64

UDC 004.418

Kudrenko S.A.,
orcid.org/0000-0002-0759-3908
Fomina N.B.,
orcid.org/0000-0003-2357-6371
Kramarenko I.P.

METHOD FOR COMPLEX OBJECTS AUTOMATED DESIGN ON
AUTODESK REVIT BASED

National Aviation University

stanislava@i.ua
nfomina@ukr.net

Introduction

Computer-aided design (CAD) systems
can be customized using a variety of program-
ming techniques that vary in complexity. Ob-
ject links programming is the most complex,
followed by macro languages, menu customi-
zation, and custom graphics. Custom graphic
— the easiest type of CAD systems program-
ming. Adding the block to a library of blocks
takes that programming up a level. The next
step up in custom graphics is to define a cus-
tom linetype. Another step up the ladder
would be creating a custom hatch pattern or
shape set. Most programmers are quite satis-
fied with learning to create block libraries [1].

Recent advances in technologies such
as Internet of Things (IoT), wireless sensors,
data processing and analysis, and Building In-
formation Modelling (BIM) have the poten-
tial to transform how we interact with the built
environment and improve the experience for
end users and service providers [1]. The IoT
devices and sensors are increasingly being de-
ployed in the built environment and industrial
applications.

The number of connected devices have
already overtaken connected human beings
and are estimated to be around 9 billion. The
sensor nodes are being deployed in various
application areas such as the industrial, trans-
portation, health and wellbeing, building au-
tomation, automotive and retail. The number
of sensor installation is increasing at an expo-
nential rate and some estimates suggest that

there will be around 50 billion connected de-
vices by 2020.

According to the Building Information
Model concept each and every engineering
object, particularly Autodesk Revit object,
has its own properties and methods. By oper-
ing with these properties and methods, it is
possible to automate and speed up designing
process with the help of programming. In
modern modelling systems the ability to work
with programming frameworks is established
at the core level. Computer engineers only
need to choose which software development
system will be used to create projects in order
to manipulate BIM objects.

Problem statement

Paper purposes are increasing designing
efficiency, simplifies and speeds up a work of
engineers in modeling of complex objects
such as system of buildings engineering
equipment structures.

For the implementation of method an
integrated development environment Visual
Studio and C# programming language was
chosen for the creation of the plug-in because
of the exhaustive documentation and flexibil-
ity of this framework.

Usage of Revit API

API is the acronym for Application Pro-
gramming Interface: the way a software pro-
grammer can communicate with a software
product. For instance, the Revit API is the
way programmers can work with Revit, and it
establishes what functionality a software pro-
grammer can use within Revit (fig.1.). Such

mailto:stanislava@i.ua

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 65

as the Revit API allows to write instructions
for Revit to execute one after the other.

Programmer

Revit API

Revit Core Software

| 3
_-3

Fig. 1. Revit API interconnection

A software plug-in is a type of program
module (or file) that adds functionality to a
software product, usually in the form of a
command automating a task or some custom-
ization of the product’s behavior. When we
talk about a plug-in for Revit — and the term
Add-In used for this product — we mean a
module containing code that makes use of the
Revit API. Revit loads such plug-ins and uses
them to adjust its behavior under certain con-
ditions, such as when a particular command is
executed by the user of the plug-in.

Both Revit and BIM are very important
for CAD systems future development. Revit
helps designers design, simulate, visualize
and collaborate in order to capitalize on the
advantages of the interconnected data within
a BIM model.

Another of the advantages of BIM is the
increasing number of simulation tools that al-
low designers to visualize such things as the
sunlight during different seasons or to quan-
tify the calculation of building energy perfor-
mance. The intelligence of the software, par-
ticularly Autodesk Revit, to apply rules that
are based on physics and best practices pro-
vides a complement for engineers and other
project team members. The software can do
much more of the analysis and modeling to
achieve peak performance, condensing
knowledge and rules into a service that can
run with the click of a button.

In modern modelling systems the abil-
ity to work with programming systems is es-
tablished at the core level. Developers only
need to choose software development system
connected with API to create projects.

Creation of plug-ins for engineer-
ing equipment modeling

An AddIn manifest is a file located in a
specific location checked by Revit when the
application starts. The manifest includes in-
formation used by Revit to load and run the
plug-in.

For plug-ins to load into Revit, they
need to be Class Library assemblies (DLLS).
It’s for this reason, in the second step, that it
should be selected the Class Library template.
The entered name is used to identify the pro-
ject within the solution.

The blank project, as created by Visual
Studio, did not automatically make use of the
Revit API. For it to do so, it should be added
project references to the interface DLLs in
Revit describing its API, dlland Revi-
tAPIULdII [3].

When using the Revit API, it is usual to
add project references to the two separate in-
terface DLLs making up the API: one deals
with core product functionality, the other with
the product’s user interface. We must link the
project to these files to be able to work with
Revit API.

. dll contains the APIs to access the
Revit application, documents, elements, pa-
rameters, etc.

. dll contains the APIs related to
manipulation and customization of the Revit
user interface, including command, selections
and dialogs.

Having added project references, it’s
important to set one of their properties appro-
priately (fig.2).

e

*8 Microsoft.CSharp
:: E:v:;;:}IUI

*B System.Core

*8 System.Data

= System.Xml

=8 System.Xml.Ling
P ¢ Classl.cs

View in Object Browser
X Remove Del

}' Properties Alt+Enter

Fig. 2. The properties of RevitAPI

By default, Visual Studio adds project
references with its Copy Local property set to
True. This means that the referenced DLLs
will get copied to the project’s output folder
when it is built.

66

Next, we added C# code using the Revit
API into the project. In other words, provid-
ing Revit with instructions on how to perform
the functionality of copying a user-selected
group from one place to another.

While developing code, it’s a good idea
to build the solution from time to time, to
check whether errors have been introduced in
the code. The code does not necessarily have
to be complete or functional when building
the solution. This approach can help avoid po-
tentially lengthy troubleshooting once the
code is complete, and has the side benefit of
automatically saving any edited source files
before the build starts.

Revit plug-ins are compiled into library
assembly files (DLLs) which are then loaded
and executed from within Revit’s memory
space (fig.3).

During execution of the .NET assem-
bly, CIL (residing in the assembly) is passed
through the CLR’s just-in-time (JIT) compiler
to generate native (or machine) code. JIT
compilation of the CIL to native code occurs
when the application is executed. As not all of
the code is required during execution, the JIT
compiler only converts the CIL when it is
needed, thus saving time and memory. It also
stores any generated code in memory, making
it available for subsequent use without the
need to recompile.

Common Language
Runtime

v

11001010100010101000
00101011101110101000

Fig. 3. Running Executables

During execution of the .NET assem-
bly, CIL (residing in the assembly) is passed
through the CLR’s just-in-time (JIT) compiler
to generate native (or machine) code. JIT

compilation of the CIL to native code occurs
when the application is executed. As not all of
the code is required during execution, the JIT
compiler only converts the CIL when it is
needed, thus saving time and memory. It also
stores any generated code in memory, making
it available for subsequent use without the
need to recompile.

In the last step of this process, the native
code gets executed by the computer’s proces-
sor.

Analysis of the classes in a revit plug-
in.

The class in a Revit plug-in that imple-
ments this interface is known as the entry
point for that plug-in: it’s the class that Revit
will attempt to find and call the Execute()
method upon. Putting it another way, when a
Revit user clicks on a command in the Revit
user interface listed under the External Tools
drop-down button on the Add-Ins tab, the
code in the Execute() method is run (exe-
cuted) from the corresponding class which
implements this IExternalCommand inter-
face.

[TransactionAttribute(TransactionMod

e.Manual)]public class Classl: IExter-
nalCommand{ public Result Execute(EXx-
ternalCommandData commandData, ref
string message, ElementSet elements) { }

¥

Any block of code in a class which per-
forms a particular task (or action) is called a
method. The method declaration starts with
the word public in this case.

This method returns a Result (in fact an
Autodesk.Revit.Ul.Result) rather than being
declared void (i.e. not returning anything).
The Result returned from the Execute()
method will tell Revit whether the command
execution has succeeded, failed or been can-
celled. If the command does not succeed, any
changes it made will be reversed (Revit will
cause the transaction that was used to make
them to be rolled back).

The Execute() method has three param-
eters: commandData, message and elements.
Let’s take a closer look at what each of these
parameters refer to:

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 67

1. commandData is of type Exter-
nalCommandData and provides with API ac-
cess to the Revit application. The application
object in turn provides with access to the doc-
ument that is active in the user interface and
its corresponding database. All Revit data (in-
cluding that of the model) is accessed via this
commandData parameter.

2. message is a string parameter
with the additional ref keyword, which means
it can be modified within the method imple-
mentation. This parameter can be set in the
external command when the command fails or
is cancelled. When this message gets set —and
the Execute() method returns a failure or can-
cellation result — an error dialog is displayed
by Revit with this message text included.

3. elements is a parameter of type
ElementSet which allows to choose elements
to be highlighted on screen should the exter-
nal command fail or be cancelled.

Let’s now look at the code inside in the
Execute() method. This is the actual set of in-
structions which uses the Revit API to per-
form certain tasks when command is exe-
cuted.

Let’s look at the code, line-by-line:

Il Get application and document objects
UlApplication uiApp = commandData.Appli-
cation;

In the first line, uses the commandData
parameter that was passed into the Execute()
method to access the Application property of
this object, which provides with access to the
Revit application. For more details on under-
standing properties and reviewing the main
Revit API classes and the correlation between
them, see the Additional Topics.

To be able to use the Application prop-
erty just retrieved from the commandData pa-
rameter, it was created a container variable for
the object named uiApp of type UlApplica-
tion. Then we assigned the value of com-
mandData.Application to it for later use in
program. Variables can be named as long as
the name is unique in that code-block and is
not a reserved word (such as the “using” key-
word mentioned earlier).

Document doc = uiApp.ActiveUlDoc-
ument.Document;

The uiApp variable (which contains the
Revit Application object) provides access to
the active document in the Revit user inter-
face via the ActiveUlIDocument property. In
the above line of code — in just one line —di-
rectly accessed the database of the active doc-
ument (this database is represented by the
Document class).

Object Selection

Let’s look at how to prompted users to
select Groups using the API.

//Define a Reference object to accept
the pick result. Reference pickedRef = null;

Start by creating an empty variable
named pickedRef of type Reference and set
its initial value to be null (which literally
means nothing). Reference is a class which
can contain elements from a Revit model as-
sociated with valid geometry.

/[Pick a group Selection sel =
uiApp.ActiveUIDocument.Selection;
pickedRef = sel.PickObject(ObjectType.Ele-
ment, "Please select a group"); Element
elem = doc.GetElement(pickedRef); Group
group = elem as Group;

Next, we accessed the current user se-
lection using the API. The user selection from
the user interface is represented by the Selec-
tion property on the ActiveUlIDocument ob-
ject: placed this Selection object into a varia-
ble named sel of type Selection. This Selec-
tion object provides with a method named
PickObject(). As the method’s name suggests,
it shifts focus to the user interface and
prompts the user to select an object. The pa-
rameters of this method allow to specify the
type of element the user to select (it can be
specified if expecting users to select a face, an
element, an edge, etc.) along with the message
the user will see in the lower left corner of the
Revit user interface while the plug-in waits
for the selection to occur.

As the selected Group object has geom-
etry data associated with it, it was safe to
place it in the pickedRef variable declared
previously. Then it mast used the reference’s
Element property to gain access to the refer-
ence’s associated element: in this case it as-
signed its value to a variable named elem, of
type Element. As we are expecting the elem

68

object to be of type Group, in the last line of
the above code snippet we performed a “cast”,
allowing us to treat the elem variable as a
Group via the variable named group.

Element elem = doc.GetEle-
ment(pickedRef);

In the manufacturing world, the term
casting refers to the act of setting a given ma-
terial into a mold to shape it into an object of
a particular form. Similarly, in the program-
ming world, casting means the act of trying to
set a value of one type into another. Casting
asks the language compiler to consider a
value in a different way. The as operator in C#
will cause the compiler to check the actual
type of the object being cast: if it is incompat-
ible with the target type, the value returned by
the operator will be null.

The aim of this initial plug-in is to place
a selected group at a location selected by the
user. To perform this task, it has been used the
PlaceGroup() method from the active docu-
ment’s database object under the creation-re-
lated methods made accessible via its Create
property. This Create property makes it pos-
sible to add new instances of elements — such
as Groups — to the Revit model. The Place-
Group() method, as expected, required to pass
in the location at which we wanted to place
group, as well as the type (used in the context
of Revit, rather than C#) of the group selected
by the user.

Finally, it is committed the transaction
object using the Commit() method. This en-
sured the changes encapsulated by the trans-
action were successfully written to the Revit
model.

Coding the New Functionality

For clarity and better organization of
the completed source code that we provide as
an attachment for each project, we have
changed the class names to match the project
and the functionality we are working with
group.

Type the following code fragment in-
side the class Class1, making sure it is outside
the Execute()method. The code defines a new
method, GetElementCenter(), which takes an
Element as a parameter and returns its center.

Return the center of an element
based on its BoundingBox.

public XYZ GetElementCenter(Ele-
ment elem) {

BoundingBoxXYZ
elem.get_BoundingBox(null);

XYZ center = (bounding.Max +
bounding.Min) * 0.5;

return center;

bounding =

In the Execute() method, after the line
where we get the selected group, type the lines
of code highlighted below in bold. The new
statement calls new GetElementCenter()
method to get the center point of the selected
group.

Group group = elem as Group;
I/ Get the group's center point

XYZ origin = GetEle-
mentCenter(group);
Find the room that contains the center
of the group.

Type the following code fragment in-
side the command class Class1, making sure
it is outside any existing method implementa-
tions. This code defines a new
GetRoomOfGroup() method, which takes a
Document and a point as parameters and re-
turns the Room in which the specified point
lies.

/Il Return the room in which the given
point is located

Room GetRoomOfGroup(Document
doc, XYZ point) {
FilteredElementCollector collector
= new FilteredElementCollector(doc);
collector.OfCategory(BuiltInCate-
gory.OST_Rooms);
Room room = null;
foreach (Element elem in collector){
room = elem as Room;
if (room !'=null) {
/I Decide if this point is in the
picked room
if (room.IsPointinRoom(point)){
break;
}

}
}

return room;

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 69

}
Back in the Execute() method, after the

line, GetElementCenter(), which was be
added in the last step, type the lines of code
highlighted below in bold. The new statement
calls new GetRoomOfGroup() method to find
the room containing the center of the selected
group.

/I Get the group's center point

XYZ origin = GetEle-
mentCenter(group);

/Il Get the room that the picked
group is located in

Room room =
GetRoomOfGroup(doc, origin);

Calculate the center of the room and e.
Display the x, y and z coordinate of the center
of the room in a dialog box:

Type the following code fragment in-
side the command class, once again making
sure the code is outside any existing methods.
The code defines a new GetRoomCenter()
method, which takes a Room and — as the
name suggests — returns its center point. We
use the previously defined GetEle-
mentCenter() to calculate this, but we modify
the Z coordinate of the point we return to
make sure it’s on the floor of the room.

/Il Return a room's center point coor-
dinates.
/Il Z value is equal to the bottom of the

room

public XYZ GetRoomCenter(Room
room){

I/ Get the room center point.

XYZ boundCenter = GetEle-
mentCenter(room);

LocationPoint locPt = (Location-
Point)room.Location;

XYZ roomCenter =

new XYZ(boundCenter.X,

boundCenter.Y, locPt.Point.Z);
return roomCenter;
}

In the Execute() method, after the state-
ment which finds the room containing the
center point of group, type in the lines of code
highlighted in bold, below. The code gets the
room’s center point and displays it to the user

via a task dialog (a type of dialog that uses the
Autodesk Revit user interface style).

/I Get the room that the picked
group is located in

Room room =
GetRoomOfGroup(doc, origin);

/I Get the room's center point

XYZ sourceCenter = GetRoom-
Center(room);

string coords =

"X = " + source-
Center.X.ToString() + "\r\n" +

"Y = " + source-
Center.Y.ToString() + "\r\n" +

"Z = " + source-

Center.Z.ToString();

TaskDialog.Show("Source ~ room
Center", coords);
The first argument of TaskDia-

log.Show() is the name of which should ap-
pear in the title bar at the top of the dialog.

Remove or comment out (using two for-
ward slashes: “//””) the following line, which
was former step b. New group will be placed
relative to the center of the original group’s
room, so we do not need the user to select an-
ything else, at this stage.

Calculate the target group location
based on the room’s center and g. Place the
copy of the group at the target location:

Remove or comment out the current
PlaceGroup() call in the Execute() method
and replace it with the following lines in bold.
New group will be placed at a displacement
of (20, 0, 0) in feet from the center point of
the original group’s room (20 feet is the width
of the two rooms and therefore the horizontal
distance between their center points). As both
sourceCenter and new XYZ (20,0,0) are of
type XYZ, they can be added together to get
the new location coordinates.

I/ Calculate the new group's position

XYZ groupLocation = sourceCenter +
new XYZ(20, 0, 0);

doc.Create.PlaceGroup(groupLoca-
tion, group.GroupType);

This completes code for this project.
The complete code for this project is also pro-
vided for download at the top of this project.

/0

It can be useful to see the complete code to
compare results and ensure they are correct.

Save the file:

Build the project:

Inside Visual Studio, in the Debug
menu, click Build Solution to compile and
build plug-in.

Running the Plug-in

The steps to run the command:

1. Start Autodesk Revit 2019.

2. Open the Project file.

3. Start the command
maPlaceGroup.

4. Select the group in Room 1.

We will see the following task dialog
(fig.4) showing the coordinates of the room’s
center.

Diplo-

X =-226838642129844
Y = 23.967124883078
Z=0

|

Fig. 4. The task dialog window

Following this, a new group should be
inserted into Room 2. Because the displace-
ment of (20,0,0) is the vector from the center
of Room 1 to the center of Room 2, the group
appears to be copied from Room 1 to the same
relative location in Room 2 (fig.5).

—————————

ﬂ] 51 L

] g 5 Y [
= il b)

& T
Fig. 5. The window with new functionality

the GetElementCenter() method as follows:
public XYZ GetElementCenter(Ele-
ment elem) {
BoundingBoxXYZ
elem.get_BoundingBox(null);
XYZ center = (bounding.Max +
bounding.Min) * 0.5;
return center;
In the implementation of the GetEle-
mentCenter() method, we started by accessing

bounding =

the BoundingBox property of the Element
passed in, storing its value in a variable
named bounding.

BoundingBoxXYZ bounding =
elem.get_BoundingBox(null);

The BoundingBox property is slightly
unusual in that it takes a parameter: the view
for which the bounding box is to be calcu-
lated. If this parameter is null, the property re-
turns the bounding box of the model geome-
try. If a property of a class takes one or more
parameters, the get_ prefix is needed before
the property name to read the property value.
This prefix isn't needed if the property doesn't
take any parameters: it can be just using the
property name.

The returned BoundingBoxXYZ con-
tains the coordinates of the minimum and
maximum extents of the Element’'s geometry.
The center point is calculated by taking the
average (or mid-point) of these two points.
For the sake of clarity, it should be stored this
in another variable named center.

Let's now take a closer look at the im-
plementation of the GetRoomOfGroup()
method. In this method, start by retrieving all
the rooms in the document, going through
them to find the room that contains the group.
The FilteredElementCollector class helped
with this task: it collects elements of a certain
type from the document provided. That's why
is it necessary to pass a document parameter
to the GetRoomOfGroup() method, so it can
be used there.

FilteredElementCollector collector =
new FilteredElementCollector(doc);

The collector object is now used to filter
the elements in the document. In the next step
we added a filter requesting that only rooms
be collected.

It has been added category filter to the
collector using the OfCategory() method.
Once the filter was applied, the collector only
provided access to rooms. The FilteredEle-
mentCollector class provides several methods
to add filters (and multiple methods can be ap-
plied at the same time for more complex re-
quirements).

Then we iterated through each room in
the collector using a foreach expression. The

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 71

code between the braces is repeatedly exe-
cuted on each of the elements found by the
collector. These elements will be rooms, at
this stage we accessed them as generic ele-
ments, as that's how the FilteredElementCol-
lector provides access to them.

foreach (Element elem in collector) {

//code between braces pair executed re-
petitively.}

The elem variable represents the current
element in the collector. So, when the code in
the body of the foreach statement gets exe-
cuted for the first time, the elem variable con-
tains the first room. When the code in the
body of the foreach statement is executed
again, this time the elem variable contains the
second room.

The as keyword first checks the actual
type of the object before performing the type
conversion: if the object is not of type Room,
the variable will be set to null. Even though it
has been fully expected the collector only to
return rooms, it is still good practice to dou-
ble-check that the room variable contains a
valid room, just in case.

if (room !'=null)

The above if statement performs a con-
ditional operation. If the condition provided
between the brackets evaluates to true, the
subsequent code block gets executed. An op-
tional else clause can be used to execute dif-
ferent code when the condition evaluates to
false (although this particular statement does
not have one).

Then uses a break statement to escape
the iteration, even though there may well have
been rooms that had not yet been checked.
The break statement stops execution of code
in the enclosing loop (in this case the foreach)
and starts executing the code following it.

if (room.IsPointinRoom(point)) {
break; }

On completion of the loop, the room
variable either contains the room in which the
point was found — if IsPointinRoom() suc-
ceeded for it — or the last room in the list of
rooms, otherwise. In either case, the contents
of this variable gets returned as the result of
the GetRoomOfGroup() method.

return room;

GetRoomCenter() method was defined
as follows:

public
room)

XYZ GetRoomCenter(Room

Il Get the room center point.
XYZ boundCenter
GetElementCenter(room);

LocationPoint locPt =
(LocationPoint)room.Location;

XYZ roomCenter = new
XYZ(boundCenter.X, boundCenter.Y,

locPt.Point.Z);
return roomCenter;

}

Conclusions

Modern projects for complex objects
the construction of, structures and entire in-
frastructures take years and thousands of man
hours. This work is filled with routine actions
that engages almost half of this time.

For example, if we are talking about
building design, engineers arrange electrical
equipment, ventilation, piping, heating ele-
ments and a lot of the rest manually. Family
Browser allows to do it in a few seconds and
just in two mouse clicks with clarity and fil-
tering of the desired type. This is a dynamic
interface to control, store and locate Revit
families and types. Family Browser stays up
to date with any changes made in windows
explorer. Ideal for any small or large practice
no matter what flavor of Autodesk’s Revit is
uses. All families can be controlled from a
central location allowing a BIM Manager to
instantly make changes, adding groups, tabs
or families.

The features of the developed plugin
are:

1) during the installation of the .msi
package (which is also ready to use), keys are
created in the registry dynamically to control
versions and directories, i.e. all libraries, .exe
files, local databases and. adding files, which
Revit needs directly;

2) when we start the audit, the relevance
of all files required for the plugin is checked
i.e. versions from the server are compared
with the versions from the registry of a current

72

user. If there is any update, the user has an op-
portunity to download all necessary files
(families, templates, ifc export, etc.). Down-
loading these files is not just the case, but us-
ing the self-made FamiliesDownloader.exe
file, which connects with the server and then
downloads only necessary archives, extracts
everything from them and distributes its con-
tents into the required directories;

3) to simplify and perceptibly speed up
the design in Revit software using the panel.
The panel contains types from families that
are grouped into categories — family catego-
ries are buttons from the header (fig. 3.14), for
example, cables, electrical appliances, safety
sensors etc. These types can be double-
clicked or dragged into the project without
any extra effort of uploading particular family
into the project.

4) The insertion occurs by a query in the
database, which stores all the info about fam-
ilies and its types (path to the family from
which to insert it, path to the picture, descrip-
tion, name, installation type, installation
place.

According to the Building Information
Model, each and every engineering object,
particularly Autodesk Revit object, has its
own properties and methods. By opering with
these properties and methods, it is possible to
automate and speed up designing process with
the help of programming.

In modern modelling systems the abil-
ity to work with programming frameworks is
established at the core level. Computer engi-
neers only need to choose which software de-
velopment system will be used to create pro-
jects in order to manipulate BIM objects.

For the implementation of the practical
part of my graduation project an integrated
development environment Visual Studio and
C# programming language was chosen for the
creation of the system because of the exhaus-
tive documentation and flexibility of this
framework.

Literature

1. Eastman C.M. BIM Handbook: A
Guide to Building Information Modeling for
Owners, Managers, Designers, Engineers and
Contractors. / C.M. Eastman. — Hoboken, NJ:
John Wiley & Sons, 2011. — 491 p.

2. Azure .NET Developer's Guide Tu-
torials, Create a C# Template for AutoCAD
[Internet Resource] / Web-site: azureweb-
sites.net; Access mode: http://gilecad.az-
urewebsites.net/Resources/Tem-
plate_Csharp_EN.pdf, free.

3. Guide of Revit Image Printer [Inter-
net Resources] / Web-site: Buildin360; Ac-
cess mode: https://www.building360.ch/Im-
agePrinter, free.

4. Family Browser Help Page [Internet
Resources] / Web-site: Building360; Access
mode: https://www.building360.ch/Fami-
lyBrowser/en, free.

Kynpenko C.O., ®omina H.b., Kpamapenko LII.
METOJ ABTOMATHU30BAHOI'O IMPOEKTYBAHHSA CKJIAJJHUX OB'€KTIB HA OC-
HOBI AUTODESK REVIT

Cyuacni npoekmu CKIaoHux 00'exmie, cnopyo ma iHpacmpykmypu 3aumaroms poKu ma mucsivi
JH0OCbKUX 200ut. Ll poboma nanoenena pymuHHuMu Oismu, SKi 3aUMArOmMb Maudice NOLOBUHY YbO2O
yacy. Jlocniosicenns 0anoi cmammi Oyau CNpAMOBAHi HA NIOBULEHHS eqheKMUBHOCI CUCTeM a8MoMa-
MU308AH020 NPOEKMYBAHHSA, CHPOWEHH POOOMU THICEHEPI8 Y MOOEN08AHHT CKIAOHUX 00'ckmis, ma-
KUX 5K CUCMEMA THIICEHEPHUX KOHCMPYKYin. /[ns peanizayii memody ma cmeopeHus niacina 0yio oo-
pano inmezposane cepedoguiye po3pooxu Visual Studio ma mosy npoepamysanus C #uepe3 ii euuepnuy
OOKYMEeHMAayito ma SHy4YKiCmb.

Cucmemu asmomamuszosanozco npoekmysanus (CAIIP) moocna nanrawmysamu 3a 00nomo2oio
DI3HOMAHIMHUX Memo0ie Npocpamysants, wo eiopisuaomsca 3a cknaonicmio. Ehe Revit API - ye in-
CIpYMeHm, SKUM RPOSPAMICIU MOXCYMb npayosamu 3 Revit, i @in ecmanoenioe, Ky @yHKYioHa b-
Hicmb npoepamicm modice suxopucmosgysamu 8 Revit. Revit API 0o36o1s¢€ nucamu incmpyxyii 01 Revit
OJ151 BUKOHAHHSL OOHE 3a THUUM.

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 73

Bionosiono oo xonyenyii Building Information Model, koorcen inowcenepnuii 06'exm, soxkpema 06'-
exm Autodesk Revit, mae c6oi éracmueocmi ma memoou. IIpayroouu 3 yumu 1acmugocmsamu ma me-
MoOamu, MONCHA AGMOMAMU3YEAMU MA RPULUSUOULUNIU NPOYEC NPOCKMYBAHHSL 34 0ONOMO20I0 NPO2PA-
MYBAHHSL.

V cyuacnux cucmemax agmomamuz08an020 npoeKmMy8anHs 30amHiCmb NPAYIO8AMuU 3 PAMKAMU
NPOSPAMYSAHHS BCMAHOBIEHA HA 6A3080MY PI6Hi. [HoceHepam nompibHo Tuule euUOpamu, sKa cucmema
PO3POOKU NPOSPAMHO20 3abe3nedents Oyoe BUKOPUCMO8Y8AMUCs OJisi CMBOPEHHS NPOeKMis, wob ma-
ninynoeamu 06 exkmamu BIM.

Kudrenko S.A., Fomina N.B., Kramarenko I.P.
METHOD FOR COMPLEX OBJECTS AUTOMATED DESIGN ON AUTODESK REVIT
BASED

Modern projects for complex objects the construction of, structures and entire infrastructures
take years and thousands of man hours. This work is filled with routine actions that engages almost half
of this time. Article purposes are increasing designing efficiency, simplifies and speeds up a work of
engineers in modeling of complex objects such as system of buildings engineering equipment structures.
For the implementation of method an integrated development environment Visual Studio and C# pro-
gramming language was chosen for the creation of the plug-in because of the exhaustive documentation
and flexibility of this framework.

Computer-aided design (CAD) systems can be customized using a variety of programming tech-
niques that vary in complexity. Ehe Revit API is the way programmers can work with Revit, and it
establishes what functionality a software programmer can use within Revit. Such as the Revit API allows
to write instructions for Revit to execute one after the other.

According to the Building Information Model, each and every engineering object, particulary
Autodesk Revit object, has its own properties and methods. By opering with these properties and meth-
ods, it is possible to automate and speed up designing process with the help of programming.

In modern modelling systems the ability to work with programming frameworks is established at
the core level. Computer engineers only need to choose which software development system will be used
to create projects in order to manipulate BIM objects.

Keywords: Computer-aided design, Building Information Modelling, Application Programming
Interface, Executables.

Kynpenko C.A., ®omuna H.b., Kpamapenxo WU.II.
METO/IbI ABTOMATU3UPOBAHHOI'O ITPOEKTUPOBAHUSA CJIOKHBIX OBBEKTOB
HA OCHOBE AUTODESK REVIT

Cospemennvle npoeKkmbl CLONCHBIX 0OBEKMOS, COOPYHCEHUN U UHDPACMPYKIMYPbL 3AHUMAIOM
2000l U MBICAYU HeN0BEYECKUX Yacos. Dma paboma HANOIHEHA PYMUHHBIMU OeliCMBUAMU, KOMOpble
3AHUMAOM NOYMU NOJIOBUHY dM020 8pemeHu. Mccnedosanue 0anHOU cmambl ObLIU HANPABIEeHbl HA
nogvluieHue IPHeKMmusHOCMU CUCTEM ABMOMATMUSUPOBAHHO20 NPOESKMUPOBAHUSL, YNpoujeHue padomul
UHIICEHEPOB 68 MOOETUPOBAHUU CLONCHBIX 00BEKMO8, MAKUX KAK CUCTHEMA UHICEHEPHBIX KOHCMPYKYULL.
Jna peanusayuu memooa u cozoanue niazuna Ovlia U3OPAHA UHMESPUPOBAHHAS cpeda pa3padbomKu
Visual Studio u sizvix npoepammuposanus C # 3a e2o ucuepnviearougyto 0OKyMeHmayuro u 2uOKoCme.

Cucmemvt asmomamu3suposannoeo npoexmupoganus (CAIIP) modcho Hacmpoums ¢ nOMOWbIO
PA3TUYHBIX MEMOO08 NPOSPAMMUPOBANUS, KOMOPble OMAUYAIOMCs no caodcHocmu. Ehe Revit API —
MO UHCMPYMEHM, C NOMOUWBIO KOMOPO20 NPOSPAMMUCTbL Mo2ym pabomamb ¢ Revit, u on ycmauas-
Jaueaem, KaxKyro QYHKYUOHATbHOCb NPOSPAMMUCTL MOdCem Uchoav3oseams 8 Revit. Revit API nozeo-
Jislem nucamo uHcmpykyuu 07s Revit 0151 8bINOIHEHUS 00HO 3d OPYIUM.

Coenacno xonyenyuu Building Information Model, xasicovtii unscenepuwiti 06vexm, 8 mom yucie
obvexm Autodesk Revit, umeem ceou ceoticmea u memoowl. Pabomas ¢ smumu ceoticmeamu u memo-
0amu, MONHCHO ABMOMAMUIUPOBAMb U YCKOPUMb NPOYECC NPOEKMUPOBAHUS C NOMOULIO NPOSPAMMU-
POBAHUAL.

B cospemennvix cucmemax agmomamuzupo8anHo2o npoeKmuposans CROCOOHOCMb pabomams
C PAMKAMU NPOSPAMMUPOBAHUL YCMAHOBIEeHA Ha 6a3060M YyposHe. HHiceHepam HYNCHO MONbKO Gbl-
bOpamv, Kakas cucmema papadbomxu npocpamMmHo20 obecneyeHust byoem ucnoab308amvcsi 0Jis Co304d-
HUSL NPOEKMO8, Ymobbl MaHunyaupogams obvekmamu BIM.

