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The problem of the asymptotically optimal prediction of some stochastic processes described by
difference equations whose parameters are known is considered. To solve this problem, a sim-
ple adaptive estimation algorithm is proposed and analyzed. The asymptotical properties of this
algorithm are established. The simulation results are given.

Introduction

The prediction of stochastic processes
is an important problem in the area of mod-
em control and signal processing due to its
practical applicability. For example, such a
problem arises in process control if the plant
to be controlled comprises an unit with pure
time delay and its external signals are ran-
dom.

During the last three decades, signifi-
cant progress has been achieved in the direc-
tion of designing predictors with acceptable
performance. In particular, substantial break-
throughs in the solution to the above prob-
lem have been made by Box and Jenkins
who have advanced various approaches to
predict the future values of some discrete-
time stochastic processes [1]. To implement
the predictors suggested in their book [1], the
coefficients of difference equations describ-
ing these processes must be known a priori.
However, such knowledge can hardly be ob-
tained in practice.

To overcome difficulties associated
with initial uncertainty about the parameters
of process to be predicted, adaptive ap-
proaches may be utilized (see the books [2 -
5]). Namely, the adaptive prediction algo-
rithm based on the stochastic approximation
method is proposed in [2, subsection 2.2.4°],
where its ultimate properties are strictly
proved. In [3, subsection 4.2.3°], another
adaptive prediction algorithm exploiting the
well-known recursive least squares method is
derived to update the estimates of unknown
parameters. A common disadvantage of

these algorithms is that they are complex
enough.

This paper deals with the adaptive pre-
diction of some stochastic processes via em-
ploying a simple recursive estimation of their
parameters. To this end, basic ideas of previ-
ous works [6, 7] are extended to the stochas-
tic case. The main effort is focused on estab-
lishing the asymptotical
adaptive prediction procedure.

properties of the

Problem statement
We consider the class
stochastic

of so-called
autoregressive (AR
processes) [1, p. 24] caused by the discrete-

processes

time model whose output sequence {y,}

takes values in R and satisfies the difference
equation
AU"1)?, t=1.2,., (1)
where } represents the sequence of inde-
pendent random variables with zero mean

and variance < «, (white noise) and

A(z )=1+&% 1+...+aNz N (2)

is the polynomial of degree N in the inverse

shift operator z~l.

Define the iV-dimensional parameter
vector of this model as

0 —flj,..., cief]
and introduce the vector

P =t -l THAY
containing the N past outputs yt N

taken with opposite sign. Equation (1) can
then be rewritten in'the regression form as
follows:
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yt=d\tl+~". 3)
Let pt(£) denote the probability dis-
tribution density of the random variable

From the definition of {£} it can be con-

cluded that
def

where pt{L !} is the conditional distribu-
tion density of Gl.

The following assumptions about the
AR process generated by (1) are made.

1) The polynomial A(z-1) described in
(2) is asymptotically stable, i.e., it has all ze-
ros inside the closed unit disk: A(z_1)A 0

forall z: 1 <lzk °°.

2) The coefficients of A(z_1) are un-
known.

3) The integer N defining the dimen-
sion of 0 is assumed to be known.

4) The random sequence {£,} is upper
bounded, i.e., there exists a finite CcC such

that
sup 1Q i< Cj-< 0. (4)

O</<~

5) One knows the upper bound Q on
the absolute values of (is.

6) p(Q is a continuous function of C
which may become zero at isolated points on
[-Cc,Cc] only.

7) The variables yt are measurable.

Comments. Assumption 1) is necessary
to ensure that the AR process will be station-
ary [1, subsection 3.1.3]. Assumption 4) im-
plies

-cc

This assumption is employed in [2,
theorem 2.2.3] for establishing the properties
of the adaptive prediction algorithm. As-

sumption 6) together with 4) essentially
means that
, def
P{s < <S}=

def y o
= jP(Q"=P(ee) >0 (5)

for any 1 and arbitrary s ,s satisfying

- <£ < 8 <Cj,
where P{®} denotes the probability of a ran-
dom event included in brackets.

Let ytH be an estimate of the future
y#l to be predicted at each time instant t
employing current and past measurements
yty, v..
troduce the prediction quality index as

JA= myyri- yrd2iyt,...y0}  (6)

which is the conditional mean square of the
prediction error

which are available. Further, in-

eHt=y,H#-y tv (7)
The problem is to devise a simple
adaptive prediction algorithm for minimizing

the upper bounds on {/(+1} with probability
1(w.p.l) as t goes to infinity:

!imM{(y(+1- y ()2 1ly,,...,y0] =
=min (w.p.l). (8)

Preliminaries
It is shown in [1, subsection 5.1.2] that

) in (1) are
all known then the algorithm for determining
yM of the form

is the true coefficients of A(z

37H = 0T (9)
minimizes (6) for each time instant t. In this
case, minimum JtH is given by

min/fd=c”.

Substituting (9) into expression (7) and
using (3), we get
do)

Since }=0, it follows from (10)

that the prediction errors etd will not be bi-
ased: M{em }=0.

Clearly, estimation scheme (9) cannot
be used to predict the stochastic process gen-
erated by (1) if one does not know the coef-
A(z-1)

ficients of which are the compo-

nents of Oe . To do this, we need to de-

sign an adaptive procedure for estimating
unknown 0. Then, instead of (9), we sup-
pose to exploit the equation
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1+1=%$"% (1D
replacing unknown 0 in (9) by its suitable
estimate

Qj =[aX(t),...,aN()]

to be updated by using some adaptation algo-
rithm.

Adaptive estimation algorithm

It follows from equation (3) together
with (4) that

ly,-0Tep 11 < cr

holds and causes the set of compatible ine-

qualities
U-oVJ <q, t2.. (2

with respect to the unknown vector 0.

Now, the adaptive estimation algorithm
is derived as a recursive procedure for
solving inequalities (12) in the form

e,=zeM+v Y oo
9r
where 0, is the current solution of (12). The

(13)

prediction ntor et, by virtue of (11) together
with (7), may be determined as

=Y, -»MOM- (@2
The variable
e- G- if e cc,
Ne =< O if 1< Cg,
e+g- if e <-o
(15)

represents the dead-zone function depicted in
fig.l. yt is the scalar variable chosen arbi-
trarily from

0 <y <y <y <2 (16)
to ensure a.(t)"0 for all ze[l,iV]. Il de-
notes the Euclidean vector norm.

Equation (13) is the stochastic analogy
of a gradient projection type procedure for
updating 0, which can be found in [2, 4 - 7]
and other works. It is similar to that in the
paper [6]. The difference is that equation
(13) exploits the continuous dead-zone func-
tion /(<?) given by (15) whereas [7] deals
with discontinuous one.

Fig.l. Dead-zone function

According to (13) together with (15),
the estimate 0, is updated only when the ab-

solute value of the current prediction error et

determined by (14) exceeds the threshold
C;-. To implement the algorithms described
in equations (11), (13) and (14), the adaptive
prediction system has to be designed as
shown in fig. 2.

Fig.2. Adaptive prediction system

Convergence analysis

The key convergence property of the
adaptive estimation procedure proposed
above is given in the next lemma.

Lemma. Subject to assumptions 1) - 5)
and 7); if adaptive estimation algorithm (13)
together with (14) is applied to model (3),
then

limet< Cr, lime, > -Cr (17)

provided yf satisfies (16).

Proof. Let 0, =0- 0,. Using
y?=0/0 =10-,0, 112
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as a Lyapunov function candidate [2, 4, 5]
and taking into account (3) and (16), from
(13) it can finally be written

VO>y(2~y)Y~P",
=0l (pM Ir

(18)

Since Vt = 0TO is finite for any initial 00

satisfying N0 I<oo , inequality (18) gives

that the series

r=0ll (p,_j 112
converges. This means
f(et)nEM r 1-> 00 as (19)
In view of assumptions 1) and 4), there exists

a finite Cy such that

Hepf Il < CA<®® forall t. (20)
Applying (20) to (19) gives
limf(et)=0- (21)
t_

Recalling the definition (15) of the
dead-zone function f(e), from (21) result
(17) follows. Q.E.D.

The question we now need to answer is
as follows. Are assumptions 1) - 7)
sufficient to guarantee that the adaptive
prediction algorithm synthesized above
capable to achieve goal (8)? It turns out that

is

with additional assumption 6), the following
result can be shown to be valid.

Theorem. Under assumptions 1) - 7),
the adaptive prediction algorithm described
in equations (11), (13) - (16) is asymptoti-
cally optimal in the sense that requirement
(8) is satisfied.

Proof. By combining equations (3) and

(14) and using the notation of Of we get

el ~@®n9m ’

which can be substituted into (17) to obtain
lim < Cc- limC; ,
t-a00 t_
lim0,"9” > -C~™+lim (22)
= t-

Choose a sufficiently small positive 8
and consider the random events

BS0={q-5 < ¢, ~ cc}

and

200572 15
. def
fis(0={-qg < " -q+5}
that are always possible for arbitrary
5:0 < 8 « C,. (due to (4)). Setting
e =Ct--8, s=C (- and s =-C?,
s =-Cc+8, it can be concluded from (5)
that
P[B;(t)] =Ps+ > 0
and

P[B5(t)]=Ps >0,
respectively. Summing each of these prob-
abilities in t, we have

SPI5%(0]=-, EP[BE(0]=~. (23)
Denote by tl and tk the time instants
when
Ae[C 2-5, C|]
and
“e[~ad, -q+5],

respectively. According to the Borel-Cantelli
lemma [8, section 15.3] it follows from di-
vergence of series defined in (23) that the

subsequences {tf} and {t~} will both be in-
finite (w.p.l) because (Bg(r)} and {B"(t)}
are the sequences of independent events. By
the definition of the upper and lower limits
[9] this yields

lim C = Cc, lim L -

-Cc (w.p.D).

(24)
Taking into account (24), from. (22) we
obtain

lim O0M <M =0, lim 0Ti<tn =0 (w.p.l)
r-»~
meaning
0m9(i —0 as t—00 (w.p.l). (25)

For understanding, introduce the nota-
tions yt+l(8) and yr](0,) of the prediction
estimates caused by equations (9) and (11),
respectively. Then, due to (25), we can write

0 T(pf —0 as t—% (w.p.l)

to see

Li(0)-L i(0()~ ° asr->00 (w.p.l).(26)
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Since equation (9) as shown minimizes
JtH for ytHx = ytiX(0) and each t, it can now
be concluded from (26) that (8) will be satis-
fied for

yek =y NOm

This proves the theorem. Q.E.D.

Corollary. Adaptive prediction algo-

rithm (11),(13) - (16)leads to
lim JHX=a?

with JHX defined by (6) for

= ¢ (+i(0,) *

Remark 1. No one establishes the finite
convergence of (13). This contrasts with the
algorithms advanced in [2].

Remark 2. The theorem does not estab-
lish the convergence of estimates 0sto O in
the sense that

limO~0

I->00
Nevertheless, requirement (27) is quite not
necessary in order to achieve (8).
Thus, we can observe that the perform-
ance of the adaptive prediction algorithm
which has been proposed is satisfactory.

(w.p.l). (27)

Fig. 3. True variable y t and its

adaptive prediction estimate yt(0,_,)

Simulation results

To illustrate some features of the pro-
posed scheme, the simulations of system (1),
(11), (13) with

A(z~{) =1+ax~" +... +aNz~N
were carried out setting ax=-1,4, a2~0,7.
Initial estimates were chosen as ax0) = 2,0,
a2(0)=-1,0
parameter uncertainty.

Wi ith this choosing, the results of 200-
step long simulation when G was a pseudo-

to observe the worst case-of

random digital signal (RPDS) distributed
uniformly in [-1,0, 1,0] are presented in
figs. 3-5.

Fig. 3 shows the behavior of signal yt

and corresponding prediction estimate

yt(OM) founded before at the (t-1)th time

instant. It can be seen how
def

d, =y, (0)- yt(0;_)
defining the derivation yt(OM) from optimal

y,(0) tends to zero as t increases (fig. 4).

dt

Fig. 4. Derivation of adaptive prediction

estimate yt(0,_,) from optimal yt(0,)
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ax axt)

Fig. 5. a)
Variables: a) - ax (dottedline), gx(t)

The evolution of the parameter esti-
mates ax(t) and a2(t) is depicted in fig.5. It
shows that they converge fast enough to a
neighborhood of their true values axand a,,

respectively. The number of the corrections
of these estimates was 36.

Conclusion

A simple adaptive estimation algo-
rithm based on projection type procedure
may be applied for the prediction of stochas-
tic AR process caused by the white noise
whose values are upper bounded. It has been
proved that this algorithm ensures the
asymptotical optimality of the predicted es-
timates. Simulation results demonstrate its
effectiveness. From a practical point of view,
it is attractive that the above mentioned algo-
rithm requires small computational effort for
its implementation.
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