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The paper presents an alternative approach of observer-based flight control system 
design. This approach is based on the application of linear matrix inequality technique. 
The design procedure treats the design of both observer and controller by solving the set 
of linear inequalities simultaneously. The proposed approach is free of observer poles 
placement location. Simulation results demonstrate the validity and effectiveness of the 
proposed design approach 
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Introduction 
The motion of aircraft is considered in 

a non-uniform atmosphere. Therefore, the 
use of control strategy is necessary for 
completing aircraft mission successful. The 
application of modern control theory 
requires all the states variables to be 
available. Thus, the control systems 
developed due to modern control theory 
application increase the complexity of the 
system. To overcome the requirement of 
complete state space vector measurements, 
observer-based control systems design have 
been considered. The development of 
observer-based control system reduces the 
requirement of full phase vector 
measurements. Observers avoid complexity to 
the system and require only computational 
resources [1]. The observer design was 
originally proposed in works [2-4]. Lately, the 
numbers of observer-based control system 
design approaches were proposed [5-7]. 

The design of observer-based flight 
control systems are successfully applied in 
the area of small Unmanned Aerial Vehicles 
(UAV), satisfying manifold requirements 
imposed on them [5, 8-9]. The observer-
based control system design approaches were 
proposed in [5-7]. In [5] the design strategy 
involves observer design without reducing 

the robustness and performance of the 
system. The required level of performance 
and robustness is kept due to mixed 2 ∞H H  
optimization technique. 

The survey on observer design is given 
in [10]. 

It is shown three main observer design 
results connected with reduced order, under 
separation principle and observers for input 
fault detection and identification. 

The autopilot design is also may be 
performed basing on the available 
information about the output variables. This 
circumstance leads to the problem of static 
output feedback (SOF) controller design. 
The main advantage of SOF design is that it 
requires only available signals from the plant 
to be controlled. Unfortunately, the output 
feedback problem is much more difficult to 
solve in comparison to state feedback control 
problem [11].  

The motivation for this research arises 
from a desire to reduce the number of 
sensors necessary for multivariable flight 
control system (FCS) design for civil 
aircraft. The research concerns on finding 
appropriate solution under linear matrix 
inequalities (LMIs) approach [12] for aircraft 
control during flight envelope. 
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It is known that the design procedure 
of observer deals with selecting desired 
region poles location. Moreover, the 
observer eigenvalues should be faster up to 
ten times in comparison to plant eigenvalues. 
It results in the observer sensitivity to noisy 
measurement, which is not desirable. To 
overcome this difficulty procedure of 
observer design is proposed basing on 
Lyapunov approach.  

The main result of this paper is the 
FCS design via LMI technique, where the 
observer gains and controller structure are 
defined by solving the set of LMIs, 
simultaneously.  

To demonstrate the validity and 
efficiency of the proposed approach, the 
lateral motion of the aircraft is considered as 
a case study.  

Problem Statement 
Let us consider a problem of FCS 

design with incomplete state vector 
measurement. The aircraft dynamics is 
represented by the following set of equations 

x A x Bu
y Cx
& = +

 =   
 ( ) 00 ,=x x          (1) 

where ∈ nx R  is the state space vector; 
∈ mu R is the control vector; ∈ py R  is the 

observation vector.  
Besides that, the state space matrices 

of the controlled plant have the following 
dimensions , ,∈ ∈ ∈n×n m×n p×nA R B R C R . It 
could be seen that number of measuring 
variables p  is less than number of all phase 
coordinates, n  The FCS design is utilized in 
terms of restricted number of state variables 
measurements. The autopilot design includes 
reconstruction of sate space vector by using 
a state observer. 

In this paper we develop the design 
procedure of full-order state observer design 
with further state feedback construction such 
that the performance of closed-loop system 
satisfies selected performance criterion. 
Thus, the FCS construction is performed 
under the well-known separation principle. 

 

 
Observer-based Control System 

Design via Linear Matrix Inequality 
Approach 

It is known that the observer estimates 
the state variables based on measurement of 
the output y  and control u  variables [2] – 
[4]. Let us consider the procedure of 
observer-based flight control system design 
under LMI approach. 

Consider linear time-invariant system 
given by (1). Assume that the states x  are 
approximated by the states x% . The observer 
model takes into account feedback 
information about observation error and can 
be represented as 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )             ,

t t t t t

t t t t

= + −

= + + −

x A x Bu + L y y

A x Bu LC x x

%& % %

% %      
(2)

 
where ( ) ( )( ) ( )− =x x e%t t t  is a difference 
between the real and estimated states 
(observation error); L is the observer gain 
matrix that has to be chosen such that the 
observation error approaches zero as time 
increases. From (1) and (2) the observation 
error equation dynamics takes the following 
form 

( ) ( ) ( )( );t t t= −e x x%& & &  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )( )

( ) ( )
     

                                                 .

t t t t

t t t t

t

− = +

− + + −

= +

x x A x Bu

A x B u L C x x

A L C e

%& &

% %   (3) 

The error decays to zero if it is 
possible to find observer gain matrix L  such 
that ( )+A LC  is asymptotically stable. 
Moreover, the eigenvalues of ( )+A LC  are 

the same as those of ( )T+ =A LC  
T T T= +A C L . 

The final goal is to control the motion 
of the plant basing on the estimated states. 
Thus, for the state feedback control based on 
observed state variables ,x%  namely 

,=u K x%          (4) 

where K is a constant state feedback gain 
matrix that assures that the system is 
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asymptotically stable, the state equation 
becomes 

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )   .

t t t t

t t t t

= + =

+ − = + −

x A x B K x A x

BK x e A BK x BKe

& %
 (5) 

Combining together (3) and (5), we 
obtain 

( )
( )

( )
( )0

   + − 
=    +    

x xA BK BK
e eA LC
&

&

t t
t t

. (6) 

Equation (6) describes the dynamics of 
the observed state feedback control system. 
The characteristic equation for the system is 

0− − − − =I A BK I A LCs s . 

It is possible to rewrite the system 
dynamics in terms of plant and observer 
states, respectively. 

( )
( )

( )
( )

    
=    − + +    

x xA BK
x xLC A BK LC
&

%& %

t t
t t

. 

It is supposed also that the obtained 
solution given by (4) minimizes performance 
index as 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

T T

0

T T

0

                 ,

J t t t t dt

t t dt

∞

∞

= +

= +

∫

∫

x Q x u R u

x Q K R K x

% %

% %

    

(7) 

where Q  and R are diagonal matrices, 
weighting each state and control variables, 
respectively. This cost depends on the 
trajectory, of ( ) ,tx%  taken, such that the worst 
trajectory will correspond to the worst cost 
[13]. The state feedback problem is to select 
K  for the desired closed-loop properties and 
minimize the upper bound ( ) ( )T

0 0x P xt t  of 
the cost function J  in (7). 

It is known that the observed-state 
feedback control system design consists of 
two stages: (1) design of state feedback 
control law assuming that all states are 
available; (2) design a state estimator to 
estimate states of the system. Replace the 
states in state feedback control law from 
stage (1) by the state estimates. Further, they 
can be combined to form the observed-state 
feedback control system. This principle of 

independent state feedback and observer 
design is referred to as separation principle. 
Moreover, the observer design deals with 
choice of poles location. They are usually 
chosen such that the observer response is 
much faster that the system response, but 
very fast observers possess with noise. The 
proposed approach solves the problem of 
observed-state feedback design under LMI 
technique. The main advantage of the 
proposed design procedure is that there is no 
need to define the observer poles location. 
The solution of this problem via LMIs gives 
the constant state feedback gain matrix K  
and observer gain L  by solving the set of 
LMIs simultaneously. The proposed design 
procedure is very simple and utilizes 
Lyapunov approach. 

The simultaneous observer and 
controller design can be formulated with 
following theorem. 

Theorem. The observer-based system 
(6) is said to be statically stable via state 
feedback (4) if there exist matrices 

T
1 1 0,= >X X  M , T

2 2 0,= >X X  Z , and 
minimizes γ by satisfying the following 
conditions: 

T T T 1 2 T 1 2
1 1 1

1 2
1

1 2

0 0,
0

 + + +
 − < 
 − 

X A AX M B BM X Q M R
Q X I
R M I    (8), 

T
0

0 1
0

 γ
≥ 

  

x
x X  

  (9), 

T T T
2 2 0,+ + + <A X X A C Z ZC  

T
2 2 0.= >X X      (10) 

Proof. Let ( ) ( ) ( )T
1 1,t t t=V x x P x  with 

1
T

1 0= >P P  be a candidate Lyapunov 
function. The closed loop system (6) 
preserves stability and minimizes 
performance index (7) if: 

( ) ( ) ( ) ( ) ( )T T
1 , 0.t t t t R t+ + <V x x Qx u u&     (11) 

The condition (11) leads to the 
following inequality: 

( ){ }
( )

T T T T T
1 1 1 1

                                                                       0.

t

t

+ + + + +

× <

x A P P A K B P P BK Q K RK

x
Pre-multiplying and post-multiplying right 
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and left sides above written inequality by 
1−P : 
1 T 1 1 T T 1

1 1 1 1

1 1 1 T 1
1 1 1 1                       0.

− − − −

− − − −

+ + +

+ + <

P A AP P K B BKP

P QP P K RKP
  (12) 

Let us define the following change of 
variables 1 1

1 1 1 1, ,− −= = =X P M KP K MP  and 
rewrite inequality (12) as 

T T T T
1 1 1 1 1 1 0+ + + + + <X A AX M B BM X QX X K RKX  (13) 

By applying Shur’s Lemma to 
inequality (13), it is possible to rewrite as 
linear matrix inequality: 

T T T 1 2 T 1 2
1 1 1

1 2
1

1 2

0 0.
0

 + + +
 − < 
 − 

X A AX M B BM X Q M R
Q X I
R M I  

Once again, using the Schur complement, the 
cost  

1
T T 1
0 1 0 0 0

−= ≤ γx P x x X x , 

is expressed as the LMI 
T
0

0 1
0.

 γ
≥ 

  

x
x X

 This part of the proof considers the 
design stage (1) according to the separation 
principle. The second part of the proof 
considers stage (2) of the design procedure 
connected with observer construction. 

Let ( )( ) ( ) ( )T
2 2,t t t t=V e e P e with 

T
2 2 0= >P P  be a candidate Lyapunov 

function. The observer gains can be found if 
the following inequality is hold:  

( ) ( ) ( ){ } ( )TT
2 2 0,t t+ + + <e A LC P P A LC e  

or 
T T T

2 2 2 2 0.+ + + <A P P A C L P P LC  

The use of the following change of 
variables 2 2X = P , 2P L = Z reduces to the next 
LMIs: 

T T T
2 2 0+ + + <A X X A C Z ZC , 

T
2 2 0.= >X X  

Thus, the observer gains can be 
evaluated as 

1
2
−=L X Z . 

The design procedure reduces to 
solving the set of inequalities (8)–(10) 
simultaneously. The resulting observer-based 
control system operates with desired level of 
performance and brings minimum to (7). 

Case Study 
The state space linearized lateral model 

of large four-fanjet Boeing 747 aircraft 
flying about equilibrium point (Mach=0.650) 
is used as a case study.  

The main geometrical characteristics 
of the given aircraft are:  

– wing reference area, S = 5500 ft2; 
– wing span, b = 195.68 ft; 
– mean geometric chord, 27.31=c ft ; 
The moments of inertia: 

6 218. 02 ;1xI slug ft= −×  
6 233. 01 ;1yI slug tf= −×  
6 200.97 ;1×= −zI slug ft  

The state space vector of Boeing 747 
lateral channel comprises the following 
variables: [ ]T=x p rβ ϕ ψ  where β is 
a sideslip angle, p is a roll rate, r is a yaw 
rate, φ is a roll angle, ψ is yaw angle. The 
control input vector [ ]T=u a rδ δ  is 
represented by aileron and rudder 
deflections, respectively. 

It is considered operating mode with 
true airspeed at Vt = 67.4 m/s. The linear 
model in the state space is represented by the 
matrices[ ],A B : 

2.1219 0 1.0000 0.1455 0
5.4500 1.4700 0.2560 0 0

;1.8200 0.0214 0.3440 0 0
0 1.0000 0 0 0
0 0 1.0000 0 0

− − 
 − − 
 = − −
 
 
  

A  
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0 0.0213
0.3720 0.3180

.0.0371 0.9700
0 0
0 0

 
 
 
 = −
 
 
  

B

 
The output vector of measured 

variables is given as follows 
[ ]T .=yest p r ϕ ψ  Thus, the observation 

matrix has the following structure: 

0 1 0 0 0
0 0 1 0 0

.
0 0 0 1 0
0 0 0 0 1

 
 
 =
 
 
 

C  

Disturbance, υ affecting the lateral 
motion of the aircraft involves the following 
components: the sideslip angle, β, roll rate, p 
and the yaw rate, r, so that 

T
. = β υ g g gp r  

In order to simulate the atmospheric 
turbulence the Dryden filter is used [13]. It is 
considered that aircraft flies at moderate 
turbulence.  

The transfer functions of forming filter 
according to standard MIL–F–8785C [13], 
[14] used in simulation to account external 
disturbances have the following structure: 

2

31
( ) ;

1

+
= ⋅

 + 
 

v

v
v v

v

L sL VH s
V L s

V

σ
π

     

( ) ( ).3(1 ( ) )
= ⋅

+

m

r v

s
VH s H sb s
Vπ

      

1 6

1 3

0.8 4(s) .
41 s

π 
 
 = σ
  

+  π  

p w

w

bH
V bL

V  
The transfer function of forming filter 

along the variable ν is possible to rewrite in 
terms of sideslip angle, β according to the 
phase vector [13], [15]. Thus, for small 
angles 

0

ν
β =

U
, where 0 .= tU V  

Parameters appearing in the transfer 
functions of the forming filters are given as 
follows [13], [14]:  

b = 59.64 m; Lν= Lw= 533.3 m; 
σν = σw=1.542 m/s. 

The variable b represents the aircraft 
wingspan. The variables Lν, Lw represent the 
turbulence scale lengths. The variables σν, σw 
represent the turbulence intensities. The 
computation of these values depends on the 
altitude at which the aircraft is flying, wing 
span and type of turbulence according to 
standard MIL–F–8785C [14].  

The weighting matrices Q , R  in (7) 
have the structure: 

( )diag [9.6012 1.5456 0.6600 0.0030 4.500] ;=Q

[ ]( )diag 8 0.4=R . 

By applying proposed approach of 
observer based controller design under LMI-
technique, the state feedback gain matrix K  
and observer gains L are found. Their 
numerical values are given below: 

– state feedback gain matrix: 
0.0867 -0.0359 -0.0432 -0.0145 -0.0225

,
-0.4487 0.8621 4.9057 0.3549 6.9358

 
=  

 
K

– observer gain matrix: 

6.4457 -0.4478 -0.1573 1.1063
2.3130 1.8097 0.3608 1.9318

.-2.9231 -0.0123 1.2201 -7.3520
-1.3611 -1.2200 -0.5000 0.0000
-1.9033 6.3425 -0.0000 -0.5000

 
 
 
 =
 
 
  

L

 
Table 1 reflects standard deviations of 

the aircraft outputs. 
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Table 1. Standard deviations of Boeing 747 outputs in a stochastic case 
Standard Deviation (Lateral Channel) 

Plant o,βσ   ,σ °p /sec ,σ °r /sec o,ϕσ  o,ψσ  
V = 67.4 m/s 0.0004 0.0007 0.0176 0.0727 0.0065 

Performance indices of closed loop 
system with observed state feedback in a loop 
are given in Table 2. 

The simulation results of the closed 
loop system taking into account the influence 
of the random wind, simulated according to 
the standard Dryden model of turbulence 
confirm the efficiency of proposed approach. 

Results of the simulation are shown in 
Figure. 
Table 2. Performance indices of closed-loop 
system 

Plant 
Performance Index 

V = 67.4 m/s 
Н2-norm 0.5952 
Н∞-norm 1.1172 
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Fig. 1. Simulation results of lateral motion control in the presence of external disturbances: 
a) is the roll angle, deg; b)  is the roll rate, deg/s; c) is the yaw rate, deg/s; d) is the heading angle, deg 

Conclusions 
As far as the incomplete state space 

vector is available for measuring, the flight 
control system for aircraft can be easily 
designed by applying observer. Thus, the 
unavailable states can be suitable 
approximated by restored states. The 
proposed solution is very simple and uses 

Lyapunov approach. The proposed design 
procedure can be solved efficiently by 
applying LMI optimization technique. The 
main advantage of the proposed approach is 
that there is no need to define the region of 
observer poles placement. The proposed 
approach permits to define the observer 
gains and state feedback gain matrix directly 
from set of LMIs, simultaneously. 
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