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Abstract. Cyber-attacks increasingly evade static, rules-based controls by shifting content, infrastructure, and pace. This article
synthesizes practical machine-learning patterns that measurably improve defence across six domains: phishing/social engineering,
malware detection, network anomaly detection, insider-risk analytics, vulnerability prioritisation, and incident-response automation.
The approach highlights transformer-based NLP that reads messages more like people do (with reported F1 scores of approximately
0.98 on public phishing benchmarks), image-based CNNs that recognise malware “byte-textures,” autoencoders and sequence models
that baseline network behaviour, federated and explainable methods for privacy-preserving insider detection, EPSS-driven triage that
prioritises by exploitation likelihood, and reinforcement learning that adapts response actions under guardrails. Emphasis is on
deployable patterns — shadow-mode pilots, precision/recall tracking, false-positive budgets, human-in-the-loop review, and continuous
learning from user feedback and honeypot telemetry - so organisations can move from brittle signature races to adaptive systems that
improve with every campaign observed. The transition to 5G and emerging 6G architectures compounds these challenges, introducing
ultra-low latency requirements, massive device densities, and decentralized, edge-based infrastructures. Adaptive Al must therefore
operate not only in traditional enterprise networks but also in heterogeneous, mobile, and resource-constrained 5G/6G environments
where security, privacy, and resilience are paramount.

Keywords: Cybersecurity, Privacy-preserving Al, Phishing detection, Malware detection, CNN, Autoencoders, Ultra-low latency

threat detection.

Introduction

Defenders are outpaced when controls depend on
yesterday’s indicators. The sections that follow present a
cohesive, evidence-informed blueprint for replacing brittle
rules with adaptive learning systems: transformer NLP
and explainable lightweight variants for phishing across
email/SMS/app channels [1-4]; deep-learning malware
classifiers that treat executables as images and model
dynamic behaviour [5-7]; anomaly baselines via
autoencoders/LSTMs and cross-layer features for IoT-
heavy networks [8-10]; insider-risk models that respect
privacy through federated learning and provide analyst-
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friendly explanations [11-13]; vulnerability triage that uses
FIRST’s EPSS to prioritise by near-term exploit probability
rather than impact alone [14]; RL-assisted incident
response that chooses context-aware actions within explicit
guardrails [15-17]. Throughout, we stress mobile-first
reality, drift monitoring, calibration to operational costs
(misses vs. noise), and stepwise deployment (shadow,
partial automation, constrained autonomy).

In 5G and future 6G contexts, these adaptive
patterns must contend with unique network
characteristic - such as dynamic slicing, edge computing
nodes, and dense IoT deployments - that shift both the
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attack surface and the performance envelope. Threat
detection models must be latency-aware, privacy-
preserving, and capable of distributed learning to defend
against attacks targeting radio access networks, edge
orchestration, and cross-slice data flows.

Phishing and Social Engineering Defence

Phishing still works because it fools both machines
and people. On the machine side, many email defences
rely on static rules and block lists. Attackers bypass these
by making small, constant changes - tweaking a link,
swapping a domain, rephrasing a sentence, or moving the
hosting site. These fast-changing “zero-day” kits are
designed to slip past filters that look for yesterday’s
On the
employees can be caught off guard. A message that looks
urgent, familiar, or business-as-usual can nudge someone
into clicking before they think, especially on a phone or
when they’re busy.

Several practical projects have shown significant
improvement on preventing the mentioned issues
improving the over performance and security:

e Transformer-based NLP for message
understanding. Fine-tuned BERT-family and
RoBERTa models spot linguistic anomalies,
intent,
phishing, often achieving F1 scores above 0.98
on public benchmarks. Comparative testing
shows

patterns. human side, even well-trained

and sentiment cues indicative of

these  transformers  consistently
outperform traditional classifiers on precision
and recall, making them more resilient to
rapidly evolving, zero-day phishing kits [1]

e Explainable lightweight models. DistilBERT-
based approaches can match state-of-the-art
accuracy while exposing attention heatmaps
and token-level rationales. This interpretability
helps analysts validate alerts and improve user
training without sacrificing speed [3]

e  Mobile-first Hybrid
“super-learner” ensembles tuned for SMS and
in-app phishing reduce false negatives without
inundating users with false alarms - critical on
constrained mobile interfaces [4].

¢ Detection enhancement. On the PhishTank
corpus, the team paired optimal n-gram
vectorisation with supervised learning and cut
false positives by 27% versus a baseline Random
Forest, demonstrating how smarter feature
engineering and model choice directly translate
to fewer user-facing interruptions. The findings
indicate that random forests (RF) outperformed
the other classifiers, achieving a greater accuracy
rate of 97.52%, followed by 97.50% precision,
and an AUC value of 97 %. Finally, a more robust
and lightweight anti-phishing model was
introduced, which can serve as an effective tool
for security experts, practitioners,
policymakers to combat phishing attacks [2].

ensemble defences.

and

99

Phishing is not going away, but the cycle of playing
catch-up can be broken. By pairing transformer-class
language models with URL and infrastructure signals -
and by keeping humans in the loop with Cclear,
explainable alerts - can cover the two big blind spots:
filters that miss novel tricks and people who get rushed
or distracted. The practical path is straightforward: pilot
models in shadow mode, measure precision/recall and
false-positive cost, fold in “report phish” feedback for
continuous learning and extend the same approach to
SMS and in-app messages. In 5G/6G environments,
phishing expand into  device-to-device
messaging, augmented reality interfaces, and ultra-low-
latency app communications. Defences must integrate
with telecom-level threat intelligence feeds and adapt
heterogeneous technologies
centralizing sensitive user data. Done well, this does not
just lift benchmark scores; it reduces real incidents,

vectors

across access without

shortens response times, and lowers noise for users. In
short, NN/ML turns phishing defence from a rules race
into an adaptive system that improves with every
campaign it sees.

Malware Detection and Analysis

Malware evolves faster than signature rules can be
updated. Packers and obfuscators reshape binaries,
“fileless” techniques shift the action to memory and
living-off-the-land tools, and commodity builders churn
out endless minor variants. Machine learning helps by
learning stable, family-level patterns instead of brittle
indicators. Three complementary views matter most:
bytes (what the file looks like), behaviour (what it does
when it runs), and network (how it talks). In practice, that
means pairing a lightweight static model for instant triage
with dynamic analysis and network analytics for
confirmation - so you catch more threats without
drowning analysts in false alarms.

Several practical projects have shown significant
improvement on preventing the mentioned issues
improving the over performance and security:

¢ Binaries-as-images with CNNs. Turning

executables into compact grayscale “byte-
images” (e.g., 64%x64) lets a CNN learn texture-
like patterns that correlate with families and
builder kits. On the Malimg dataset, this
approach achieved high-accuracy classification
and remained effective against variants
designed to slip past signature scanners [5]. It's
fast, hardware-friendly, and ideal as a
gatekeeper before deeper analysis.

e Deep learning Dbeats

engineering. A contemporary review shows
CNNs, RNNs, and autoencoders consistently
outperform traditional methods by extracting
invariant features from packed or obfuscated
samples - cutting down manual feature work
and improving generalization to new variants
[6]. Sequence models on API calls and system

classic  feature
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events, for example, can flag malicious routines
even when the on-disk file looks benign.

e SDN honeypot + CNN pipeline. Combining
software-defined networking honeypots (for
fresh, real-world malware) with image-based
CNN classification enables dynamic, near-real-
time large, distributed
environments, including IoT. This design
continuously refreshes the training set with
current attacker tradecraft while keeping
inference lightweight at the edge [7].

detection in

Malware detection should be treated as a multi-view
learning problem rather than a signature chase. CNNs on
byte-images, sequence models on behaviour, and
lightweight network analytics together raise detection
while holding the false-positive budget in check. The
payoff is practical: faster triage on endpoints, higher
recall on packed/obfuscated families, and fresher models
fuelled by honeypot data - yielding fewer misses, fewer
noisy quarantines, and clearer, defensible decisions at
scale. Edge-deployed malware detectors in 5G/6G must
balance detection accuracy with minimal inference
latency, enabling on-device triage before offloading for
deeper cloud analysis. Federated retraining across
distributed edge nodes can ensure signatures and Al
models remain fresh without centralizing proprietary or
sensitive telemetry.

Network Anomaly Detection

Static IDS rules are great at catching known patterns
but weak against the “quiet” stuff - slow data exfiltration,
lateral movement at odd hours, and new apps that don’t
look like yesterday’s traffic. Deep learning flips the script:
first learn what normal looks like on your network, then
flag departures from that baseline. Two families dominate:
reconstruction models (autoencoders trained on clean
traffic that alert on high reconstruction error) and
(RNN/LSTM/transformers  that
forecast the next flow or feature vector and alert when
reality deviates). A recent survey maps when to use which,
based on data shape, label scarcity, and attack type [10].

prediction models

e Autoencoder baselines work well when labels
are scarce. Train only on “known good,” then
watch for spikes in error on features like
bytes/sec, burstiness, SNI/JA3 rarity, or
destination novelty. Adding a temporal head
(e.g., LSTM) helps the model respect seasonality
(workdays vs. weekends) and user/device
rhythms, which cuts false positives. In IoT-heavy
environments, single-layer views miss attacks
that hop across the stack; cross-layer feature sets
and multi-encoder designs capture interactions
between link, network, transport, and application
layers - the kind of nuance that betrays
coordinated DDoS, MitM,, or staged exfil [9].

e Autoencoder + LSTM baseline. An optimized
AE-LSTM trained on clean traffic established a
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dynamic baseline and detected subtle anomalies
(e.g., slow exfiltration) while reducing false
positives relative to static rules [8].

e Cross-layer IoT with M-LDAE. A multilayer
deep autoencoder tailored for IoT fused features
across protocol layers to surface complex, cross-
layer attacks that single-layer monitors often
miss [9].

¢  Method selection guide. A survey of 180+ deep-
learning AD methods organizes the field into
reconstruction- vs. prediction-based approaches
and offers guidance on aligning models with
data and threats [10].

Network defence should be viewed as a living
baseline, not a list of rules. Autoencoders give you that
evolving picture of “normal,” sequence models expose
timing and flow irregularities, and cross-layer features
bring IoT noise into focus. Together - and with routine
calibration and drift checks - you cut false positives while
surfacing the slow exfiltration and lateral movement that
matter. The payoff is practical: fewer noisy alerts, earlier
detection, and a system that adapts as the network
changes instead of falling behind it. In 5G/6G networks,
anomaly detection must adapt to dynamic network
slicing and virtualized functions, where “normal” can
vary by slice type, tenant, or service tier. Cross-layer,
cross-slice baselines - potentially maintained by
distributed autoencoders - can detect coordinated attacks
that span physical, transport, and application domains.

Insider Threat Detection

Insider risk is tricky because the activity often looks
“normal”: valid logins, approved tools, and access to
legitimate data. Labels are scarce, privacy limits what you
can centralize, and false positives burn trust with
employees and security teams. Machine learning helps by
baselining how people work (rhythms, resources, and
routes) and then scoring departures - while newer
approaches train across organizations without moving
raw logs.

e Federated Learning + CNN. A personalized FL
system trained CNNs on encoded behaviour
logs across multiple organizations - without
sharing raw data - and reached ap. 92%
precision in detecting insider misuse. Strong
signal that cross-org learning can raise accuracy
while respecting privacy [11].

e Federated + Explainable in IoT. Extending FL
with explainable Al produced justifications for
alerts in IoT settings, improving analyst trust
and auditability - key where device behaviour is

noisy [12].
e Hybrid Outlier Scoring. Blending
unsupervised  anomaly  detection  with

supervised classification reduced false positives
by telling apart unusual-but-legitimate work
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from malicious insider actions in enterprise
trials [13].

If insider threat is treated as behavioural drift under
privacy constraints. Train locally (and federate globally),
fuse multiple activity views, and pair anomaly scores
with a small and supervised layer for precision. Wrap it
with clear explanations and guardrails (data
minimization, approved-use policies). The result: fewer
noisy escalations, stronger privacy posture, and faster,
defensible decisions when someone’s access turns risky.
As network functions move to the edge in 5G/6G, insider
risk extends of edge clusters,
orchestrators, and virtualized network functions.
Federated learning across operators can flag anomalous
administrative behaviours without exposing customer or
tenant-specific logs.

to administrators

Vulnerability Detection & Patch Prioritization

Most organizations face a flood of new CVEs each
week, but only a small share ever see real-world
exploitation. Prioritizing by exploitability instead of
severity is the key shift. That’s the idea behind FIRST.org
“Exploit Prediction Scoring System (EPSS)” - a machine-
learning model that uses current threat signals and
observed attack telemetry to estimate the probability a
CVE will be exploited in the next 30 days, with scores
refreshed daily [14].

ML can enhance the existing defences by tapping
into the following:

o Exploit likelihood, not just impact. EPSS
CVSS by modelling real-world

and  producing  calibrated
probabilities defenders can act on, improving
the efficiency of patch queues. Independent
evaluations the EPSS
performance study compare
efficiency/coverage trade-offs versus CVSS and
KEV lists, showing EPSS enables more targeted

augments
exploitation

and inaugural

remediation [14].

¢  Context that raises or lowers risk. Recent surveys
of ML-driven prioritization show that adding
contextual features - package/dependency
graphs, exploit code availability, threat chatter,
and asset exposure - improves triage accuracy
beyond CVSS alone [14].

The scoring system also shows:

e EPSS  predictive model  (FIRST.org).
Community-driven research behind EPSS
(EuroS&PW 2023) details a data-driven model
trained on exploitation telemetry; FIRST’s docs
specify EPSS as a 30-day probability updated
daily for every CVE. Teams use thresholds (e.g.,
remediate CVEs above a chosen EPSS value) to
balance coverage vs. effort [14].

e  Vulnerability prioritization survey. An ACM
Computing Surveys review synthesizes ML
approaches for exploitability —assessment,
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including graph-based risk models and
market/exploit-signal features, offering
guidance on selecting techniques for different
environments [14].

e Independent performance
Cyentia Institute’s
examines model performance and
operationalization strategies, helping
practitioners pick thresholds that maximize risk
reduction with minimal patch workload [14].

e Policy alignment. NIST’s 2025 work references
EPSS as a widely used probability for near-term
exploitation and discusses how to combine EPSS
with KEV-style evidence for composite
prioritization [14].

The
study

analyses.
inaugural EPSS

If patching is treated as a probabilistic triage
problem and EPSS is used to rank by likelihood of
exploitation, then business context (asset criticality,
internet exposure, reachability) and ground truth (KEV
evidence) are layered in to finalize action lists. This shifts
remediation from “fix all high-CVSS” to “fix what’s most
likely to bite us soon,” cutting noise while protecting
what matters. In telecom and critical infrastructure
contexts, EPSS-driven prioritization must account for
vulnerabilities in virtualized network functions, RAN
components, and IoT devices connected via 5G/6G links,
balancing patch urgency against service continuity in
latency-sensitive applications.

Incident Response Automation

Modern SOCs drown in alerts, and static
playbooks can’t keep up with incident variety or speed.
Machine learning - especially reinforcement learning
(RL) - treats response as a sequential decision problem:
given the live state of an incident, choose the next best
action (isolate a host, block a hash, roll back changes,
escalate) to minimize impact and operator load.

ML can enhance the existing defences by tapping

into the following:

e Adaptive actions, not rigid steps. RL learns
policies that pick actions based on current
signals  (confidence, blast radius, asset
criticality),  outperforming  one-size-fits-all
playbooks in simulations and controlled pilots.

o  Faster correlation and triage. ML models cluster
related alerts, rank likely root causes, and route
work to the right analyst or automation lane -
shrinking mean time to respond.

¢ Guardrails and explainability. Policies run
inside constraints (e.g., “never isolate domain
controllers without human OK”) and record
why an action was chosen, so teams can review,
roll back, and improve safely.

¢ Train in safe sandboxes. Use replay/simulation
from historical incidents to learn policies offline
before enabling “auto-approve” for low-risk
actions.
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Several practical projects have shown significant
improvement on preventing the mentioned issues
improving the over performance and security:

¢ ARCS RL Framework. An adaptive RL
framework for SOC playbooks reported 89%
effective responses and cut average handling to
~23.5 seconds in simulation, showing how
policy learning can compress decision time [15].

e Adaptive RL for Mitigation. A live-parameter
RL system dynamically selected mitigations,
reducing false positives and improving recovery
speed versus static playbooks [16].

e ML-integrated IR overview. A recent review
details practical gains from ML in IR - faster
alert correlation, automated root-cause hints,
and predictive workload balancing for on-call
teams [17].

Incident response should be treated as sense +
decide + act, with RL/ML driving the “decide” step
under clear guardrails. Start in shadow mode, measure
time-to-contain and roll-back rates, and allow automation
to handle repetitive, low-risk remediations while analysts
focus on complex The quicker
containment, fewer handoffs, and playbooks that
improve as they learn. In 5G/6G, RL-driven response
orchestration can extend to automated isolation of

cases. result is

compromised network slices, edge nodes, or device
clusters while maintaining service for unaffected tenants.
Policies must operate within strict SLA and latency
bounds, ensuring resilience even during targeted DDoS
or signalling storms.

Conclusion

Modernising cyber defence means
institutionalising learning loops, not just adding models.
Pair language-understanding detectors with

URL/infrastructure signals and clear analyst explanations
to cut phishing risk without user fatigue; use CNN “byte-
images” for fast malware triage and enrich with
dynamic/network views where stakes are higher; establish
living network baselines with autoencoders/sequence
heads to surface slow exfiltration and lateral movement;
detect insider drift with privacy-preserving federation and
rationale outputs to maintain trust; rank patches by
exploitation likelihood EPSS, tempered by
asset/business context; and let RL optimise response
decisions inside hard guardrails, starting in simulation and
shadow mode. Operationally, measure precision/recall
and false-positive costs, feedback “report phish” and
honeypot captures for continuous learning, watch for
model/data drift, and document governance
(explanations, rollback, and safeties). Done this way,
organisations shift from reactive rule-tuning to adaptive
defence that reduces real incidents, shortens time-to-
contain, and keeps noise within budge. The same adaptive
Al patterns described here - transformer NLP, image-
based CNNs, federated insider detection, EPSS triage, and

via
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RL automation - are directly applicable to 5G/6G cyber
defence. Future research should focus on lightweight,
latency-aware models for edge deployment, cross-operator
federated learning for shared situational awareness, and Al
governance frameworks that address privacy, safety, and
resilience in hyper-connected mobile ecosystems.
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