should

meet the most modern features. Most im-

portantly, it has to be easily supported in the

future by other developers. The presence of a

large community of developers in the world

for this or that product in the stack and open

source code are huge advantages that should

be cared. Also, these technologies should not

contradict each other. Their existence to-

gether should be harmonious and justified.

So, for example, GraphQL is great for gener-

ating queries in JavaScript. It also uses a data

schema that is easy to use in JavaScript.

Guided by the above factors, as well as

listening to the opinions of leading developers

of the web technology market, there were

identified the following technology stack:

• React.js library;

• GraphQL library;

• Webpack - the utility is great for

modular building of a web application;

• npm package manager for managing

modules and dependencies.

React.js Library

React.js has a capacious and under-

standable Application Programming Interface

(API). To work with React, it is necessary to

understand a number of terms and the differ-

ences between them. Elements are JavaScript

objects that are HTML elements. Components

are elements of React.js that are created by the

developer and can have any name. As a rule,

they contain their own specific structure and

perform a number of functions. React ele-

ments and components are built using JSX.

JSX is a deep JavaScript syntax that looks like

XML.[1]

React creates an analogue of the real

Document Object Model (DOM) tree from

components - VirtualDOM and presents it in

the browser. The library monitors changes in

the virtual tree and, when it changes, updates

the real DOM so that the real and virtual tree

are the same. (fig. 1)

Above are the basic concepts it is

needed to know to get started with React.js.

Also, there is good to mention about the ex-

istence of state in React.

In practice, in the project it will be im-

plementing a state of the application using

GraphQL. React and GraphQL is a fairly suc-

cessful alliance that occurs quite often.

Components have a life cycle such as

mount, update and unmount. The library pro-

vides the ability to define various points in the

life cycles of components and interact with

them. When the first use of the component,

call the lifecycle methods in this order:

• constructor;

• getDerivedStateFromProps;

• render;

• componentDidMount.

Проблеми інформатизації та управління, 65(1)’2021 57

Fig. 1. React operations

Why React.js Library was integrated:

• The content is referenceable

This is the functionality that makes the

difference compared to other

frameworks. Thanks to the use of a

Node server, the code will be able to be gen-

erated on the client side and on the server side.

Unlike other traditional JS frameworks which

natively execute code only on the client side

in the browser.

• React.js is very fast

React.js creates its own virtual DOM

where the components are attached. This ap-

proach gives a tremendous amount of flexibil-

ity and exceptional performance, as React.js

calculates which changes in the DOM needs

to be made, and just changes the part that

needs updating. In this way, React.js avoids

expensive operations in the DOM.

• Components are the future of web

development

React.js took the concept of Shadow

DOM and the Polymer.js framework and took

it to the next level.

React.js doesn't use Shadow DOM in-

stead it gives the ability to create the compo-

nents that can later be reused, combined, and

included in the core content. This functional-

ity alone is a guarantee of productivity by the

ease of defining and manipulating devel-

oper’s own components.

• Intelligibility

React.js produces easy to read code,

reading it immediately determines what the

functionality of the application is. That

is essential for the maintenance and expansion

of the project over time.

• Javascript is easier to write

ReactJS uses a special syntax called

JSX, which allows to mix HTML and JavaS-

cript. This is not required it can still be written

the React.js app in native JavaScript but this

new syntax allows to write the components

very easily. Being able to put a touch of

HTML in the rendering functions. And after a

while it becomes very natural.

On the image below there is an official

logo of React.js library.

Typescript Programming Language.

The TypeScript language is one of the most

popular technologies of recent years, both in

Frontend and Backend development. Its pop-

ularity continues to grow and it is at the heart

of many projects: Angular, NativeScript,

Ionic, VS Code, Apollo GraphQL, Baby-

lon.js, RxJS, Nest, TypeORM, etc.

TypeScript is an opensource language,

created by Microsoft, stackable in JavaScript.

58__

On the image below there is the logo of Type-

script.js library.

Its main objectives are:

• support for existing and future

EcmaScript proposals;

• the contribution of optional typing to

JavaScript;

• the early identification of potentially

invalid codes;

• compilation to optimized JavaScript,

with a target choice: ES3, ES5, ES6 and next

ones.

What TypeScript does not aspire to do,

among others:

• imitate existing languages; but rather

exploit the nature of JavaScript and the uses

of developers as a guide to make the language

relevant;

• use a sage type system [3].

TypeScript's type system is not wise,

which means that it allows certain operations

that cannot be verified at compile time. This

is one of the big major differences with Flow

that can be considered.

GraphQL Query Language. GraphQL

is a query and data manipulation language for

APIs, as well as an environment for making

those queries. The language was developed in

2012 by Facebook for the internal needs of the

company. [4-5]

Today, GraphQL is used in many popu-

lar applications. First, the social network Fa-

cebook. The GraphQL is used in products

such as Airbnb, GitHub, Pinterest, Shopify,

New York Times and many others.

The fact that it was created specifically

on Facebook for a project with a large amount

of heterogeneous data ensure that working on

a product it should not arise with the limita-

tions of the REST architecture.

For example, getting a user's profile,

posts and comments does not initially seem

difficult. But if it is considered the amount of

data in the system and assumed that all this

data is stored in different databases (for exam-

ple, MySQL and MongoDB), it becomes clear

that this will require creating several REST

endpoints.

Imaginings how large the volume of

data and heterogeneous data sources are, it be-

comes clear why it was necessary to develop

a new approach to working with the API. This

approach is based on the following principle:

it is better to have one smart endpoint that will

be able to work with complex queries and re-

turn data in the exact form and volume that

the client needs.

At the heart of any implementation of

the GraphQL API is the data schema - this is

a description of what data types it can work

with and what data types it can return in re-

sponse to a request - they are described in the

GraphQL type system. [4]

To work with any API, the developer

needs to know what types of objects can be

obtained, what fields to select, what fields are

available in internal objects and more. The

GraphQL schema is showed on figure 2.

Working with the GraphQL API, the client

does not care at all where the data comes

from.

Fig. 2. GraphQL schema

Проблеми інформатизації та управління, 65(1)’2021 59

It just should be made the request to the

extent is needed, and the GraphQL server re-

turns the result. Therefore, it can be con-

cluded that the schema is a contract between

the API and the client. Before the client

makes any request, it is validated in accord-

ance with the schema of the given API.

Many platforms now support GraphQL:

web, Android, iOS and others. The GraphQL

client sends a request to receive data or to

change it, composed in accordance with the

schema, to the GraphQL server.

The GraphQL server is the HTTP server

to which the GraphQL schema is associated.

It means that all requests received from the

client and returned responses are passed

through this scheme.

The GraphQL server cannot know what

to do with a request unless it is explained to it

using special functions. Due to them,

GraphQL understands how to get data for the

requested fields.

These functions are associated with the

corresponding fields and are called resolvers.

A response is returned to the client that re-

flects the data structure requested from the

client, usually in JSON format.

It is possible to work with completely

different data sources: databases (relational /

NoSQL), web search results, Docker, and

other. On the image below there is an official

logo of GraphQL library.

D3.js Library. D3.js is a JavaScript li-

brary for data processing and visualization.

The name D3 itself stands for Data-Driven

Documents and, as it were, focuses on data

management, although the key functionality

of the library is its powerful visualization ca-

pabilities [6].

The D3.js library is primarily based on

JavaScript, SVG and CSS, as opposed to

other similar libraries that use the canvas ele-

ment and its capabilities instead of SVG.

While standard rendering engines like

the canvas element rely on pixels, svg uses

vectors. Using SVG allows to create graph-

ically rich structures with animation and in-

teroperability. Compared to pixel art, SVG

has several advantages.

In particular, SVG is based on xml,

which makes it more readable. In addition,

SVG code is more lightweight than image

files. Largely due to this, D3 is currently one

of the most popular frameworks used for

graphical data processing and creating all

kinds of charts and graphs. On the image be-

low there is an official logo of D3.js library.

Unlike other similar JavaScript libraries, D3

does not use jQuery to work with the DOM

structure, although at the same time it imple-

ments similar concepts for working with ele-

ments.

React Testing Library. One of the con-

venient solutions for unit testing of compo-

nents is the react-testing-library built on top

of react-dom and react-dom/test-utils. It pro-

vides utility functions on top of react-dom.

Tests run on DOM nodes, not React compo-

nent instances. The main idea of the library is

to bring test scripts closer to using the compo-

nents the way the user does, which allows for

confidence, giving more confidence when the

application hits production. It is a lightweight

solution for testing React components.

The Jest test framework will be used to

run the tests. It is built in such a way that it

requires almost no configuration, it will not be

difficult to install it in a new project and start

using it, moreover, it is part of create-react-

app. It is also needed helper library that pro-

vides custom DOM mapping for Jest. On the

image below there is an official logo of React

Testing Library and Jest.

The react-testing-library contains all the

necessary methods for testing components,

simplifies testing and improves test readabil-

ity.
Conclusions
It is necessary to look far ahead into the

future and predict the potential development

and fate of the project. Obviously, the stack

should be easily scalable, functional, corre-

spond the latest market trends. It should meet

the most modern features. Most importantly,

it has to be easily supported in the future by

other developers.

React.js has a capacious and under-

standable API. To work with React, it is nec-

essary to understand a number of terms and

60__

the differences between them. Elements are

JavaScript objects that are HTML elements.

Components are elements of React.js that are

created by the developer and can have any

name. As a rule, they contain their own spe-

cific structure and perform a number of func-

tions.

The TypeScript language is one of the

most popular technologies of recent years,

both in Frontend and Backend development.

Its popularity continues to grow and it is at the

heart of many projects.

GraphQL is a query and data manipula-

tion language for APIs, as well as an environ-

ment for making those queries. At the heart of

any implementation of the GraphQL API is

the data schema - this is a description of what

data types it can work with and what data

types it can return in response to a request.

When working with the GraphQL API, the

client does not care at all where the data he

requests comes from. It just makes the request

to the extent it needs, and the GraphQL server

returns the result.

D3.js is a JavaScript library for data

processing and visualization. The name D3 it-

self stands for data driven documents and fo-

cuses on data management, although the key

functionality of the library is its powerful vis-

ualization capabilities.

References
1. Johnson, Nicholas."Introduction to

Flux – React Exercise" [Electronic resource].

Access mode: http://nicholasjohnson.com/re-

act/course/exercises/flux/.

2. A JavaScript library for building

user interfaces [Electronic resource]. Access

mode: https://reactjs.org/.

3. Anders Hejlsberg. What is Type-

Script and why with Anders Hejlsberg [Elec-

tronic resource]. Access mode: www.han-

selminutes.com.

4. [Electronic resource]. Access mode:

https://graphql.org/.

5. "Why use GraphQL, good and bad

reasons". Honest Engineering. 4 August

2018. [Electronic resource]. Access mode:

https://honest.engineering/posts/why-use-

graphql-good-and-bad-reasons

6. Kudrenko S.A. Method for complex

objects automated design on autodesk revit

based // Kudrenko S.A., Fomina N.B., Kra-

marenko I.P. // Проблеми інформатизації та

управління. – №63. – P. 64-74.

Kudrenko S.A., Zhuravel C.V., Fomina N.B.

OVERVIEW AND JUSTIFICATION FOR CHOOSING TECHNOLOGY STACK FOR

DATA ANALYSIS SYSTEM

The main advantage of the automation process is that it allows to reduce the amount of

required memory, reduce the time for data processing, and reduce the number of copies of

documents when updating information.

The choice of technologies for developing an application is an important stage which has

been described in paper. Before developing the analyze data system, the requirements should

be carefully prepared and described. A well-chosen combination of technologies should ensure

comfortable work in the future at all stages of the application's existence

Obviously, the technology stack should be easily scalable, functional, correspond the lat-

est market trends. It should meet the most modern features. Most importantly, it has to be easily

supported in the future by other developers.

React.js has a capacious and understandable API. To work with React, it is necessary to

understand a number of terms and the differences between them. The TypeScript language is

one of the most popular technologies of recent years, both in Frontend and Backend develop-

ment. Its popularity continues to grow and it is at the heart of many projects. GraphQL is a

query and data manipulation language for APIs. The name D3 itself stands for data driven

documents and focuses on data management.

Проблеми інформатизації та управління, 65(1)’2021 61

Keywords: automation data analysis, Application Programming Interface, GraphQL,

React.js library.

Кудренко C.О., Журавель С.В., Фоміна Н.Б.

ОГЛЯД І ОБҐРУНТУВАННЯ ВИБОРУ СТЕКУ ТЕХНОЛОГІЙ ДЛЯ СИСТЕМИ

АНАЛІЗУ ДАНИХ

Головною перевагою процесу автоматизації є те, що він дозволяє зменшити обсяг

необхідної пам'яті, скоротити час на обробку даних та зменшити кількість копій доку-

ментів при оновленні інформації.

Вибір технологій для розробки додатків є важливим етапом, який був описаний у

роботі. Перш ніж розробляти систему аналізу даних, слід ретельно підготувати та

описати вимоги. Правильно підібрана комбінація технологій повинна забезпечити ком-

фортну роботу в майбутньому на всіх етапах існування програми

Очевидно, що стек технологій повинен бути легко масштабованим, функціональ-

ним, відповідати останнім тенденціям ринку. Він повинен відповідати найсучаснішим

характеристикам. Найголовніше, що в майбутньому його повинні легко підтримувати

інші розробники.

React.js має місткий і зрозумілий API. Для роботи з React необхідно розуміти ряд

термінів та відмінності між ними. Мова TypeScript - одна з найпопулярніших технологій

останніх років, як у розробці Frontend, так і в програмі Backend. Його популярність про-

довжує зростати, і це в основі багатьох проектів. GraphQL - це мова запитів та

обробки даних для API. Сама назва D3 означає документи, керовані даними, і зосере-

джена на управлінні даними.

Ключові слова: автоматизація аналізу даних, прикладний програмний інтерфейс,

GraphQL, React.js library.

