Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 49

UDC 681.2: 621.3.082.1: 531.75.08

Kozlyuk I1.0.
orcid.org/0000-0001-8239-8937
Kovalenko Yu.B.
orcid.org/0000-0002-6714-4258

FUNCTIONAL BASES OF THE SOFTWARE DEVELOPMENT AND
OPERATION IN AVIONICS

National Aviation University

avia_ira@ukr.net
yleejulee22@gmail.com

Introduction

Many flight control systems in civil avi-
ation have been successfully developed with
the help of special equipment and software.
The basic principles of computer software and
hardware for avionics require detailed re-
search as, in particular, theoretical and meth-
odological principles of software develop-
ment and practical application.

Substantiation of the basic principles of
software in avionics is evolving as research is
conducted and experience is gained in auto-
mation and software support architecture.
Specificity in the field of structural analysis
defines the term architecture, which describes
the typology of methods, their functionality
and the relationship of the components of the
system being modeled.

Functional principles of software devel-
opment and operation determine the analysis
and development of various solutions for im-
provement and innovation of aviation prod-
ucts and aviation enterprises in particular.
These principles are formed on the ideas of
integration, which is part of a comprehensive
analysis of business processes.

Thus, the relevance of the article is the
study of the avionics system, which has a
modular multilevel structure. At the same
time, classical approaches to the development
of aircraft operation systems are inefficient,
which requires the development of a specific
methodology that takes into account the sub-
ject area under study. This is due to the need
to integrate software for the operation of civil

aircraft with third-party software and hard-
ware systems used for flight control.

The following practically significant
constructions and components are of great im-
portance in this context: the software architec-
ture and the subsequent V-shaped model, as
well as the unity and integrity between the
structural components.

Literature analysis and problem
statement

In [1, 2] the results of research on the
development of a system for supporting air
traffic control solutions are presented. Such
system requires an iterative design process. A
separate design subsystem performs functions
aimed at standard platforms that can be used
in several types of applications simultane-
ously. In our study, we use the sharing of mul-
tiple applications and the reuse of computing
resources, which primarily affects the practi-
cal and research part of our research.

In [3] the results of the study of certifi-
cation of processing systems in avionics and
some issues of integration activities and anal-
ysis of software programs are presented. This
allowed us to formulate requirements to a vis-
ualization platform that supports several sec-
tions of a real-time operating system (RTOS)
on a multi-core processor used in avionics.

In [4], the results of the study of the
compliance with the requirements based on
the search for evolutionary calculations
(CEC) are presented. It is stated that require-
ments monitoring is a multi-purpose search
task, due to the purpose of each requirement

50

to one or more software elements (code ele-
ments, APl documentation and comments).
This allows us to justify the purpose of a non-
dominated sorting genetic algorithm (NSGA-
.

In [5] the results of the study of the ar-
chitecture of AECS Airbus A-380, Boeing
787, Sukhoi Superjet 100 and MC-21 are pre-
sented. It is stated that these systems are de-
signed with a similar design and contain cen-
tral data processing and transmission. Inter-
faces of ARINC 825, ARINC 664, and
ARINC 429 are used for data exchange be-
tween them. However, subsequent upgrades
of such systems are limited due to low flexi-
bility outside the network distribution. There-
fore, it can be concluded that it is appropriate
to conduct a research on the functional princi-
ples of software development and operation in
avionics, taking into account the urgent issues
of system reliability, data transmission, noise
reduction, weight reduction and dimensions
of the cable network.

With the development of integrated
modular avionics (IMA), dynamic reconfigu-
ration not only provides benefits in terms of
resource utilization and aircraft configuration,
but is also used as an effective failure man-
agement tool. In [6-7] the results of the study
of the dynamic reconfiguration processes and
its elements in avionics are presented. The
systems of the Petra network, which is widely
used as a modeling tool, have been studied.
This method of validation of dynamic IMA
reconfiguration is preferable to start design-
ing the system.

Among the promising standards for the
development and further operation of soft-
ware in aviation and, in general, in the aero-
space industry there is the SPACE standard.
The main purpose of this standard is to ensure
the compatibility of different types of soft-
ware, data transmission and information man-
agement to solve specific problems in the aer-
ospace industry [8]. The issues related to the
optimization of this software development re-
quire further study, which should be held tak-
ing into account current trends in the develop-
ment of information technology.

However, the issues related to the crea-
tion of software packages for the management
of certain processes in civil aviation (includ-
ing flight control) are insufficiently studied. It
Is so due to the specifics of this industry and
the trend according to which the dominant
place in the market of IT technologies belongs
to foreign companies [9, 10].

In practice, aerospace equipment sup-
pliers are interested in using multi-core pro-
cessors (MCPs) in their systems. Multiple
cores integrated into a single device allow
combining multiple functions on a single pro-
cessor and on the same hardware. The devel-
opment and use of the most sophisticated
equipment by the aviation industry to perform
important software functions of aircraft raises
new issues of safety and certification [11].

The problem of determining the func-
tional principles of software development and
operation in avionics is based on fundamental
elements of different practices in the software
solutions application.

In particular, the system of application
of dynamic reconfiguration and other modu-
lar designs also require the use of functional
and generalized principles in operation, which
will avoid many shortcomings and malfunc-
tions, and so on.

The purpose and objectives of
the study

The purpose of the study is to substan-
tiate the functional principles of software sys-
tems, including the structure of the optimal
cycle of software development for civil avia-
tion flight control.

Achieving the above-mentioned goal
involves solving the following tasks:

e To identify the main components of
the software development process, including
the functional aspects of the development of
applied software solutions for the operation of
aircraft in the field of civil aviation;

e To characterize the elements of the
system approach application to the software
and hardware functionality in avionics.

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 51

Identification of the main compo-
nents of the software development
process and functional aspects of the
development of applied software solu-
tions in civil aviation

In recent years (2018-2020), a number
of architectures and standards for the devel-
opment of IMA that use the requirements of
the 6532 ARINC specification have emerged
[15]. The ARINC specification 653 defines at
a high-level an example of software for the
IMA architecture. The widespread acceptance
and support of ARINC 653 is also evident in
the Future Airborne Capability Environment
(FACE) of the United States military avionics
programs. These and other IMA standards
place new demands on the software architec-
ture, especially the implementation of RTOS
(Real-Time Operating System) provided by

The concept of func-
tioning

Architecture require-
ments

Design details

the COTS (Commercial off-the-shelf) pro-
vider [15].

The development of avionics software
is based on the basic standard RTCA/DO-
178B [18]. Despite its separation from the real
of software development, this standard de-
scribes the entire development process and
makes requirements for such software. To de-
velop critically important avionics systems, it
IS necessary to ensure the minimum error pos-
sibility (for the highest level in avionics, the
probability of failure is set) [19, 3], as well as
to minimize the cost of developing and cor-
recting the code. Due to the system complex-
ity and its relationship with complex hard-
ware (or other software), in the field of avion-
ics a V-shaped model of development should
be used, taking into account the key compo-
nents in creating software (Fig. 1).

Operation
and support

System verification
and validation

Integration
and testing

Implementation

Fig. 1. V-shaped model of software development for aircraft operation

First of all, the V-shaped model allows
to provide synchronization of all participants
of the project on each iteration, and also gives
the chance to use already developed data and
methodology. Secondly, it can be adapted to
any project and does not depend on the types
of organizations and projects (Fig. 1).
Thirdly, the V-model allows to divide the de-
velopment into separate components, each of
which will include the necessary actions, in-
structions, recommendations and a detailed
explanation of the activity. This is especially
important for the multi-iterative cycle of de-
velopment and avionics software testing, be-
cause it allows, in fact, to divide the software
development into separate subcycles. Usually
the V-model is generalized into a spiral model
of development (Fig. 2).

The model allows to estimate risks at
each stage of development. In addition, it also
optimally distributes the specialists’ work-
load, when there is lack of time and resources,
into short periods of time (Iteration Packages
synchronized with the V-shaped model in
each Baseline). Modern solutions for control
and monitoring of aircraft operation systems
(Flight Control System) is a complicated soft-
ware and hardware complex, the work of
which is generally unknown to any of the em-
ployees and developers. Aviation software
has nuances and typical solutions that should
be emphasized [18].

Note that based on the identified rela-
tionships between the source data for the de-
sign of the primary structure of functions and

52

parameters that characterize the final struc-
ture of functions, as well as expressions:

F:(n,koy, z) = Kys, 1)
F:(F1,kgy,z) = n, (2)
F:(n,L) » m. (3)

We can conclude that the optimization
of the structure of functions is to minimize
each of the parameters that characterize it.

In order to estimate the changes in the
structure of functions and compare them be-
tween each other, we introduce the target op-
timization function y:

y=:‘—n*n+ﬁKA3+ﬁ*m. 4)

Expression (4) allows us to determine
the optimal configuration of the BWC, pro-
vided that all optimization parameters have
equal priorities. However, in practice, in each
case, the priorities between the parameters
may be different. In order for the developer to
be able to carry out optimization taking into
account the priority tasks of designing the
BWW, we introduce the weights a, b, c, then
expression (4) will take the form:

, Amax Amax

= n *n+b* K
43 (5)
- Amax *m.
Am
) ication

where:

An = nMing, gy (6)

AKy3 = AKp3A3min 0y (7)
Am = mming,, (8)

and Amax = the largest value among
An, AKAZ, Am.

The values of the weights a, b, ¢ are de-
termined expertly from the range from O to 1.
The optimal configuration of the BWW will
correspond to the minimum value of y.

To control each stage and for further
possibility of certification, the process is di-
vided into different levels, each of which cor-
responds to its own document, for which a
backlog is created, which controls it (report).
As a result, each stage of development, all er-
rors and corrections are classified and docu-
mented. Repeating each iteration of the devel-
opment of the development of the probability
of error is reduced. These documents are also
created on the basis of internal standards of
the developer and the requirements of the cus-
tomer.

Components of the process of software
development for the operation of wind tur-
bines are presented in the form of a structural
UML-diagram (Unified Modeling Language -
unified modeling language) (Fig. 3).

Analysis

. Detailed
Analysis design

Software design

Software
Tequirsments

Ana”
Lysis Ao

Design Verification

A PROONPE [onebional
i software

and Validation
L Sw Unit

Fig. 2. Generalization of the V-model into a spiral model of software development and testing for the
aircraft operation

Ipobremu inchopmamuszauii ma vnpasninng, 63°2020 53

4 N 4 Y
Specification of the :
Equipment
X r? . : <+ . -255
Cu SITOJI].EI :. specification RTCA DO
requirements
. q / . /
4 ™ 4)

Additional documents

Customer standards

and standards

. _J o _J
r .) r)
Software Quality Software Certification Software Dev glo pment
Assessment Plan Plan (PSAC) > and Design
(SQAP) B Requirements(RDS)
. / . /
4) -
Software Configuration Requirements of the
Manageﬂlen‘t Plan - standard to the selected
(SMSP) stack of software
TR I U
r)
: Software Verification
Documentation >

Software Development
(SDC)

Plan (SVP)
. A

Fig. 3. Structural UML-diagram of the relationship of documents and requirements in the process of
software development for aircraft operation.

To control each stage and for further
certification, the process is divided into dif-
ferent levels. Each level corresponds to its
own document. For each document a backlog
is created, which controls it. As a result, each
stage of development, all errors and correc-
tions are classified and documented. Due to
repeating the iteration of the development
each time the probability of error is reduced.
These documents are also created on the basis
of the developer internal standards and the
customer requirements.

The components of the aircraft software
development process are presented in the
form of a structural UML-diagram (Unified
Modeling Language) (Fig. 3).

As can be seen from Fig. 3, the software
customer is at the top of the process. Therefore,
the first step is to analyze the customer’s require-
ments and determine the basic system function-
ality. The general concept, software scheme, and
technical details of the equipment used are based
on it. That is, the creation of primary system

specifications (Equipment Specification) and re-
quirements (System Requirements).

Most of the available tools do not support
automatic link tracking updates. One of the
problems in software maintenance is the auto-
matic support of tracking requirements. The
process of generating requirements tracking is
time consuming and error prone [4]. An option
to overcome these difficulties may be the prac-
tice of certain companies to accumulate history
of changes from previous service experience.

When the base on which the system will
be formed is determined, the Software Devel-
opment Plan and Qualification Plan (plan for
Software Aspects of Certification) are ap-
proved. Despite the fact that the main thing for
the customer is to get ready-made software, a
parallel process is the hardware development,
which cannot be ignored, in particular, because
the development of software in avionics is very
closely related to the hardware. Although most
software is embedded code, but it is highly de-
pendent on the layout of the systems.

54

Systematic approach application
to the functionality of software and
hardware in avionics.

During latest decade, original equip-
ment manufacturers have considered the use
of systems based on COTS (Commercial Or-
bital Transportation Services). At the same
time, there is a tendency to move away from
the systems development based on integrated
architectures, where each individual subsys-
tem performs a special function. There is a di-
rection for common computing platforms that
can be used in multiple types of applications
and, in some cases, can run multiple applica-
tions at the same time. This approach, known
as integrated modular avionics or IMA, re-
sults in fewer subsystems that take up less
space, reduce cost, and power consumption.
A number of software developers for civil
aviation face some challenges in its optimiza-
tion based on the use of IMA principles.
Therefore, the study of theoretical and practi-
cal aspects of software development for flight
control in civil aviation is relevant and signif-
icant in modern conditions and involves solv-
ing a range of technical problems.

Modern means of informatization make
it possible to automate certain procedures that
are performed as part of the process of organi-
zation and management of civil aviation
flights. Management and control of operations,
according to some authors [9], is based on the
implementation of adaptive multi-hypothetical
algorithms, which are evaluated on the basis of
the Bayesian method. The above algorithms
provide monitoring of the trajectory in a three-
dimensional coordinate system.

Let's pay attention to the software for-
mation taking into account the risk-oriented
approach used in the aircraft operation, based
on the following prerequisites [12]:

o |dentification of threats (list of dan-
gerous events) and factors.

¢ Risk assessment.

¢ Identification of ways to reduce risks
(by the method of level management).

e Assessment of economic costs to re-
duce risks to an acceptable level.

o Creation of a posteriori (active) and
a priori (proactive) expert knowledge base for
risk assessment in order to make proactively
corrective decisions aimed at reducing risks.

e Preventive (proactive) danger fore-
casting.

e Risks identification using the con-
cept of "threat" and "danger" as a possible
proactive prediction of the system in possible
dangerous situations by type of threat.

Based on the above, we can conclude
that the author proposes to design automated
flight control systems based on the risk toler-
ance criteria. However, the difficulty of using
such an approach is that the software devel-
opment process must meet the criteria of the
RUP (rational unified programming) and XP
(extreme programming) approaches. And, in
addition, should take into account at the initial
stage of determining the test cases on the basis
of which the software will be created ("devel-
opment through testing™ program creating ap-
proach) [12].

Software efficiency is estimated by
such important criteria as modularity, ease of
integration, ease of operation and adaptability
of the system. Software standardization deter-
mines the manufacturability of the PNP pro-
cedure. Plug and Play technology was primar-
ily an industry standard for automatic pro-
cessing and operation of software, which sim-
plified the operation and interaction of pro-
grams and their components [6].

However, in case of errors in IMA sys-
tems, response mechanisms, such as compo-
nent failure, etc., will be the first to respond,
as in dynamic reconfiguration (Fig. 4).

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020

BACKHUP
CFM1 CFM2 CFM3
REP1 REP1 REP1
CRACK1
BUS
BACKHUP
CFM1 CFM2 CFM3
REP1 REP1 REP1
CRACK2

Reconfiguration

BACKHUP
CFM1 CFM2
REP1 REP1
CRACK1
BUS
BACKHUP
CFM1 CFM2 CFM3
REP1 REP1 REP1
CRACK2

Fig. 4. IMA reconfiguration peculiarities
A reconfiguration peculiarities.

56

Error rate

Error madule level

Hﬂf"’lﬁ""m

Errar process level

Eror section laval

—

Types of emrors

l

— Program error caused by the ap-

— Partition confignration table er-

— hladule configuration tzhle_error

plication process. ror during partition initializztion. during moduls initizlization.
— Illegsl (incorrect) OS5 requoast. — Partition initialization arror. — (Other errors during mitialization
— Process errors {overflow, — Ermars that gccur during process | | of the main madula.
mEmMOTY impairmeant, &tc.). managsrment. — Emars while performing a spe-
— Errors that occur during the er- cific system function.
ror handling process. — Emars while switching from one
to another partition.
— Failure.
— — 7
Fesponse mechanizm
L
— Ignors. — Ignora. — Ignore, write down the mistake,
— Zwitching off the module. — Stop the section (IDLE}. bt do not take action.

— Besetting the module.
— Becovery actions definad bre
irnplementation.

— Festart the section.

— Ignore the emor n tomes before
resuming.

— Ztop the fanlty process and re-
initializa it from the login address.
— Ztop the faulty process and start
another procass.

— Stop the fanlty process (asnome
that the partition detects and
rastores).

— Festart the section.

- Sinp the section (IDLE).

Fig. 5. Classification of errors and response mechanisms

Based on ARINC 653 [13] the errors in
IMA and response mechanisms are classified
as shown in Figure 5.

If the error cannot be resolved by re-
sponse mechanisms, it causes a dynamic re-
configuration. In such cases, the reconfigura-
tion is referred to as software, because the
hardware failure becomes inevitable [14].

Dynamic IMA reconfiguration can
change tasks depending on requirements and
effectively recover from failure [2]. This
makes the system more flexible, reduces
equipment redundancy and the cost of un-
scheduled maintenance. In addition, the hu-
man factor involvement increases the com-
plexity of dynamic reconfiguration [7].

Significant attention needs to be paid to
the key criteria of remote control of the air-
craft operation process as the main technolog-
ical components of the integrated modular
avionics development (IMA), namely:

e Laptops at the flight control point
must be connected to the equipment status
identification systems by graphic display.

e The software structure must have a
user-friendly interface.

e The software module is needed to
identify the status of the aircraft maintenance
system.

e The aircraft systems control module
should be present in an emergency situation.

e All system components (clusters)
must have a modular structure [16].

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 57

As for the IMA reconfiguration mecha-
nism, it includes statistical and dynamic re-
configurations. When the system is initial-
ized, applications are loaded into the target
module [17]. In the future, the operation re-
duces the need for maintenance and provides
the possibility of replacing the module. The
configurator allows you to detect faults, alert
and report about them. At the same time, there
is a connection between the detection of sim-
ilarities and the occurrence of errors of this
type [7].

Software for the operation of civil air-
craft must also be integrated with third-party
software used for flight control. According to
the authors, the interaction between complex
programs (for example, title displays, map
display systems and weather radars) should be
provided. In particular, it is proposed to use
the technology of multi-core processors to fa-
cilitate such a variety of programs as:

e Input/output loading.

e Running multiple, different operat-
ing environments (such as Linux or other non-
COTS operating systems) using virtualiza-
tion.

Which allows to meet the increasingly
demanding needs of these applications in
terms of power and processing speed [1].

However, there are separate architec-
tural criteria for the creation of software in the
field of civil aviation [2], namely:

e IMA architecture should allow mul-
tiple programs to share the same computing
resources (multithreading) to reduce the num-
ber of subsystems, which will allow more ef-
ficient use of system resources and leave
room for further expansion.

e The IMA architecture must isolate
the application not only from the base bus ar-
chitecture but also from the base hardware ar-
chitecture. This practice increases the mobil-
ity of applications between different plat-
forms and allows the introduction of new
equipment to replace outdated architectures.

e Maximum use (IMA architecture
should allow reuse of obsolete code). This
practice reduces development time by giving
the developer a method of redistributing ex-
isting applications without major changes.

¢ Reducing the cost of change (IMA
architecture should reduce the cost of change,
as it facilitates reuse, and by separating the
components of the platform that run on a sin-
gle processor, it simplifies the impact analy-
sis, reducing the cost of reuse testing) [2].

The application of the concept of dis-
tributed IMA (DIMA) is a promising trend in
the development of avionics. This is espe-
cially true for the practical application of ap-
plied software solutions. The modules in sep-
arate units are installed throughout the aircraft
near the sensors and actuators. This approach
allows to reduce the weight and size of the ca-
ble network, and reduces the noise of trans-
mitted data. That in turn reduces the develop-
ment time of further modernization and in-
creases the reliability of the system [5].

At the heart of the software design pro-
cess are the fundamental principles that are
present throughout the development process,
and the main one is "dissimilarity”. This prin-
ciple determines that each part of the aircraft
operation control system must be imple-
mented by different groups of people on dif-
ferent hardware components and using differ-
ent software. First of all, of such software de-
signs as: development tools and programming
languages. Thus, the system is divided into
software and hardware-independent parts,
and the development process is controlled by
different groups of people for different tasks
and at different levels in accordance with Fig.
3 structures.

Currently, the main approach to the de-
sign and development of on-board systems of
civil aircraft is the approach of integrated
modular avionics. According to this ap-
proach, specialized controllers are replaced
by general-purpose processor modules, which
provide independent operation of different
aviation systems, their own wires of each avi-
ation subsystem are replaced by virtual con-
nections within a switched network infra-
structure based on technologies such as
AFDX (Avionics Full DupleX Switched
Ethernet) and CAN (Controller area network).
This reduces unreasonable duplication of
hardware, which leads to unacceptable levels
of power consumption and complexity of the

58

onboard equipment system. On the other
hand, this approach greatly complicates the
process of software and hardware develop-
ment, sets new challenges in the design and
integration of software and hardware. With
the implementation of the IMA approach in
the complex of onboard equipment of the air-
craft, a new subsystem appears. It provides a
hardware platform for the operation of soft-
ware of other onboard systems. This subsys-
tem is called the IMA platform and
codenamed ATA-42. The team responsible
for designing, configuring and verifying the
IMA platform is usually called the system in-
tegration team, as its task is not only to de-
velop a stand-alone subsystem, but also to co-
ordinate the needs of all users of the platform
and ultimately integrate the entire software
and hardware components that use IMA plat-
form.

In the context of designing complex
software and hardware systems, such as the
IMA platform, the main core is the architec-
ture of the complex, around which the re-
quirements for the system as a whole and its
individual components, design trade-offs,
analysis and verification, etc., are built.
Therefore, it is not surprising that architec-
tural models that describe the components of
the system and the relationship between them,
become the basis for the formation of new
technologies and tools for design automation.
They allow to describe different aspects of ar-
chitecture in a single formalized model,
which can be processed by different tools to
check the internal consistency of the architec-
ture, meet the system's various requirements,
automate design decisions, generate configu-
ration data/files, source code and more.

The result of the initial design of certain
components of software development pro-
cesses is a system model, usually performed
in Matlab/Simulink, Labview environments.
Based on the model, documents are created
that regulate which hardware should be used
and what connections they should have with
each other. At least the result of this stage is
the creation of two documents: the definition
of hardware and hardware-software compo-
nents.

Next is the stage of the engineering pro-
cess of preparation, assembly of boards and
finished modules (Control Electronic, etc.),
i.e. directly installation, wiring of the neces-
sary microcontrollers, chips, peripherals, for
which the necessary software will be written.
To interact with the hardware, there must be
drivers and interaction layers (framework
layer), on the basis of which the application
must be built. Avionics software development
should begin with the creation of appropriate
drivers/functionalities, or make changes to the
software library, based on the document HSI
(Hardware-Software Interface).

Accordingly, the Universal Framework
Library includes a variety of drivers for de-
vices certified for use in aviation, as well as
certified standard functions and procedures.
This is a matter of principle, because, for ex-
ample, the usual strcmp function cannot be
used directly, it must be rewritten according
to standards and be certified. A set of such
certified standard functions, prototypes, tem-
plates serves as a basis in the Framework
layer. This attitude is especially critical for se-
cure mathematical operations (fast detailed
division for integer processors, module, root,
as an example), and for working with
memory. All algorithms are different from
STL.

For use on all sorts of devices, the
Framework should include driver sets with
the DrvHigh <-> DrvLow structure. Here, in
the DrvHigh package you need to place all
sorts of interfaces for device drivers (Flash,
Eeprom memory, digital-to-analog, analog-
to-digital converters, real-time clocks, inter-
rupts, CAN, ARINC, LAN chips, etc.). In
turn, each of these driver interfaces can use
one or more drivers for a specific device (a
memory chip, converter, etc.).

Once the hardware is installed and con-
figured, you should create a Software Re-
quirement Document that describes the func-
tions of the software. This is the document on
the basis of which the software (application)
should be developed. According to this ap-
proach, the avionics software developer does
not see the full picture of what he is actually
creating the program for, but operates with the

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 59

necessary requirements and the architecture
that he must create. The requirements for the
developer are the following documents:

e Software Design Standard — a stand-
ard that defines the overall style of the pro-
gram and the approach to creating architec-
ture.

e Programming Standard — a program-
ming standard that determines what is al-
lowed to write in code and in what style.

e Software Requirements Document —
software requirements, documented and di-
vided into different Baseline and iteration
package within them (high-level specifica-
tion) [19, 3].

Thus, the process of developing a sys-
tem for aircraft operation should take place
from 2-3 large iterations (baselines) to 18-20
for large and complex systems (including
more than 40 — for Framework complexes).
Software and hardware units require separate
certification. Moreover, each unit must have
its own certificate, which will properly affect
the system approach used in the work of soft-
ware and hardware of automated systems.

The main components of the software
development process for the civil aircraft op-
eration are based on a multilevel system,
which is divided into software and hardware-
independent parts.

In addition, the development process is
controlled by different groups of people for
different (not always directly dependent)
tasks and at different levels of creation and
implementation of the software product and
its components. Therefore, the classical ap-
proaches to the development of aircraft oper-
ation system are inefficient, require further
development and application of appropriate
software techniques in avionics.

Thus, avionics systems now are com-
plexes of software and hardware, so the meth-
ods and approaches developed in the field of
design and analysis of avionics and software
systems should enrich each other.

For this reason, experience in the use of
formal methods of verification of complex
software and hardware systems, such as oper-
ating systems and microprocessors, has

quickly mastered another area — the develop-
ment of tools for design and integration of
avionics systems, as many problems in this
new area can be solved based on modeling
and verification technologies.

Review of the results of the study
of the functional principles of develop-
ment and subsequent operation of
software in aviation

The obtained results of research in the
field of software development and operation
are substantiated by a careful analysis of the
introduction and operation of software prod-
ucts in the field of aviation. Unfortunately,
there are some limitations to the study of the
functional foundations of software develop-
ment and operation in the field of aviation.
They are justified primarily by the problems
of the practical nature of software develop-
ment and operation, namely the financing of
software and hardware of automated systems.
Prospects for the study of the functional prin-
ciples of development and operation of soft-
ware in avionics are justified by the fact that
when analyzing the activities of the business
entity, each aspect can be given enough atten-
tion without being distracted by its relation-
ship with other categories.

Conclusions

1. Software development and operation
in the field of aviation have own specifics,
which is based on relevant standards.

Ensuring the continuity and integration
of software in the process of its development
and testing involves the use of a wide range
of technologies.

Based on the use of this model both the
development of software solutions is held and
relevant documents are created. The docu-
mentation is a description of the main blocks
of the program, the order of integration of
modules, system architecture, and other for-
malities that reflect the results of creating
source code.

The main components of the process of
creating software for the operation of aircraft
in the field of civil aviation are based on a
multilevel system, which is divided into soft-
ware and hardware-independent parts. In ad-
dition, the development process is controlled

60

by different groups of people for different
(not always directly dependent) tasks and at
different levels of creation and implementa-
tion of the software product and its compo-
nents. Therefore, the classical approaches to
the development of aircraft operation system
are inefficient, require further development
and application of appropriate software tech-
niques in avionics.

The process of developing a system for
aircraft operation should take place from 2-3
large iterations (baselines) to 18-20 for large
and complex systems (including more than 40
— for Framework complexes). Software and
hardware units require separate certification.
Each unit must have its own certificate.

2. The considered methodical ap-
proaches to software development in the field
of civil aircraft operation allowed to deter-
mine the V-shaped model of this process and
to substantiate its main components. It is rec-
ommended to fragment the software develop-
ment process, namely: the stages of design de-
velopment in UML or system modeling, de-
scription of functionality and algorithm for
solving the implemented requirements for the
tester. The algorithm is implemented accord-
ing to the black box model: a description of
the input and the expected response. In addi-
tion, we note the stages of the process of di-
rect code generation, the process of pro-
cessing and compiling software code to the
state of absence of errors and the process of
running and integrating software on the simu-
lator. As for the introduction of results into
the version control system and reports, this is
the final and important stage of development.

Thus, for the design of modern avionics
systems, a set of tools called MASIW pro-
vides both a common platform for the design
and analysis of architectural models, and a
specialized solution for a specific domain of
avionics systems. It supports the creation, ed-
iting, and management of AADL models in
both text and graphics formats. MASIW also
provides various functions for the analysis
and synthesis of AADL models, simplifies the
solution of a number of tasks related to the de-
velopment of aviation systems. It allows you
to conveniently and clearly create and edit

models of such systems in AADL, as well as
analyze such models for compliance with var-
ious requirements related to both the structure
and behavior of the model (calculate various
temporal characteristics, predict the behavior
of the simulated system in various situations,
including non-standard behavior of compo-
nents and failures within the system). In addi-
tion, it facilitates the design of architecture
through the implementation of a number of al-
gorithms for model synthesis. This allows, in
particular, to distribute the tasks on the com-
puting units so that each task was allocated
enough processor time, and generate an on-
board network model and network resource
allocation scheme according to the needs of
system components.

The design of modern avionics systems
(MASIW tool) is constantly evolving — this
development allows for cooperation, close co-
operation with customers, potential users and
with the international community of develop-
ers of open standards and open tools for sup-
port for the development, integration and ver-
ification of responsible systems based on the
use of modeling tools.

Literature

1. Hayley J., Reynolds R., Lokhande K.,
Kuffner M., Yenson S. Human-Systems
Integration and Air Traffic Control. Lincoln
laboratory journal, 2012. — Vol. 19, Ne. 1. — P.
34-49.

2. Parkinson P., Kinnan L. Safety-
Critical Software Development for Integrated
Modular Avionics. — Wind River, 2015. —
Vol. 11. — No.2. [Internet Resource] / Access
mode: https://events.windriver.com/wrcd01/-
wrcm/2015/02/Safety-Critical-Software-
Development-for-Integrated-Modular-
Avionics-White-Paper-1.pdf.

3. Tiedeman H., Parkinson, P.
"Experiences of Civil Certification of Multi-
Core Processing Systems in Commercial and
Military Avionics, Integration Activities, and
Analysis," SAE Int. J. Adv. & Curr. Work. in
Mobility 1 (2): 419-428, 20109.

4. Adnane Ghannem, Mohamed Salah

Hamdi, Marouane Kessentini, Hany H.
Ammar. Search-based requirements
traceability recovery: A multi-objective

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 61

approach, Proc. IEEE Congress on
Evolutionary Computation (CEC), 2017. — p.
1183-1190.

5. ES Neretin et al 2019 J. Phys.: Conf.
Ser. 1353 012005.

6. Chuanwen Lin et al 2020 J. Phys .:
Conf. Ser. 1544 012171.

7. Jiang Z., Zhao T., Wang S., Ju H.
New Model-Based Analysis Method with
Multiple Constraints for Integrated Modular
Avionics Dynamic Reconfiguration Process.
Processes, 2020. — 574 p.

8. Rozhdestvenskaya K.N. Temporary
analysis of the control system in the data
processing network. Information and control
systems, 2019. — Ne 1. — P. 32-39.

9. Bondar D.S., Prokhorov A.V. Analiz
pokazateley = nadezhnosti aerodromnykh
sistem upravleniya vozdushnym
dvizheniyem. Nauchnyy vestnik MGTU GA,
2016. — Ne5. [Internet Resource] / Access
mode:
https://cyberleninka.ru/article/n/analiz-
pokazateley-nadezhnosti-aerodromnyh-
sistem-upravleniya-vozdushnym-
dvizheniem.

10. Vysotsky A.V., Korshets A.A.,
Lymar R.V., Makarov S.A., Martynov A.A.
Automation of processes of collection,
processing and display of information on the
air situation at the command and control point
in the management of flights of state aviation.
Collection of scientific works of Kharkiv
National University of the Air Force, 2018. —
Ne3 (57). — P. 103-109.

11. J. Athavale, R. Mariani, M.
Paulitsch. "Flight Safety Certification
Implications for Complex Multi-Core
Processor Based Avionics Systems." IEEE
International Reliability Physics Symposium
(IRPS), Monterey, 2019. — P. 1-6.

12. Yevdokimov V. Integrated safety
management system for aviation activities
based on ICAO standards and recommended
practice. Journal of Science, Practice,
Economics, 2013. — Ne2 (45). [Internet
Resource] / Access mode:
https://cyberleninka.ru/article/n/integrirovan
naya-sistema-upravleniya-bezopasnostyu-

aviatsionnoy-deyatelnosti-na-osnove-
standartov-i-rekomendovannoy-praktiki-
ikao.

13. Aeronautical Radio.
Application Software Standard
ARINC653: Annapolis, 2010.

14. Montano G., McDermid J.
Human Involvement in Dynamic
Reconfiguration of Integrated Modular
Avionics, Avionics. In Proceedings of the
27th Digital Avionics Systems Conference,

Avionics
Interface;

St. Paul, 26-30 October 2008; IEEE:
Piscataway, 2008.
15. ARINC Specification 653.

Avionics Application Software Standard
Interface. [Internet Resource] / Access mode:
https://www.sae.org/standards/content/arincé
53p3a-1/.

16. Il'venko C.C. Avtomatizatsiya,
distantsionnoye upravleniye i nadezhnost
'svetosignal'noy sistemy sovremennykh
aerodromov grazhdanskoy aviatsii.
Naukoyemkiye tekhnologii, 2016. — Ne 2 (30).
—P. 211-215.

17. Committee, AE ARINC 664
Aircraft Data Networks, Part7: Avionics Full
Duplex Switched Ethernet (AFDX) Network;
Aeronautical Radio, Inc.: Annapolis, 2005.

18. DO-178B Software
Considerations in Airborne Systems and
Equipment Certification. Dept. of
Measurement and Information Systems.
[Internet Resource] / Access mode:
https://inf.mit.ome.hu/sites/default/files/mate
rials/taxonomy/term/445/13/13 CES_DO-
178B.pdf.

19. RTCA DO-255/EUROCAE ED-
96. Requirements Specification for Avionics
Computer Resource (ACR). [Internet
Resource] / Access mode: https: // standards.
globalspec. com / std / 1968378 /| RTCA%
20D0O-255.

62

Ko3awk 1.0., Kopanenko 10.5.

®YHKIIOHAJIbHI 3ACAJIU PO3POBKHU TA EKCILTYATAIIl IPOT'PAMHOI'O
3ABE3IIEYEHHS B ABIOHIII

Y x00i 0ocnioocenns nposedeno ananiz hyHKyioHarbHUx 3acad ma nioxooisé wooo 8U3HA-
YeHHSI OCHOBHUX O0COOIUBOCMEN NPOSPAMHO20 3aOe3neyeHHs, sKe BUKOPUCTNOBYEMbC Olsl
excniyamayii nogimpanux cyoen. Oxapakmepuzo8ano meopemuyHi acnekmu nooyoosu ap-
XimeKxmypu npocpamHux piuiens y cghepi yugiivHoi asiayii Ha 3acadax cy4acHux nioxooig po-
3pobKku cucmem aemomamuzayii. Pozenanymo ocnoeni HopmamueHi eumoeu 0o op-
2AHI3AYIUH020 MA MEXHON02IYHO20 3a0e3neduents npoyecy po3pooKu NPOSPAMHUX DilleHb)
cghepi yusinonoi asiayii. Buznaueno ocobnusocmi V-no0dionoi mooeni po3pooxu npoepamuozo
3abe3neueHHs Wooo eKCnayamayii nogimpaHux cyoen. JJoxymenmayis 00 npocpammuo2o 3abes-
neyeHHs NOBUHHA CKIA0AMUCs 3 ONUCY OCHOBHUX OIOKI6 npocpamu, NOpsaoKy inmezpayii mMo-
oynie, apximexmypy cucmemu ma iHwi opmanvHocmi, SKI 8i000padcaioms pesyibmamu
CMBOPeHHs BUXIOHO20 NpocpamHo2o Kody. Ha ochosi onucano2o nioxody 0o po3pobku npo-
2PAMHO20 KOMNIIEKCY 018 eKChaAyamayii nogimpsanux cyoeH cqpopmosano bauenns ma Kpumepii
YUKILY pO3poOKU IHopMayitiHux piuens y cghepi yusinbHoi asiayii, o HANeHCHUM YUHOM BNIIU-
8ae Ha po3eumox 2anysi. B zanescnocmi 610 yHKYIOHANbHUX XAPAKMEPUCTUK OMPUMAHUX
NPOCPAMHUX pilleHb CKIA0AEMbCs QIHATbHA OOKYMeHmMayis, AKa makodic MiCmums pe3yib-
mamu o020 MeCcmy8aHHs 8 YMO8ax nepeonpomuciosoi excnayamayii. CyyacHi cucmemu
ABIOHIKU Maloms MOOYIbHY bazamopienegy cmpykmypy. Ipu ybomy xkracuuni nioxoou 0o po-
3POOKU cucmem eKCniyamayii nosimpanux cyoeH € ManoeQekmueHumu, wo nompedye po-
3P0OKU cneyu@iuHoi MemoouKu, AKa 8paxo8ye 00Cuiodicysany npeomemuy cepy. Lle nosc-
HIOEMbCSL HeOOXIOHICMIO THmMe2payii NPocpamMHo20 3a0e3neuents 0 eKCnayamayii cyoen yu-
BIILHOI asiayii 31 CMOPOHHIMU NPOZPAMHO-ANAPAMHUMU KOMNIEKCAMU, WO GUKOPUCTOBY-
10MbCsl 07151 KOHMPOTIO 3a NOIbOMAMU.

Knwuoei cnosa: npocpamne 3abe3nevenns, Yuginohi agiayis, niompumka npocpammHo2o
3abe3neyenns, agioHiKa, apXimexmypa npoepamHo20 3a6e3neyeHHs.

Kozlyuk 1.0., Kovalenko Yu.B.

FUNCTIONAL BASES OF THE SOFTWARE DEVELOPMENT AND OPERATION IN
AVIONICS

The study analyzes the functional principles and approaches to determine the main fea-
tures of the software used for the aircraft operation. Theoretical aspects of creating the soft-
ware architecture in the field of civil aviation based on modern approaches to the automation
systems development are described. The main regulatory requirements for organizational and
technological support of the process of developing software solutions in the field of civil avia-
tion are considered. The peculiarities of the V-shaped model of aircraft operation software
development are determined. The documentation for the software should consist of a descrip-
tion of the main blocks of the program, the order of modules integration, system architecture
and other formalities that reflect the results of the source code. Based on the described ap-
proach to the development of a software package for the aircraft operation, the vision and
criteria of the cycle of development of information solutions in the field of civil aviation is
created. Depending on the functional characteristics of the obtained software solutions, the
final documentation is compiled, which also contains the results of its testing under the condi-
tions of pre-industrial operation. Modern avionics systems have a modular multilevel structure.
At the same time, the classical approaches to the development of aircraft operation systems are
inefficient, which requires the development of a specific methodology that takes into account

Ipobremu inchopmamuzauii ma vnpasainna, 63°2020 63

the studied subject area. This is due to the need to integrate software for the operation of civil
aircraft with third-party software and hardware used for flight control.
Keywords: software, civil aviation, software support, avionics, software architecture.

Ko3zawk U.A., KoBaiaenko 10.5.

OYHKIIUMOHAJIBHBIE OCHOBBI PA3PABOTKH U JOKCIVIYATAIIUU ITPO-
I'PAMMHOI'O OBECIIEYEHUSA B ABUOHUKE

B xo00e uccnedosanus npogeder ananuz 6a306vlx YYHKYUOHAILHBIX OCHO8 U NOOX0008 K
onpeoeneHur0 0OCHOBHBIX 0COOEHHOCHEN NPOCPAMMHO20 0DecnedeHUs, UCNOoab3yeMoe OJisl IKC-
nayamayuu 6030yuikblx cyoer. Oxapakmepuzo8anvl meopemuyeckue acnekmvl noCMpoeHus
apxXumeKmypbl NPOSPAMMHBIX PeUeHUll 8 001ACMU 2PANCOAHCKOU A8UAYUL HA OCHOBE CO8pe-
MEHHBIX NOOX0008 paspabomku cucmem asmomamuzayuu. Paccmompenvl ocnognvie Hopma-
MueHvle mpeboBanUs K OP2AHU3AYUOHHOMY U MEXHOI02UYECKOMY 0DecnedeHuro npoyecca pas-
PAabomKu NPOSPAMMHbBIX peutenull 8 cghepe epadicoanckoil aguayuu. Onpedenenvl 0cobeHHOoCmuU
V-0b6pasnoii modenu pazpabomu npocpammuHo2o obecneyerus IKCIYamayuy 6030YuHbIX Cy-
oen. Jloxymenmayusi K npo2pamMMHOMY 00eCneyeHUI0 O0IHCHA COCMABIMbCA U3 ONUCAHUSL OC-
HOBHBIX OJI0KO8 NPOPAMMbI, NOPAOKA UHMeZPayuu Mooyell, apXumekmypuvl cucmemvl u opy-
2ux ¢hopmanvHocmetl, Komopvie 0moopaxscam pe3yibmamsl CO30aHUs UCX005uje20 npo-
epammuoeo kooa. Ha ocnoge onucannoco nooxooa k paspabomxe npocpammHoco KOMnieKca
OJis1 IKCHIYamayuu 6030YUIHbBLX CYOEeH CHOPMUPOBAHO 8UOeHUe U Kpumepuu YuKia paspadomxu
UHGDOPMAYUOHHBIX peuteHull 8 chepe 2paicOAHCKOU asuayu, Ymo onpeoeieHHbiM 00pazom
enusiem Ha pasgumue ompaciu. B 3agucumocmu om yHKYUOHATbHBIX XAPAKMEPUCTIUK NOJLY-
YEHHBIX NPOSPAMMHBIX PeUleHUll COCMABIAemcs PUHATbHAS OOKYMEeHMAayus, KOmopas makice
cooeparcum pe3yibmamvl €20 mecCmupoB8anust 8 YCI08USIX NPEONPOMbIULIEHHOU IKCHIYAMAYUU.
Cospemennbie cucmemvl ABUOHUKU UMEIOM MOOYIbHYIO MHO20YpOsHesylo cmpykmypy. Ilpu
9MOM KIaccuyecKkue nooxXoovl K pazpabomke cucmem 3KCHLyamayu 6030YUHbLX CYOeH 615~
I0MCs MAN03PHeKMUSHbIMU, YUMo mpedyem pazpadbomru cneyuhuieckou Memoouxu, y4umaol-
sarowell ucciedyemyio npeomemuyro cgepy. Imo nosacHaemcs HeobX0OUMOCMbIO UHMe2PaYUU
NPOCPAMMHO20 0Decnedenus 05 IKCHIYAmayuu cyoeH paxcOaHCKOU asuayuu co CHopOH-
HUMU NPOSPAMMHO-ANNAPAMHBIMU KOMNIEKCAMU, UCHONb3YeMbIMU OISl KOHMPOTs 3a NoJjie-
mamu.

Knwoueswie cnosa: npocpammnoe obecneuenue, 2pancoaHCKdas asuayusi, N000epiICcKa
NPOCPAMMHO20 0becneyeHust, ABUOHUKA, APXUMEKMYPa NPOSPAMMHO20 0OecnedeHUsl.

