Information Security, 2013, vol. 19, issue 1 —

— Ukrainian Scientific Journal o

KPUIITOJIOI'T / CRYPTOLOGY

INTEGER MULTIPLICATION ALGORITHM WITH DELAYED
CARRY MECHANISM FOR PUBLIC KEY CRYPTOSYSTEMS

Vladyslav Kovtun, Andrew Okhrimenko

National Aviation University, Ukraine

&
R

assessment, risk management.

KOVTUN Vladyslav Yu., Candidate of Science (PhD)

Date and place of birth: 1978, Kirovograd, Ukraine.

Education: Kharkiv Military University, 2000.

Current position & Functions: Associate Professor at IT-Security Dept since 2010.

Research interests: information security, quick arithmetic transformations in Galois fields, public
key cryptosystems, cryptanalysis of cryptographic transformation with public-key.

Publications: over 40 scientific publications, papers in domestic & foreign scientific journals,
international conferences proceedings, patents etc.

E-mail: vladislav.kovtun@gmail.com

OKHRIMENKO Andrew O., Candidate of Science of NAU (PhD of NAU)

Date and place of birth: 1990, Vasilkiv, Kyiv region, Ukraine.

Education: National Aviation University, 2012.

Current position & Functions: Postgraduate student.

Research interests: information security, public key cryptosystems, network security, risk

Publications: over 40 scientific publications including papers, conference proceedings,
international conferences materials, certificates of copyright registration etc.
E-mail: andrew.okhrimenko@gmail.com

Abstract. Authors have offered the approach to increase performance of software implementation of integer
multiplication algorithm, for 32-bit and 64-bit platforms. The approach relies on delayed carry mechanism of
significant bit in sum accumulation. This strategy allows preventing necessity to consider the significant bit carry at
the each iteration of the sum accumulation loop. The delayed carry mechanism enables to reduce the total number of
additions and apply the modern parallelization technologies effectively.

Key words: multiplication of integers, software implementation, cryptographic transformation, cryptosystem,

parallelism, delayed carry.

1. Introduction

The cryptographic transformations with public
key revolutionized from Diffie and Hellman
consideration [1] to modern algebraic curves
cryptosystems. However transformations were stayed
permanent - with operations in the number field . The
integer multiplication takes the special place in number
field operations, see Fig. 1. Among the urgent problems
of public key cryptosystems improvements is the
increasing of software performance and hardware
implementation. One approache to increase the
performance of cryptosystems is an increasing the
performance of multiplication operations in the finite
field arithmetic.

The problem of increase of arithmetic operation
in number fields is actively investigated by many
scientists, as evidence by the significant publications of
this field [2-8]. Except from the arithmetic operations

45

algorithms, it 1is interesting approaches to the
architecture of the software libraries [9-18] with field
operations, which allows decreasing overheads on fields
operations in general.

. . Encryption, Digital signature Key
Cryptographic transformations decryption | generation, verification | exchange
. . Multiplication
Arithmetic P
in finite field

Exponentiation Addition Substruction Squaring Inversion

CPU commands mov, mul, shr, shl, add, sub ...

Fig. 1. Operation hierarchy of elliptic curve cryptosystem

The analysis of publications [2-7], allowed to
identify the most efficient multiplication algorithms
Comba [2, 3] and Karatsuba [3, 8, 10]. However, the
Comba algorithm shows better results in performance
tests (benchmark) of software implementations on
modern platforms [3-9]. In [8] described the Karatsuba-
Comba multiplication (KCM) algorithm for the RISC

mailto:%20vladislav.kovtun@gmail.com
mailto:andrew.okhrimenko@gmail.com

— Ukrainian Scientific Journal o

Information Security, 2013, vol. 19, issue 1 —

processors. The KCM algorithm is an interesting
symbiosis of Comba and Karatsuba algorithms, where
Karatsuba algorithm is specially used only for machine
word multiplication.

Therefore, the main goal of this paper is
approaches suggestion for the effectiveness increasing of
software implementation of finite field number
multiplication (squaring) via well-known Comba
algorithm [2, 3, 8]. Such researches were caused by the
necessity the effectiveness confirmation of software
implementations of known algorithms for continuous
development of modern 32-bit and 64-bit platforms. It is
significant, last ten years has seen much development in
the direction of the multi-core processors and
multiprocessor systems [8, 9].

2. Multiplication algorithm-prototype descrip-
tion and its modification

The Comba algorithm [2] based on a main loops
p- 2, p. 3 and nested loops p. 2.1, p.3.1. At the low level
of hierarchy, in loops p. 2.1 and p. 3.1 computes 64-bit

integer product (uv)(m) which splits on two 32-bit

integer u® and v'*®.

The sum accumulation occurs in 32-bit temporary
variables I, and r,, on each iterations p.2.1.2,
p-2.1.3.

The final result assignment and temporary
variables Iy, I, and I, changing, occurs on each iteration
onp.2.2.

Algorithm. Comba’s integer multiplication
Input: integers a,beGF(p), w=32, n=log,, a Output:
c=a-b
1. 1™ 0, ¥ «o0, ™ «o0.
2.For k<« 0, k<2n-1, k++ do
21.Fori«0,i<n,i++ do
21.1.For j«0, j<n, j++
21110 (i+ j==k)

21111, (w)®™ «a® b

21112, 1 P 4 y@,

(32)

[+u® tcarry,

carry < 0.

21.1.13. 1 «r!® +carry, carry 0.

32)

22. ¢ i, 1 ¥, 1 i,) 0.

3. ¢ ™.

4. Return (c).
Consider the main drawbacks of Comba'’s algorithm:
e In the internal loops p.2.1 and p.3.1 there is a sum
accumulation with carry in 32-bit temporary
variables r;, , and 1,, p. 2.1.2, p. 2.1.3 and p. 3.1.2,
p-3.1.3:
212

carry < 0.

%)
7

¥ vt 1% 4 u® ycarry,

213.1/% « r'*® +carry, carry «0.

46

In this case there are 3 additions of 32-bit integer (two of
them with the carry), 3 assignments 32-bit variables I,

I, and I,. The sum accumulation with carry takes place

at each iteration of loop p. 2.1.
— In internal loops p.2.1 and p. 3.1, for the sum
accumulation, for 32-bit variables r,, I, and T,the

transfers are considered, using the assembler code for
the implementation of addition operation with carry.
That in turn doesn’t allow to pair and parallelize [11], as
a result we observe an ineffective processor resource
using.

—Loops p.2 and p.3 cannot be effectively
parallelized due to high internal linkage code (carry
consideration).

— Using modern processors support of 64-bit
operations is not considered in Comba.

It is easy to obtain a computational complexity
for the Comba’s algorithm:

| Comba _ 432 +(”T+1n+1+7’2"1(n—1))><

mul assign
32 32 32 32 _
><(:I'Imul + 3Iadd + 6Iassign) + 4(2n _1) Iassign -

= A2, 0t (12 4315, + 615,) +4(2n-1) 1%,
where 12 - an assignment operation of 32-bit integers,
1%, - an addition operation of 32-bit integers, 1%, - a
multiplication operation of 32-bit integer. Fig. 2

illustrates the drawbacks of algorithm for n=3 and its
impact on computational complexity of algorithm.
a2 [a1l [a0

l
><|b2|b1|bo

[<2-)

L
L I S |
Hi(al*b0) | Lo(al*b0)
r 5 T . T — 5
P N S |
Hi(20*b2) | Lo(a0*b2)

-5 T — 7 1T 5
o2, o4 0

CIGE

S S O
Hi(a2*b0) | Lo(az*b0)
L S [T
Hi(alb2) | Lo(alb2)
r— T T T T
P T L
Hi(a2*b1) | Lo(a2*bl)
L e
P T L
Hi(a2"b2) | Lo(a2"b2)
-r— T —— T — — —
L S S S
[5 [e [8 [e [@ | <0 Jec

Fig. 2. Graphic interpretation of Comba algorithm

In upper part of figure there are two big numbers
a and b represented by three 32-bit integers
a=(a,,a,3,) and b=(b,,b,by), where a and b, have
a machine word bit size. Algorithm iterations are
presented under the solidus. It should be noted that
algorithm Comba implements long multiplication
technique, known from school, with small difference: the
multiplier part & i=1n multiply on all parts of other

— Ukrainian Scientific Journal of Information Security, 2013, vol. 19, issue 1 —

multiplier b, j=1n,in case of fulfillment the condition
(i+ j==k) (in columns).

Such approach does not lead to rows addition
(intermediate results of multiplication) as in long
multiplication, but to columns addition. That allows to
find a part of resulting product ¢; (under the lower line).

As shown in the Fig.2, each multiplication is
accompanied by the sum accumulation with a carry.
The computational complexity for n=3, will be:

| Comba —9(1| 2 1312 4612)

mul mul assign

2 42012, =T781%, +91%, +271%, .

assign assign assign

Now we begin considering the approaches
proposed by the authors and dedicated to elimination of
these drawbacks:

—The modern 32-bit processors effectively
implement the addition operations of 32-bit and 64-bit
integers, using 64-bit or 32-bit commands. That allows to
implement a carry accumulation by addition of 32-bit
variables in 64-bit variable-accumulator, that save the
carry accounting and correction requirements after the
addition with variables 1, I, and r,. Accumulated carry
will be considered in the final iterations of the loops in
p-2and p.3.

— Modern processors have multi-core
architecture; that allows them to execute several
instruction flows at the same time. This property brings
to parallel execute of iterations in loop p.2 and p.3 by the
OpenMP library [11-13].

Following notations are to be introduced:
through t* will symbolized 64-bit variables, and

through t™® - 32-bit variables; operation hi(a,) (t(m))

extracts 32 the most significant bits in 64-bit variable,

and operation low g, (t(M)) extracts 32 the least

significant bits in 64-bit variable.
Algorithm. Modified

multiplication

Input: integers a,beGF(p), w=32, n=log, a

nk=2n-1.

Output: c=a-b

Comba’s integer

1. 1«0, 0, *«o0.
2.For k<0, k<n, k++ do
21.For i< 0, j«<Xk,i<k,i++, j—- do

21.1. (w)® «a® b=,

2.1.2. r(e“) <« r(“) +V,) r(“) +u®,

221 Y+ hi, (r) r, 64)+hi(32)(r1(6‘”).
23. ¢ <—I0w () <—Iow)(r(“)),
1« low, (r(”}), i «o0.

3.For k<n, l«1,k<nk, k++, I++ do
31.Fori«I, j<k-I,i<n,i++, j—- do

311 (w)® «a® b2,

3.1.2. FU(GA) «— r0(64) myeos r(64) - r(4Ly

32. 1%« ?) r\ 64)+hi(3z)(r1(6“)).

) low,)(r(“)) ,

i (15
)

1« low, (r(”)), ' «0.

3.3. ck <—Iow (

4. ¢ «low,,, (ro(”)) .

5. Return (c).

It is not difficult to get a computational
complexity of modified Comba algorithm:

+(22n+ 202 (n-1))*
(1|32 +21502 4 91%)

mul assign

+(2n-1)(2157 + Uy, + 12,) =

assign assign

64|32+2|64)+

add assign

Mod.Comba __ 64
I =4l assign

=41 %, + 0P (112, + 21

assngn

+(2n-1)(2057 + 1%, + 112,)

assign assign

where 1%

asign - @N assignment operation of 32-bit integers,

64
I assign

- an assignment operations of 64-bit integers, 15, -

an addition operation of 32-bit integers, 15 - an

addition operation of 32-bit and 64-bit integers, I, - a

mul
multiplication of 32-bit integers.

Fig. 3, 4 illustrate the algorithm 2 forn=3;
computational complexity for this case will be:

| Mod-Comba _ 27184 1+91% + 28]

64/32 32
mul assign + 5|

add assign *
3. Comparison with other algorithms

For the objective comparison of given results, the
authors have made the review of well-known software
math libraries [14-24] for public key cryptography.
According to the review results the software library
GMP was selected as an etalon [14]. The Karatsuba
multiplication algorithm for the integer
multiplication [2] is used in GMP. The comparison of
software implementations will be done by the
comparing the average time execution of software
implementation of Comba, modified Comba algorithms
and implemented in GMP library for one million
iterations.

The proposed modified algorithm Comba (MC)
and its prototype - algorithm Comba have implemented
in C++, compiled with Intel C++ Compiler XE 13 in
Release configuration with 32-bit and 64-bit machine
word size with Maximize Speed parameter and SSE2
instruction support. The etalon library GMP v4.1.2
compiled with Microsoft Visual Studio 2010 and inserted
to the test application. The test application compiled
with Intel C++ Compiler XE 13 in Release configuration
with Maximize Speed parameter and SSE2 instruction
support. Also tested the implementation obtained using
Visual Studio 2010. The results are not significantly
different from those obtained by Intel C++ Compiler
(x1%), suggesting that the independence of the results
on the compiler.

In testing have used desktop platform with Intel
Core i5-3570 (6M Cache, 3.40 GHz) processor and
Microsoft Windows 7 Ultimate x64 SP1 operating
system. To measure the performance of algorithms
software implementation is offered for integers ranging

— Ukrainian Scientific Journal o

in size from 128 to 8192 bit, which are recommended to
be used in cryptographic application for the different
security levels [25]. In table 1 there are shown the

Information Security, 2013, vol. 19, issue 1 —

for one million multiplications for specified arrays with
32-bit words length. Table 2 shows the ratio of GMP to
MC values and Comba to MC values for identifying the

performance measurement results for software benefits of the proposed algorithm.
implementations of Comba, MC algorithms and GMP
[@2 | a1 | a0 | a
><|b2|b1|b0|b
NN R NS B
L2
Co@a’b1)
L __1 e
LoaZ"b0)
a1 e
I R
N - NS
Coatb1)
L __ 1 e
Lo@z7b0)
a1 e
e
c
Fig. 3. Graphic interpretation of loop 2 in Modified Comba algorithm
I - S N B
I - S S B
e
I - S S B
Inticatning
c
Fig. 4. Graphic interpretation of loop 3 in Modified Comba algorithm
Table 1 Table 2
Test results of integer multiplication for 32 bit machine Comparison of results for integer multiplication algorithms
word size with 32 bit machine words
SIZE, bit | Comba, ms | MC, ms | GMP, ms SIZE, bit | Comba/MC | GMP/MC
128 171 78 93 128 2,192 1,192
256 1451 203 312 256 7,148 1,537
512 11 045 671 1186 512 16,461 1,768
1024 78 624 2371 3697 1024 33,161 1,559
2048 478 219 8 985 11794 2048 53,224 1,313
3072 1394128 19 968 21871 3072 69,818 1,095
4096 3031194 35 069 37 050 4096 86,435 1,056
6144 9 289 505 77 985 67 751 6144 119,119 0,869
8192 20840046 | 137295 117 265 8192 151,790 0,854

48

— Ukrainian Scientific Journal o

Information Security, 2013, vol. 19, issue 1 —

The MC algorithm is better on cryptographically
interested integers from 128 to 4096 bits, in comparison
to GMP because it has lower computational complexity
and experimental estimates [2, 3, 14]. On 6144-8192 bit
integers GMP library with Karatsuba algorithm is better,
because it has a significant lower computational
complexity and experimental estimates [2,3,14].
Classical implementation of algorithm Comba is the
slowest, that confirmed by the theoretical estimate. MC
is better more than 150 times on 8192 bit integers in
comparison with original Comba algorithm.

In table 3 there are shown the performance
measurement results for software implementations of
Comba and MC algorithms for one million
multiplications for specified arrays with 64-bit words
length.

Table 3
Test results of integer multiplication for 64 bit machine word
size
SIZE, bit | Comba, ms | MC, ms
128 16 15
256 125 47
512 858 140
1024 6833 546
2048 52884 2137
3072 182833 4851
4096 402762 8564
6144 1239984 18970
8192 2766945 33431

Table 2 shows comparison of 32-bit and 64-bit
implementation of MC and Comba for identifying the
benefits of the proposed algorithm.

Table 4
Comparison of results for integer multiplication algorithms
. Comba32/ MC32/ | Comba64/

SIZE Bit | combags | Mced | Mces
128 10,688 5,200 1,067
256 11,608 4,319 2,660
512 12,873 4,793 6,129
1024 11,507 4,342 12,515

2048 9,043 4,204 24,747
3072 7,625 4,116 37,690
4096 7,526 4,095 47,030
6144 7,492 4,111 65,366
8192 7,532 4,107 82,766

The 64-bit implementation of MC algorithm has benefits
about 4.5 times in comparison to the 32-bit MC
implementation. The 64-bit implementation of original
Comba algorithm has benefits about 9.5 times in
comparison to the 32-bit MC implementation. As we can
see, 64-bit MC implementation is better more than 80
times (on 8192 bit integer) in comparison to the original
Comba algorithm with 64-bit machine words.

4. Conclusions

The
conclusions:
1. Proposed in paper delayed carry approach,
allows to increase performance of software
implementation of Comba integer multiplication and

research resulted in the following

49

squaring algorithms in 150 times (32-bit implementation
with 8196 integers) and surpass the performance of the
popular math library GMP v4.1.2 in 1,5 times.

2. Modified multiplication Comba algorithm is
preferred than Karatsuba algorithm [2] which used in
GMP library, because implementation of modified
Comba algorithm is faster than Karastuba [2]
implementation in GMP for the modern hardware
platform (32 & 64-bit).

3. Proposed in paper delayed carry approach can
applied to classical box multiplication, but can not to
other multiplication algorithms like Karatsuba, FFT,
Fiirer's, Schonhage-Strassen and etc.

4. Delayed carry mechanism allows to apply
different parallelization techniques to modified Comba
algorithm, for example OpenMP [28], Intel Threading
Blocks [30], OpenCL [29].

Recently, the microprocessors development
increases the number of instruction processing flows.
Thus, it should be said about the necessity of suitable
algorithms development for efficient parallelization.

Nvidia company, already proposes GPU with
more than 1256 cores and suitable CUDA Toolkit [27]
which allows to create a valid multithread applications.
This area is already under close monitoring, what is
demonstrated in work [9]. A further area of research will
be focused on effective parallelization algorithms for
arithmetic operations with integers.

References

[1] Diffie W., Hellman M. E., “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. IT-22, pp. 644-654, 1976.

[2] Comba P. G. Exponentiation cryptosystems on
the IBM PC//IBM Systems Journal. -Vol.29(4). -
1990. - pp. 526-538.

[3] Brown M., Hankerson D., Lopez J., Menezes
A. Software implementation of the NIST elliptic curves
over prime fields // Research Report CORR 2000-55.
Department of Combinatorics and Optimization,
University of Waterloo. -Canada: Waterloo, Ontario,
2000. -21p.

[4] Hong S-M., Oh S-Y., Yoon H. New Modular
Multiplication ~ algorithms for fast modular
exponeniation // Advances in Cryptology-Proceedings
of Eurocrypt '96. -Springer-Verlag. - 1996. - pp.166-177.

[5] Avanzi R. M. Aspects of hyperelliptic curves
over large prime fields in software
implementations // Cryptology ePrint Archive. -
Report 2003/253. - 2003. - 23p. Available from:
http:/ /eprint.iacr.org

[6] Paar C. Implementation options for finite filed
arithmetic ~ for elliptic = curve cryptosystems
// Worchester Polytechnic Institute. -ECC’99. - 1999. -
31p. Available from: http://www.ece.wpi.edu/
research/crypto.html

[7] Gaubatz G. Versatile Montgomery multiplier
architectures. Master thesis: electrical and computer
engineering. - 2002. - Worcester polytechnic institute. -
101p.

[8] Johann GrofSschadl, Roberto M. Avanzi, Erkay
Sava, Stefan Tillich. Energy-Efficient Software
Implementation of Long Integer = Modular

http://www.ece.wpi.edu/

— Ukrainian Scientific Journal of Information Security, 2013, vol. 19, issue 1 —

Arithmetic // Advances in Cryptology-Prociding in [18] Galois Field Arithmetic Library. Available

CHES'2005. - Springer-Verlag. - 2005. - LNCS 3659. - pp. from: http:/ /www.partow.net/projects/ galois/

75-90. [19] MPEQ: Fast Finite Fields Library. Available
[9] Giorgi P. Izard T, Tisserand A. Comparison of from: http:/ /mpfq.gforge.inria.fr/

Modular Arithmetic Algorithms on GPUs // ParCo'09: [20] BBNUM. Available from: http://www.iw-

International Conference on Parallel Computing, net.org/index.php?title=Bbnum_library

France.- 2009. Available from: http://hal- [21] FLINT: Fast Library for Number Theory.

lirmm.ccsd.cnrs.fr/lirmm-00424288 / fr/ Available from: http:/ /www flintlib.org
[10] Weimerskirch A., Paar C. Generalizations of [22] Multiprecision Integer and Rational

the Karatsuba Algorithm for Efficient Implementations. Arithmetic C/C++ Library (MIRACL). Available from:

// Cryptology ePrint Archive. -Report 2006/224. - http:/ /indigo.ie/ ~mscott

2006. -17p. Available from: http:/ /eprint.iacr.org [23] LibTom Projects: LibTomMath,
[11] Intel® 64 and TA-32 Architectures TomsFastMath. Available from: http://libtom.org

Optimization Reference Manual. Order Number: 248966- [24] Abusharekh A., Gaj K. Comparative Analysis

025. Available from: http:/ /www.intel.com of Software Libraries for Public Key

/content/dam/doc/manual/64-ia-32-architectures- Cryptography // Software Performance Enhancement

optimization-manual.pdf for Encryption and Decryption, SPEED’2007. June 11-12,
[12] The OpenMP API Specification for Parallel 2007.

Programming. Available from: http://openmp.org [25] Giorgi P., Imbert L., Izard T. Multipartite

/wp/openmp-specifications/ Modular Multiplication. Preprint. Available from:
[13] OpenMP in Visual C++. Available at: http:// http:/ /hal.archives-ouvertes.fr/lirmm-00618437 / fr/

http:/ /msdn.microsoft.com/en-us/library [26] National Institute of Standards and

/tt15eb9t.aspx Technology, Recommended Elliptic Curves for Federal
[14] The GNU Multiply Precision Library (GMP). Government Use, Appendix to FIPS 186-2, 2000. -43p.

Available from: http://gmplib.org [27] NVIDIA. NVIDIA CUDA Programming
[15] LiDIA. Available from: https://www.cde. Guide 2.0. Available from: http://developer.download

informatik.tu-darmstadt.de/en/cdc nvidia.com/compute/DevZone/docs/html/C/doc/C
[16] Multiprecision Unsigned Number Template UDA_C_Programming Guide.pdf

Library (MUNTL). Available from: http://mktmk. [28] OpenCL - The open standard for parallel

narod.ru/eng/muntl/muntl.htm programming of heterogeneous systems. Available
[17] TlnyECC A Configurable Library fOI' Elhptlc from: http://Www.khronos'org/opencl

Curve Cryptography in Wireless Sensor Networks. [29] Intel Threading Blocks. Available at:

Available from: http://discovery.csc.ncsu.edu/ http:/ /software.intel.com/en-us/articles/intel-tbb

software/TinyECC

UDC 004.051/056 (045)

KoBmyn B.IO, Oxpiumenxo., A.O. Asreopumm MHOMeHHA yiiux yicea 3 Buxopucmannam Biokiadenozo neperocy 044
Kpunmocucmem 3 Biokpumum Karouem

Anomayia. Abmopu npononyoms nioxio 0o nioBuujenHa npodykmubHOCHi NPopamHol pearisayii a1e0pummy MHOKEHHA Yilux
yycen 045 32-6imuux i 64-6imuux naamgpopm. Lleti nioxio rpynmyemsca Ha Mexaismi Gidxiadenoeo nepexocy 3i cmapuiozo bima
npu Hakonuuenti cymu. Lia cmpameein do3bosne yHukHymu HeobXxioHocmi Gpaxy6anns nepenocy 3i cmapuioeo pospaoy Ha KOXKHIl
imepayii yukay naxonuuenus cymu. Mexanism Gidxaadenozo neperocy 00360456 3MEHWUMI 3a2a4bHY KiAbKICHIb onepayii cymu i
egpexmubro 3acmocobyBamu cyuacHi mexHoA0eil posnaparestoBanHs.

KatouoBi croBa: MHOKeHHA yiaux wuuced, NpopaMHA pearisayis, kpunmoepagpiuni nepembopeHHs, KpUNIMOCUCHEMA,
posnapasestoBanns, Gi0kaadeHuti nepexoc.

KoBmyn B.IO., Oxpumenko A.A. Arzopumm YMHONKEHUS UeAblX HlCea C UCNOAL30BaNIEM OMAOKEHHO20 nepenoca 044
Kpunmocucmem ¢ OMKpoLbIM KAIOUOM

Annomayusa. A6mops. npedaearonm 1no0xo0 k mnoBvlueHU0 NPOU3BOOUMEALHOCHIU NPOSPAMMHOU Pealusayul a120pumma
YMHOXKEHUA YeAblX uuces 044 32-0umnblx u 64-0ummsix niamgopm. Imom nodxo0 ocHoBbibaemcs HA MeXAHU3ME OMAOKEHHO20
nepeoca us cmapuiezo Ouma npu HAKONAEHUU Cymmsl. Dma cmpameeus nosboasem usbexants HeoOX00UMOCTU YHema nepeHoca u3
cmapuieeo paspa0a Ha KaXO00U umepayuy yukia HakonAeHus cymmsl. Mexanusm omaoxenHo2o nepenoca 1036o4sem YMeHbUUnb
o0ujee koauvecmbo onepayuil cymmupoBanus u dpgexmubro npumeHAms cobpemennole MeXHOAOLUU PACNAPANLEAUBAHUA.
KaroueBore caoBa: ymroixenue yeavlx uiices, npoepammHasn peaisusayis, kpunmoepagueckue npeodpasobanus, Kpunmocucmema,
pacnapaitesubarivie, 0MAOKeHHbLIL NEPEHOC.

Orprmano 30 ciuna 2013 poky, 3aTBepkeHO penKorteriero 15 bepesta 2013 poky

50

http://www.intel.com/
http://openmp.org/
https://www.cdc/
http://mktmk/
http://discovery.csc.ncsu.edu/
http://software.intel.com/en-us/articles/intel-tbb

