
64 ___

UDC 004.418

Kudrenko S.A.,

orcid.org/0000-0002-0759-3908

Fomina N.B.,

orcid.org/0000-0003-2357-6371

Kramarenko I.P.

METHOD FOR COMPLEX OBJECTS AUTOMATED DESIGN ON

AUTODESK REVIT BASED

National Aviation University

stanislava@i.ua

nfomina@ukr.net

Introduction
Computer-aided design (CAD) systems

can be customized using a variety of program-

ming techniques that vary in complexity. Ob-

ject links programming is the most complex,

followed by macro languages, menu customi-

zation, and custom graphics. Custom graphic

– the easiest type of CAD systems program-

ming. Adding the block to a library of blocks

takes that programming up a level. The next

step up in custom graphics is to define a cus-

tom linetype. Another step up the ladder

would be creating a custom hatch pattern or

shape set. Most programmers are quite satis-

fied with learning to create block libraries [1].

Recent advances in technologies such

as Internet of Things (IoT), wireless sensors,

data processing and analysis, and Building In-

formation Modelling (BIM) have the poten-

tial to transform how we interact with the built

environment and improve the experience for

end users and service providers [1]. The IoT

devices and sensors are increasingly being de-

ployed in the built environment and industrial

applications.

The number of connected devices have

already overtaken connected human beings

and are estimated to be around 9 billion. The

sensor nodes are being deployed in various

application areas such as the industrial, trans-

portation, health and wellbeing, building au-

tomation, automotive and retail. The number

of sensor installation is increasing at an expo-

nential rate and some estimates suggest that

there will be around 50 billion connected de-

vices by 2020.

According to the Building Information

Model concept each and every engineering

object, particularly Autodesk Revit object,

has its own properties and methods. By oper-

ing with these properties and methods, it is

possible to automate and speed up designing

process with the help of programming. In

modern modelling systems the ability to work

with programming frameworks is established

at the core level. Computer engineers only

need to choose which software development

system will be used to create projects in order

to manipulate BIM objects.

Problem statement
Paper purposes are increasing designing

efficiency, simplifies and speeds up a work of

engineers in modeling of complex objects

such as system of buildings engineering

equipment structures.

For the implementation of method an

integrated development environment Visual

Studio and C# programming language was

chosen for the creation of the plug-in because

of the exhaustive documentation and flexibil-

ity of this framework.

Usage of Revit API
API is the acronym for Application Pro-

gramming Interface: the way a software pro-

grammer can communicate with a software

product. For instance, the Revit API is the

way programmers can work with Revit, and it

establishes what functionality a software pro-

grammer can use within Revit (fig.1.). Such

mailto:stanislava@i.ua

Проблеми інформатизації та управління, 63’2020 65

as the Revit API allows to write instructions

for Revit to execute one after the other.

Fig. 1. Revit API interconnection

A software plug-in is a type of program

module (or file) that adds functionality to a

software product, usually in the form of a

command automating a task or some custom-

ization of the product’s behavior. When we

talk about a plug-in for Revit – and the term

Add-In used for this product – we mean a

module containing code that makes use of the

Revit API. Revit loads such plug-ins and uses

them to adjust its behavior under certain con-

ditions, such as when a particular command is

executed by the user of the plug-in.

Both Revit and BIM are very important

for CAD systems future development. Revit

helps designers design, simulate, visualize

and collaborate in order to capitalize on the

advantages of the interconnected data within

a BIM model.

Another of the advantages of BIM is the

increasing number of simulation tools that al-

low designers to visualize such things as the

sunlight during different seasons or to quan-

tify the calculation of building energy perfor-

mance. The intelligence of the software, par-

ticularly Autodesk Revit, to apply rules that

are based on physics and best practices pro-

vides a complement for engineers and other

project team members. The software can do

much more of the analysis and modeling to

achieve peak performance, condensing

knowledge and rules into a service that can

run with the click of a button.

In modern modelling systems the abil-

ity to work with programming systems is es-

tablished at the core level. Developers only

need to choose software development system

connected with API to create projects.

Creation of plug-ins for engineer-
ing equipment modeling

An AddIn manifest is a file located in a

specific location checked by Revit when the

application starts. The manifest includes in-

formation used by Revit to load and run the

plug-in.

For plug-ins to load into Revit, they

need to be Class Library assemblies (DLLs).

It’s for this reason, in the second step, that it

should be selected the Class Library template.

The entered name is used to identify the pro-

ject within the solution.

The blank project, as created by Visual

Studio, did not automatically make use of the

Revit API. For it to do so, it should be added

project references to the interface DLLs in

Revit describing its API, dlland Revi-

tAPIUI.dll [3].

When using the Revit API, it is usual to

add project references to the two separate in-

terface DLLs making up the API: one deals

with core product functionality, the other with

the product’s user interface. We must link the

project to these files to be able to work with

Revit API.

• dll contains the APIs to access the

Revit application, documents, elements, pa-

rameters, etc.

• dll contains the APIs related to

manipulation and customization of the Revit

user interface, including command, selections

and dialogs.

Having added project references, it’s

important to set one of their properties appro-

priately (fig.2).

Fig. 2. The properties of RevitAPI

By default, Visual Studio adds project

references with its Copy Local property set to

True. This means that the referenced DLLs

will get copied to the project’s output folder

when it is built.

66 ___

Next, we added C# code using the Revit

API into the project. In other words, provid-

ing Revit with instructions on how to perform

the functionality of copying a user-selected

group from one place to another.

While developing code, it’s a good idea

to build the solution from time to time, to

check whether errors have been introduced in

the code. The code does not necessarily have

to be complete or functional when building

the solution. This approach can help avoid po-

tentially lengthy troubleshooting once the

code is complete, and has the side benefit of

automatically saving any edited source files

before the build starts.

Revit plug-ins are compiled into library

assembly files (DLLs) which are then loaded

and executed from within Revit’s memory

space (fig.3).

During execution of the .NET assem-

bly, CIL (residing in the assembly) is passed

through the CLR’s just-in-time (JIT) compiler

to generate native (or machine) code. JIT

compilation of the CIL to native code occurs

when the application is executed. As not all of

the code is required during execution, the JIT

compiler only converts the CIL when it is

needed, thus saving time and memory. It also

stores any generated code in memory, making

it available for subsequent use without the

need to recompile.

Fig. 3. Running Executables

During execution of the .NET assem-

bly, CIL (residing in the assembly) is passed

through the CLR’s just-in-time (JIT) compiler

to generate native (or machine) code. JIT

compilation of the CIL to native code occurs

when the application is executed. As not all of

the code is required during execution, the JIT

compiler only converts the CIL when it is

needed, thus saving time and memory. It also

stores any generated code in memory, making

it available for subsequent use without the

need to recompile.

In the last step of this process, the native

code gets executed by the computer’s proces-

sor.

Analysis of the classes in a revit plug-

in.

The class in a Revit plug-in that imple-

ments this interface is known as the entry

point for that plug-in: it’s the class that Revit

will attempt to find and call the Execute()

method upon. Putting it another way, when a

Revit user clicks on a command in the Revit

user interface listed under the External Tools

drop-down button on the Add-Ins tab, the

code in the Execute() method is run (exe-

cuted) from the corresponding class which

implements this IExternalCommand inter-

face.

[TransactionAttribute(TransactionMod

e.Manual)]public class Class1: IExter-

nalCommand{ public Result Execute(Ex-

ternalCommandData commandData, ref

string message, ElementSet elements) { }

}

Any block of code in a class which per-

forms a particular task (or action) is called a

method. The method declaration starts with

the word public in this case.

This method returns a Result (in fact an

Autodesk.Revit.UI.Result) rather than being

declared void (i.e. not returning anything).

The Result returned from the Execute()

method will tell Revit whether the command

execution has succeeded, failed or been can-

celled. If the command does not succeed, any

changes it made will be reversed (Revit will

cause the transaction that was used to make

them to be rolled back).

The Execute() method has three param-

eters: commandData, message and elements.

Let’s take a closer look at what each of these

parameters refer to:

Проблеми інформатизації та управління, 63’2020 67

1. commandData is of type Exter-

nalCommandData and provides with API ac-

cess to the Revit application. The application

object in turn provides with access to the doc-

ument that is active in the user interface and

its corresponding database. All Revit data (in-

cluding that of the model) is accessed via this

commandData parameter.

2. message is a string parameter

with the additional ref keyword, which means

it can be modified within the method imple-

mentation. This parameter can be set in the

external command when the command fails or

is cancelled. When this message gets set – and

the Execute() method returns a failure or can-

cellation result – an error dialog is displayed

by Revit with this message text included.

3. elements is a parameter of type

ElementSet which allows to choose elements

to be highlighted on screen should the exter-

nal command fail or be cancelled.

Let’s now look at the code inside in the

Execute() method. This is the actual set of in-

structions which uses the Revit API to per-

form certain tasks when command is exe-

cuted.

Let’s look at the code, line-by-line:

// Get application and document objects

UIApplication uiApp = commandData.Appli-

cation;

In the first line, uses the commandData

parameter that was passed into the Execute()

method to access the Application property of

this object, which provides with access to the

Revit application. For more details on under-

standing properties and reviewing the main

Revit API classes and the correlation between

them, see the Additional Topics.

To be able to use the Application prop-

erty just retrieved from the commandData pa-

rameter, it was created a container variable for

the object named uiApp of type UIApplica-

tion. Then we assigned the value of com-

mandData.Application to it for later use in

program. Variables can be named as long as

the name is unique in that code-block and is

not a reserved word (such as the “using” key-

word mentioned earlier).

 Document doc = uiApp.ActiveUIDoc-

ument.Document;

The uiApp variable (which contains the

Revit Application object) provides access to

the active document in the Revit user inter-

face via the ActiveUIDocument property. In

the above line of code – in just one line –di-

rectly accessed the database of the active doc-

ument (this database is represented by the

Document class).

Object Selection

Let’s look at how to prompted users to

select Groups using the API.

//Define a Reference object to accept

the pick result. Reference pickedRef = null;

Start by creating an empty variable

named pickedRef of type Reference and set

its initial value to be null (which literally

means nothing). Reference is a class which

can contain elements from a Revit model as-

sociated with valid geometry.

//Pick a group Selection sel =

uiApp.ActiveUIDocument.Selection;

pickedRef = sel.PickObject(ObjectType.Ele-

ment, "Please select a group"); Element

elem = doc.GetElement(pickedRef); Group

group = elem as Group;

Next, we accessed the current user se-

lection using the API. The user selection from

the user interface is represented by the Selec-

tion property on the ActiveUIDocument ob-

ject: placed this Selection object into a varia-

ble named sel of type Selection. This Selec-

tion object provides with a method named

PickObject(). As the method’s name suggests,

it shifts focus to the user interface and

prompts the user to select an object. The pa-

rameters of this method allow to specify the

type of element the user to select (it can be

specified if expecting users to select a face, an

element, an edge, etc.) along with the message

the user will see in the lower left corner of the

Revit user interface while the plug-in waits

for the selection to occur.

As the selected Group object has geom-

etry data associated with it, it was safe to

place it in the pickedRef variable declared

previously. Then it mast used the reference’s

Element property to gain access to the refer-

ence’s associated element: in this case it as-

signed its value to a variable named elem, of

type Element. As we are expecting the elem

68 ___

object to be of type Group, in the last line of

the above code snippet we performed a “cast”,

allowing us to treat the elem variable as a

Group via the variable named group.

Element elem = doc.GetEle-

ment(pickedRef);

In the manufacturing world, the term

casting refers to the act of setting a given ma-

terial into a mold to shape it into an object of

a particular form. Similarly, in the program-

ming world, casting means the act of trying to

set a value of one type into another. Casting

asks the language compiler to consider a

value in a different way. The as operator in C#

will cause the compiler to check the actual

type of the object being cast: if it is incompat-

ible with the target type, the value returned by

the operator will be null.

The aim of this initial plug-in is to place

a selected group at a location selected by the

user. To perform this task, it has been used the

PlaceGroup() method from the active docu-

ment’s database object under the creation-re-

lated methods made accessible via its Create

property. This Create property makes it pos-

sible to add new instances of elements – such

as Groups – to the Revit model. The Place-

Group() method, as expected, required to pass

in the location at which we wanted to place

group, as well as the type (used in the context

of Revit, rather than C#) of the group selected

by the user.

Finally, it is committed the transaction

object using the Commit() method. This en-

sured the changes encapsulated by the trans-

action were successfully written to the Revit

model.

Coding the New Functionality

For clarity and better organization of

the completed source code that we provide as

an attachment for each project, we have

changed the class names to match the project

and the functionality we are working with

group.

Type the following code fragment in-

side the class Class1, making sure it is outside

the Execute()method. The code defines a new

method, GetElementCenter(), which takes an

Element as a parameter and returns its center.

 Return the center of an element

based on its BoundingBox.

 public XYZ GetElementCenter(Ele-

ment elem) {

 BoundingBoxXYZ bounding =

elem.get_BoundingBox(null);

 XYZ center = (bounding.Max +

bounding.Min) * 0.5;

 return center;

 }

In the Execute() method, after the line

where we get the selected group, type the lines

of code highlighted below in bold. The new

statement calls new GetElementCenter()

method to get the center point of the selected

group.

 Group group = elem as Group;

 // Get the group's center point

 XYZ origin = GetEle-

mentCenter(group);

Find the room that contains the center

of the group.

Type the following code fragment in-

side the command class Class1, making sure

it is outside any existing method implementa-

tions. This code defines a new

GetRoomOfGroup() method, which takes a

Document and a point as parameters and re-

turns the Room in which the specified point

lies.

/// Return the room in which the given

point is located

 Room GetRoomOfGroup(Document

doc, XYZ point) {

 FilteredElementCollector collector

= new FilteredElementCollector(doc);

 collector.OfCategory(BuiltInCate-

gory.OST_Rooms);

 Room room = null;

 foreach (Element elem in collector){

 room = elem as Room;

 if (room != null) {

 // Decide if this point is in the

picked room

 if (room.IsPointInRoom(point)){

 break;

 }

 }

 }

 return room;

Проблеми інформатизації та управління, 63’2020 69

}

Back in the Execute() method, after the

line, GetElementCenter(), which was be

added in the last step, type the lines of code

highlighted below in bold. The new statement

calls new GetRoomOfGroup() method to find

the room containing the center of the selected

group.

 // Get the group's center point

 XYZ origin = GetEle-

mentCenter(group);

 // Get the room that the picked

group is located in

 Room room =

GetRoomOfGroup(doc, origin);

Calculate the center of the room and e.

Display the x, y and z coordinate of the center

of the room in a dialog box:

Type the following code fragment in-

side the command class, once again making

sure the code is outside any existing methods.

The code defines a new GetRoomCenter()

method, which takes a Room and – as the

name suggests – returns its center point. We

use the previously defined GetEle-

mentCenter() to calculate this, but we modify

the Z coordinate of the point we return to

make sure it’s on the floor of the room.

 /// Return a room's center point coor-

dinates.

 /// Z value is equal to the bottom of the

room

 public XYZ GetRoomCenter(Room

room){

 // Get the room center point.

 XYZ boundCenter = GetEle-

mentCenter(room);

 LocationPoint locPt = (Location-

Point)room.Location;

 XYZ roomCenter =

 new XYZ(boundCenter.X,

boundCenter.Y, locPt.Point.Z);

 return roomCenter;

 }

In the Execute() method, after the state-

ment which finds the room containing the

center point of group, type in the lines of code

highlighted in bold, below. The code gets the

room’s center point and displays it to the user

via a task dialog (a type of dialog that uses the

Autodesk Revit user interface style).

 // Get the room that the picked

group is located in

 Room room =

GetRoomOfGroup(doc, origin);

 // Get the room's center point

 XYZ sourceCenter = GetRoom-

Center(room);

 string coords =

 "X = " + source-

Center.X.ToString() + "\r\n" +

 "Y = " + source-

Center.Y.ToString() + "\r\n" +

 "Z = " + source-

Center.Z.ToString();

 TaskDialog.Show("Source room

Center", coords);

The first argument of TaskDia-

log.Show() is the name of which should ap-

pear in the title bar at the top of the dialog.

Remove or comment out (using two for-

ward slashes: “//”) the following line, which

was former step b. New group will be placed

relative to the center of the original group’s

room, so we do not need the user to select an-

ything else, at this stage.

Calculate the target group location

based on the room’s center and g. Place the

copy of the group at the target location:

Remove or comment out the current

PlaceGroup() call in the Execute() method

and replace it with the following lines in bold.

New group will be placed at a displacement

of (20, 0, 0) in feet from the center point of

the original group’s room (20 feet is the width

of the two rooms and therefore the horizontal

distance between their center points). As both

sourceCenter and new XYZ (20,0,0) are of

type XYZ, they can be added together to get

the new location coordinates.

// Calculate the new group's position

XYZ groupLocation = sourceCenter +

new XYZ(20, 0, 0);

doc.Create.PlaceGroup(groupLoca-

tion, group.GroupType);

This completes code for this project.

The complete code for this project is also pro-

vided for download at the top of this project.

70 ___

It can be useful to see the complete code to

compare results and ensure they are correct.

Save the file:

Build the project:

Inside Visual Studio, in the Debug

menu, click Build Solution to compile and

build plug-in.

Running the Plug-in

The steps to run the command:

1. Start Autodesk Revit 2019.

2. Open the Project file.

3. Start the command Diplo-

maPlaceGroup.

4. Select the group in Room 1.

We will see the following task dialog

(fig.4) showing the coordinates of the room’s

center.

Fig. 4. The task dialog window

Following this, a new group should be

inserted into Room 2. Because the displace-

ment of (20,0,0) is the vector from the center

of Room 1 to the center of Room 2, the group

appears to be copied from Room 1 to the same

relative location in Room 2 (fig.5).

Fig. 5. The window with new functionality

the GetElementCenter() method as follows:

 public XYZ GetElementCenter(Ele-

ment elem) {

 BoundingBoxXYZ bounding =

elem.get_BoundingBox(null);

 XYZ center = (bounding.Max +

bounding.Min) * 0.5;

 return center;

In the implementation of the GetEle-

mentCenter() method, we started by accessing

the BoundingBox property of the Element

passed in, storing its value in a variable

named bounding.

BoundingBoxXYZ bounding =

elem.get_BoundingBox(null);

The BoundingBox property is slightly

unusual in that it takes a parameter: the view

for which the bounding box is to be calcu-

lated. If this parameter is null, the property re-

turns the bounding box of the model geome-

try. If a property of a class takes one or more

parameters, the get_ prefix is needed before

the property name to read the property value.

This prefix isn't needed if the property doesn't

take any parameters: it can be just using the

property name.

The returned BoundingBoxXYZ con-

tains the coordinates of the minimum and

maximum extents of the Element's geometry.

The center point is calculated by taking the

average (or mid-point) of these two points.

For the sake of clarity, it should be stored this

in another variable named center.

Let's now take a closer look at the im-

plementation of the GetRoomOfGroup()

method. In this method, start by retrieving all

the rooms in the document, going through

them to find the room that contains the group.

The FilteredElementCollector class helped

with this task: it collects elements of a certain

type from the document provided. That's why

is it necessary to pass a document parameter

to the GetRoomOfGroup() method, so it can

be used there.

FilteredElementCollector collector =

new FilteredElementCollector(doc);

The collector object is now used to filter

the elements in the document. In the next step

we added a filter requesting that only rooms

be collected.

It has been added category filter to the

collector using the OfCategory() method.

Once the filter was applied, the collector only

provided access to rooms. The FilteredEle-

mentCollector class provides several methods

to add filters (and multiple methods can be ap-

plied at the same time for more complex re-

quirements).

Then we iterated through each room in

the collector using a foreach expression. The

Проблеми інформатизації та управління, 63’2020 71

code between the braces is repeatedly exe-

cuted on each of the elements found by the

collector. These elements will be rooms, at

this stage we accessed them as generic ele-

ments, as that's how the FilteredElementCol-

lector provides access to them.

foreach (Element elem in collector) {

//code between braces pair executed re-

petitively.}

The elem variable represents the current

element in the collector. So, when the code in

the body of the foreach statement gets exe-

cuted for the first time, the elem variable con-

tains the first room. When the code in the

body of the foreach statement is executed

again, this time the elem variable contains the

second room.

The as keyword first checks the actual

type of the object before performing the type

conversion: if the object is not of type Room,

the variable will be set to null. Even though it

has been fully expected the collector only to

return rooms, it is still good practice to dou-

ble-check that the room variable contains a

valid room, just in case.

if (room != null)

The above if statement performs a con-

ditional operation. If the condition provided

between the brackets evaluates to true, the

subsequent code block gets executed. An op-

tional else clause can be used to execute dif-

ferent code when the condition evaluates to

false (although this particular statement does

not have one).

Then uses a break statement to escape

the iteration, even though there may well have

been rooms that had not yet been checked.

The break statement stops execution of code

in the enclosing loop (in this case the foreach)

and starts executing the code following it.

if (room.IsPointInRoom(point)) {

break; }

On completion of the loop, the room

variable either contains the room in which the

point was found – if IsPointInRoom() suc-

ceeded for it – or the last room in the list of

rooms, otherwise. In either case, the contents

of this variable gets returned as the result of

the GetRoomOfGroup() method.

return room;

GetRoomCenter() method was defined

as follows:

public XYZ GetRoomCenter(Room

room)

{

 // Get the room center point.

 XYZ boundCenter =

GetElementCenter(room);

 LocationPoint locPt =

(LocationPoint)room.Location;

 XYZ roomCenter = new

XYZ(boundCenter.X, boundCenter.Y,

locPt.Point.Z);

 return roomCenter;

 }

Conclusions
Modern projects for complex objects

the construction of, structures and entire in-

frastructures take years and thousands of man

hours. This work is filled with routine actions

that engages almost half of this time.

For example, if we are talking about

building design, engineers arrange electrical

equipment, ventilation, piping, heating ele-

ments and a lot of the rest manually. Family

Browser allows to do it in a few seconds and

just in two mouse clicks with clarity and fil-

tering of the desired type. This is a dynamic

interface to control, store and locate Revit

families and types. Family Browser stays up

to date with any changes made in windows

explorer. Ideal for any small or large practice

no matter what flavor of Autodesk’s Revit is

uses. All families can be controlled from a

central location allowing a BIM Manager to

instantly make changes, adding groups, tabs

or families.

The features of the developed plugin

are:

1) during the installation of the .msi

package (which is also ready to use), keys are

created in the registry dynamically to control

versions and directories, i.e. all libraries, .exe

files, local databases and. adding files, which

Revit needs directly;

2) when we start the audit, the relevance

of all files required for the plugin is checked

i.e. versions from the server are compared

with the versions from the registry of a current

72 ___

user. If there is any update, the user has an op-

portunity to download all necessary files

(families, templates, ifc export, etc.). Down-

loading these files is not just the case, but us-

ing the self-made FamiliesDownloader.exe

file, which connects with the server and then

downloads only necessary archives, extracts

everything from them and distributes its con-

tents into the required directories;

3) to simplify and perceptibly speed up

the design in Revit software using the panel.

The panel contains types from families that

are grouped into categories – family catego-

ries are buttons from the header (fig. 3.14), for

example, cables, electrical appliances, safety

sensors etc. These types can be double-

clicked or dragged into the project without

any extra effort of uploading particular family

into the project.

4) The insertion occurs by a query in the

database, which stores all the info about fam-

ilies and its types (path to the family from

which to insert it, path to the picture, descrip-

tion, name, installation type, installation

place.

According to the Building Information

Model, each and every engineering object,

particularly Autodesk Revit object, has its

own properties and methods. By opering with

these properties and methods, it is possible to

automate and speed up designing process with

the help of programming.

In modern modelling systems the abil-

ity to work with programming frameworks is

established at the core level. Computer engi-

neers only need to choose which software de-

velopment system will be used to create pro-

jects in order to manipulate BIM objects.

For the implementation of the practical

part of my graduation project an integrated

development environment Visual Studio and

C# programming language was chosen for the

creation of the system because of the exhaus-

tive documentation and flexibility of this

framework.

Literature
1. Eastman C.M. BIM Handbook: A

Guide to Building Information Modeling for

Owners, Managers, Designers, Engineers and

Contractors. / C.M. Eastman. – Hoboken, NJ:

John Wiley & Sons, 2011. – 491 p.

2. Azure .NET Developer's Guide Tu-

torials, Create a C# Template for AutoCAD

[Internet Resource] / Web-site: azureweb-

sites.net; Access mode: http://gilecad.az-

urewebsites.net/Resources/Tem-

plate_Csharp_EN.pdf, free.

3. Guide of Revit Image Printer [Inter-

net Resources] / Web-site: Buildin360; Ac-

cess mode: https://www.building360.ch/Im-

agePrinter, free.

4. Family Browser Help Page [Internet

Resources] / Web-site: Building360; Access

mode: https://www.building360.ch/Fami-

lyBrowser/en, free.

Кудренко С.О., Фоміна Н.Б., Крамаренко І.П.

МЕТОД АВТОМАТИЗОВАНОГО ПРОЕКТУВАННЯ СКЛАДНИХ ОБ'ЄКТІВ НА ОС-

НОВІ AUTODESK REVIT

Сучасні проекти складних об'єктів, споруд та інфраструктури займають роки та тисячі

людських годин. Ця робота наповнена рутинними діями, які займають майже половину цього

часу. Дослідження даної статті були спрямовані на підвищення ефективності систем автома-

тизованого проектування, спрощення роботи інженерів у моделюванні складних об'єктів, та-

ких як система інженерних конструкцій. Для реалізації методу та створення плагіна було об-

рано інтегроване середовище розробки Visual Studio та мову програмування C # через її вичерпну

документацію та гнучкість.

Системи автоматизованого проектування (САПР) можна налаштувати за допомогою

різноманітних методів програмування, що відрізняються за складністю. Ehe Revit API - це ін-

струмент, яким програмісти можуть працювати з Revit, і він встановлює, яку функціональ-

ність програміст може використовувати в Revit. Revit API дозволяє писати інструкції для Revit

для виконання одне за іншим.

Проблеми інформатизації та управління, 63’2020 73

Відповідно до концепції Building Information Model, кожен інженерний об'єкт, зокрема об'-

єкт Autodesk Revit, має свої властивості та методи. Працюючи з цими властивостями та ме-

тодами, можна автоматизувати та пришвидшити процес проектування за допомогою програ-

мування.

У сучасних системах автоматизованого проектування здатність працювати з рамками

програмування встановлена на базовому рівні. Інженерам потрібно лише вибрати, яка система

розробки програмного забезпечення буде використовуватися для створення проектів, щоб ма-

ніпулювати об’єктами BIM.

Kudrenko S.A., Fomina N.B., Kramarenko I.P.

METHOD FOR COMPLEX OBJECTS AUTOMATED DESIGN ON AUTODESK REVIT

BASED

Modern projects for complex objects the construction of, structures and entire infrastructures

take years and thousands of man hours. This work is filled with routine actions that engages almost half

of this time. Article purposes are increasing designing efficiency, simplifies and speeds up a work of

engineers in modeling of complex objects such as system of buildings engineering equipment structures.

For the implementation of method an integrated development environment Visual Studio and C# pro-

gramming language was chosen for the creation of the plug-in because of the exhaustive documentation

and flexibility of this framework.

Computer-aided design (CAD) systems can be customized using a variety of programming tech-

niques that vary in complexity. Еhe Revit API is the way programmers can work with Revit, and it

establishes what functionality a software programmer can use within Revit. Such as the Revit API allows

to write instructions for Revit to execute one after the other.

According to the Building Information Model, each and every engineering object, particulary

Autodesk Revit object, has its own properties and methods. By opering with these properties and meth-

ods, it is possible to automate and speed up designing process with the help of programming.

In modern modelling systems the ability to work with programming frameworks is established at

the core level. Computer engineers only need to choose which software development system will be used

to create projects in order to manipulate BIM objects.

Keywords: Computer-aided design, Building Information Modelling, Application Programming

Interface, Executables.

Кудренко С.А., Фомина Н.Б., Крамаренко И.П.

МЕТОДЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ СЛОЖНЫХ ОБЪЕКТОВ

НА ОСНОВЕ AUTODESK REVIT

Современные проекты сложных объектов, сооружений и инфраструктуры занимают

годы и тысячи человеческих часов. Эта работа наполнена рутинными действиями, которые

занимают почти половину этого времени. Исследование данной статьи были направлены на

повышение эффективности систем автоматизированного проектирования, упрощение работы

инженеров в моделировании сложных объектов, таких как система инженерных конструкций.

Для реализации метода и создание плагина была избрана интегрированная среда разработки

Visual Studio и язык программирования C # за его исчерпывающую документацию и гибкость.

Системы автоматизированного проектирования (САПР) можно настроить с помощью

различных методов программирования, которые отличаются по сложности. Ehe Revit API –

это инструмент, с помощью которого программисты могут работать с Revit, и он устанав-

ливает, какую функциональность программист может использовать в Revit. Revit API позво-

ляет писать инструкции для Revit для выполнения одно за другим.

Согласно концепции Building Information Model, каждый инженерный объект, в том числе

объект Autodesk Revit, имеет свои свойства и методы. Работая с этими свойствами и мето-

дами, можно автоматизировать и ускорить процесс проектирования с помощью программи-

рования.

В современных системах автоматизированного проектирования способность работать

с рамками программирования установлена на базовом уровне. Инженерам нужно только вы-

брать, какая система разработки программного обеспечения будет использоваться для созда-

ния проектов, чтобы манипулировать объектами BIM.

