
© Shcherbyna Yu., Kazakova N., Fraze-Frazenko O., Domaskin O. Methods of choosing a random number generator for modeling stochastic pro-

cesses // Ukrainian Scientific Journal of Information Security, 2024, vol. 30, issue 1, pp. 124-129. © 

124 

КРИПТОЛОГІЯ / CRYPTOLOGY 

DOI: 10.18372/2225-5036.30.18613 

METHODS OF CHOOSING A RANDOM NUMBER 
GENERATOR FOR MODELING STOCHASTIC PROCESSES 

Yurii Shcherbyna1, Nadiia Kazakova2,  
Oleksii Fraze-Frazenko3, Oleg Domaskin4 

1National University «Odesa Law Academy» 
2Odessa State Environmental University 
3, 4Odessa National Economic University 

 
 

Yuriy SHCHERBINA, candidate of technical sciences, associate professor 
Date and place of birth: 1953, Vinnytsia region. Teplytsky district, village Petrashivka. 
Education: Riga Higher Military Engineering School of the Missile Forces, 1975.  
Position: associate professor of the Department of Information Technologies since 2021. Sci-
entific interests: protection of automated information and communication systems, model-
ing of information flows in telecommunication systems, software of data processing sys-
tems.  
Publications: more than 90 scientific publications, including scientific articles, monographs, 
textbooks, theses and materials of reports at conferences. 
E-mail: shcherbinayura53@gmail.com. 
Orcid ID: 0000-0003-3885-6747. 
 

 
 

Nadiya KAZAKOVA, doctor of technical sciences, associate professor 
Date and place of birth: 1979, Odesa, Ukraine. 
Education: Odesa National Academy of Communications named after OS Popov, 2001. 
Position: Head of the Department of Information Technologies from 2021. 
Scientific interests: methods and means of technical information protection, protection of 
state secrets, design of complex information protection systems, methods and models of 
information protection, technical channels of information leakage. 
Publications: more than 200 scientific publications, including scientific articles, mono-
graphs, textbooks, theses and materials of reports at conferences. 
E-mail: kaz2003@ukr.net. 
Orcid ID: 0000-0003-3968-4094. 
 

 
 

Oleksiy FRAZE-FRAZENKO, candidate of technical sciences, associate professor 
Date and place of birth: 1982, Lviv, Ukraine. 
Education: Kharkiv Military University, 2004. 
Position: associate professor of the Department of Information Technologies since 2019. 
Scientific interests: methods and means of technical information protection, protection of 
state secrets, design of complex information protection systems, technical channels of in-
formation leakage. 
Publications: more than 80 scientific publications, including scientific articles, monographs, 
textbooks, theses, and conference materials. 
E-mail: frazenko@gmail.com. 
Orcid ID: 0000-0002-2288-8253. 
 

 

Oleg DOMASKIN, candidate of technical sciences, associate professor 
Date and place of birth: 1968, Odesa, Ukraine. 
Education: Odesa Polytechnic National University, 1995. 
Position: Head of the Information Technology Center since 2013. 
Scientific interests: methods and means of technical protection of information and commu-
nication systems, design of complex information protection systems, mathematical meth-
ods and models of information protection. 
Publications: more than 60 scientific publications, including scientific articles, monographs, 
textbooks, theses and materials of reports at conferences. 
E-mail: o.domaskin@oneu.edu.ua. 
Orcid ID: 0000-0001-7756-9631. 



ISSN 2225-5036 (Print), ISSN 2411-071X (Online) 
http://infosecurity.nau.edu.ua; http://jrnl.nau.edu.ua/index.php/Infosecurity 

125 

Abstract. Modern computer modeling is an important stage in the design of control systems for the distribution of 
information flows in computer networks and in modern control systems for complex technological processes. The core 
of any computer model is a source of randomness, which should generate a uniformly distributed stream of random 
integers or real numbers. In addition to the uniformity of distribution, such a source must meet the requirements of 
economic use of computing system resources. An analysis of simple arithmetic generators is given and, based on it, it 
is shown that generators such as the Fibonacci sequence generator with a delay and the Xorshift generator proposed by 
J. Marsaglia are suitable as a generator for the needs of modeling stochastic processes, which are an alternative to the 
random number generators built into existing programming environment. On the basis of the conducted research, it 
was concluded that any unevenness of the numbers at the output of the generator chosen as a source of randomness 
significantly affects the quality of the process to be modeled, and because of this, the numerical flows from such gener-
ators should be additionally processed by methods extraction of that part of them that provides maximum randomness. 
The method of performing such extraction by "slicing" the input stream, the criteria used in this, and the results of its 
experimental research for the Xorshift128 generator are presented. A conclusion is made about the advantages of using 
simple and economical generators in a heap with post-processing procedures performed at the level of integers or real 
numbers. The results of the evaluation of the Xorshift generator, taking into account the methods described in the work, 
are given, and a conclusion is made about the feasibility of its use for the needs of modeling stochastic processes. 

Keywords: Mersenne twister generator, Xorshift generator, inverse function method, Monte Carlo method, Pearson 
chi-square test, numerical flow post-processing, algorithm, method, nonlinear system, stability, forecasting, infor-
mation technology. 

 
Introduction 

Today, it is difficult to imagine computer simulation 
without the use of pseudorandom number generators. In 
the design of complex technical systems, the use of such 
generators makes it possible to perform their optimiza-
tion and experimental evaluation. 

Arithmetic generators of pseudo-random numbers 
(PRN), built on the basis of finite state machines and ca-
pable of creating sequences of numbers that can be used 
as truly random, occupy a special place. Despite the fact 
that they give periodic sequences, their periods are ex-
tremely large and they satisfy basic randomness tests.  

Analysis of existing studies 
Given that such generators can be easily imple-

mented using simple and fast software procedures, they 
find their place in modeling using such methods as in-
verse function methods and Monte Carlo [1]. 

The main requirement for PRS generators intended 
for modeling stochastic processes is their symmetry at the 
binary level - the equal probability of zeros and ones in 
their composition. The absence of such equal probability 
is called bias. Any PRN generators, regardless of whether 
they are built on the basis of real physical processes or on 
the basis of software algorithms, have a fixed bias. To 
overcome this drawback, such generators usually consist 
of two parts: the first is a source of randomness, and the 
second is a corrector that compresses the original stream 
of symbols to ensure the highest possible probability (un-
biasedness) of the original process [2]. In other words, the 
Random Source is always asymmetric and it is important 
to be able to effectively ensure the selection of unshifted 
bits from its source sequence. [3]. 

An additional requirement for computer modeling 
is the ability to repeatedly reproduce the implementation 
of a random process, which can only be provided by an 
algorithmic generator. 

The vast majority of PRS generators built into the 
most common programming environments, which in-
clude the MT generator known as the Mersenne twister 
(MT) [4], the Xorshift generator [5] and the Linear congru-
ent generator (LCG) [6], do not pass the distribution uni-
formity check and, without additional post-processing of 
the original sequence, do not provide satisfactory mode-

ling. With this in mind, every time creating a computer 
model of a stochastic process, the developers must per-
form tests of the selected generator for its compliance 
with the set requirements. 

Purpose and statement of the task 

Taking into account the fact that common imple-
mentations of PRN generators do not meet the conditions 
put forward for modern computer modeling, and, in ad-
dition to the fact that their use requires a significant 
amount of computing resources of the system, the task of 
the work is to substantiate the principles of creating such 
a generator, which would be effective in terms of specific 
modeling requirements. 

The main part of the study 

The idea of computer modeling arose almost imme-
diately after the appearance of electronic computing sys-
tems. Immediately, with this, the search for random num-
ber generators suitable for simulation needs began. Many 
outstanding mathematicians worked on this problem and 
proposed several simple algorithms for obtaining ran-
dom numbers by arithmetic methods. Their analysis can 
be found in D. Knuth's work [7] " The Art of Computer 
Programming". The composition of such algorithms 
should include the method of mean squares, linear con-
gruence algorithms, Fibonacci algorithms and some oth-
ers. All of them produced sequences of numbers that 
seemed random, but in terms of the uniformity of their 
distribution, they did not meet the requirements of mod-
eling. Many attempts were made to improve them, but 
they did not have significant success. 

It is certainly possible to create an arithmetic algo-
rithm that would ensure an even distribution of numbers 
at the output of the generator, but this problem is solved 
at the expense of its extreme complication. Examples of 
such algorithms are almost all known cryptographic gen-
erators used in block cipher systems such as DES and the 
like. 

Since the requirements for generators used in simu-
lation are not as high as the requirements for crypto-
graphic generators, the uniformity of the distribution of 
numbers at their outputs is usually achieved by addi-
tional post-processing procedures. At the moment, the 
following methods are used to ensure it [8]: 
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1. Ad hoc simple correctors; 
2. Whitening with hash functions; 
3. Extractor algorithms; 
4. Resilient functions. 
Considering the fact that one of the requirements for 

computer modeling remains the saving of computing re-
sources, advantages are given to simple correctors and 
extractors. The essence of their work is the readiness to 
sacrifice part of the bits of the original sequence to in-
crease the randomness of the original stream of numbers. 

An example of such a post-processing method is the 
algorithm developed by von Neumann in [9]. He pro-
posed combining each subsequent pair of bits received 
from independent sources according to the principle: if 
the bits match (00 or 11), then such bits are canceled, the 
bit combination 01 corresponds to the 0th output bit, and 
the 10th output bit corresponds to the combination. The 
maximum efficiency of such an algorithm is an average of 
4 input bits per 1 output bit. 

In [10] Trevisen gave a formal definition of the se-
quence transformation at the output of the PRN genera-
tor. He introduced the concept of minimum entropy, 
which characterizes the unevenness of the distribution of 
the quantity 𝑋 in the range {0,1}𝑛 where 𝑛 is the binary 
combination at the output of the source. It is assumed that 
the entropy will be maximum if all the initial combina-
tions are equally likely. Otherwise, the entropy will be 
lower. If the entropy of the output flow is at least 𝑘, then 

for each 𝑥 ∈  {0,1}𝑛 the condition Pr[𝑋 = 𝑥] ≤ 2−𝑘 is ful-
filled. The extractor must perform a transformation of the 
stream 𝑋 into a nearly uniform stream. To quantify the 
output flow, the concept of statistical difference 𝜖 be-
tween two random variables 𝑋 and 𝑌 in the range {0,1}𝑛 
is introduced, which is defined as: 

In the general case, the (𝑘, 𝜖)-extractor transforms a 
stream of random variables 𝑋 into an almost uniform 
stream according to the rule: 

𝐸𝑥𝑡 ∶  {0,1}𝑛 × {0,1}𝑡 → {0,1}𝑚, (2) 

when the random variable 𝑋 has minimum entropy 𝑘, 
and {0,1}𝑡 is a set of t-bit binary combinations forming a 
uniformly distributed variable 𝑈𝑡. The general principle 
of operation of the randomness extractor is shown (fig. 1). 

 

Fig. 1. The mechanism of the extractor 

In order to be able to compare the methods of cor-
recting the numerical flow, the concept of displacement 
of the output distribution of numbers is introduced in [11] 
to assess the unevenness of the distribution of numbers at 
the output of the PRN generator. The binary sequence of 
numbers 𝑥1, 𝑥2, … 𝑥𝑖  is treated as non-uniform with offset. 

Taking into account that the bits 𝑥𝑖   are independent, the 
offset value is defined as: 

𝑒 =  
1

2
(𝑃(𝑥𝑖 = 1) − 𝑃(𝑥𝑖 = 0)), (3) 

where 𝑃(𝑥𝑖 = 1) =  
1

2
+ 𝑒 і 𝑃(𝑥𝑖 = 0) =  

1

2
− 𝑒. 

If the number at the output of the PRN generator can 
take one of 𝑚 values, then for a good generator the prob-
ability of each of them should be equal to 1/𝑚. In the case 
of a binary sequence, this value should be equal to 0.5, 
and the value of 𝑒 should approach zero. 

The general characteristics of the methods used to 
create generators of initial unshifted values [1] can be for-
mulated as follows: 

– they do not use all bits of the original sequence; 
– the bit selection algorithm must be implemented 

in an effective way, from the point of view of saving com-
puting resources; 

- for such generators, there must be a mathematical 
justification of their properties. 

The first step in choosing a generator for creating a 
computer model should be to choose a PRN generator. It 
is desirable that it be simple enough. A good example of 
a simple generator can be a generator built on the basis of 
using Fibonacci numbers [7]. His work can be described 
by the following expression: 

𝑋𝑛 = (𝑋𝑛−24 + 𝑋𝑛−55) mod 𝑚,   𝑛 ≥ 5,5, (4) 

where 𝑚 is an even number, and 𝑋0, … , 𝑋54 are arbitrary 
integers, and not all of them are even. The length of the 
sequence period at the output of such a generator is 

2𝑞−1(255 − 1), where 𝑞 is the bit rate of the microproces-
sor register, and 𝑞. Other experimentally determined 
good coefficients for 𝑋𝑖 are given in [7]. 

Given the need to initially fill the generator's 
memory with the 55 seed numbers and the fact that 24 
and 55 are Fibonacci numbers, its output sequences are 
called delayed Fibonacci sequences. 

Such generators were used at the end of the 20th 
century, they were considered the best sources of ran-
domness, but they did not pass the new tests created at 
that time, which indicates the exhaustion of the means of 
creating such a generator capable of ensuring the neces-
sary uniformity of the distribution of output numbers 
without their additional processing. The Fibonacci se-
quence generator works faster than other similar genera-
tors and has the longest repetition period. Moreover, it al-
lows implementation of floating-point operation modes. 

At one time, George Marsaglia gave a mathematical 
justification to the vast majority of iterative generators de-
scribed by D. Knuth in [7], which could be used as a 
source of randomness, after appropriate refinement [12]. 
Based on this analysis, he proposed an efficient generator 
called Xorshift [13], built using simple shift and addition 
operations. Its iterative generator uses a set of numbers 
𝑍,, the inverse function 𝑓   over the set 𝑍,, and an initial 
number  𝑧0 𝑍. 

The numbers at the output of such a generator are 
formed according to the principle: 

 𝑓(𝑧), 𝑓2(𝑧), 𝑓32(𝑧), … , (5) 

where  𝑓2(𝑧) means 𝑓(𝑓(𝑧), 𝑓3(𝑧) means 𝑓( 𝑓2(𝑧)) etc. 
Usually, the set 𝑍 is the set of all possible 32-bit numbers 
that are tuples  𝑥1, 𝑥2, … , 𝑥𝑚, and 𝑓   is a function that 
transforms the current tuple in the next. 

If 𝑓 is a mutually unique function over 𝑍, and the 
initial number 𝑧, from which the generator starts its work, 
is randomly selected from the set 𝑍, the stream of initial 
random values 𝑓(𝑧) will also be uniformly distributed. 

|𝑝[𝑇(𝑋) = 1]| − |𝑝[𝑇(𝑌) = 1]| ≤ 𝜖. (1) 
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The formation of the original sequence of numbers 
must be ensured by the use of transformations of the type 
𝑓(𝑧), 𝑓2(𝑧), …  by means of uniform random selections of 
the number 𝑧 from 𝑍. Such a sequence will have all signs 
of randomness. 

In search of a computationally efficient PRN gener-
ator, George Marsaglia proposed a large number of mod-
ifications to the Xorshift generator. Basically, such a gen-
erator is a certain number of linear feedback registers 
(LFSR), the configuration of which is determined by the 
choice of generating polynomials of relatively low de-
gree. 

The architecture of generators of the Xorshift type is 
focused on the use of a 32- or 64-bit integer as an element 
of a vector space in a binary field modulo 2. It is the use 
of elementary computer operations (addition and shifts) 
that ensures the simplicity and efficiency of implement-
ing the necessary transformations over numbers in the 
vector space linear space. 

The essence of the Xorshift algorithm is that it uses 
the set of all nonzero 1 × 32 binary vectors from 𝑍, and 𝑓 
is treated as a linear transformation over 𝑍 represented by 
a nondegenerate binary matrix 𝑇 of size 32 × 32. Taking 
this into account, we can state that the sequence of num-
bers at the output of the generator will look like 𝑦𝑇, 𝑦𝑇2,

𝑦𝑇3, … , , only if the order of 𝑇 is equal to 232 − 1 in the 
group of non-degenerate binary matrices of size 32 × 32 
and the sequence has a period of 232 − 1 [14]. 

In [13], Marsaglia showed that a simple method of 
forming the matrix product 𝑦𝑇 can be implemented if the 
order: 

𝑇 = (𝐼 + 𝐿𝑎)(𝐼 + 𝑅𝑏)(𝐼 + 𝐿𝑐) , (6) 

where 𝐿 is the matrix that affects the left shift by one. In 
the C language, this operation looks like 𝑦 ^ = (𝑦 ≪ 1). 
Accordingly, the matrix 𝑦𝐿𝑎 realizes the shift 𝑦 ^ = (𝑦 ≪

𝑎). Given that matrix 𝑅 is a transposed matrix 𝐿, its use 
implements a right shift by one unit 𝑦 ^ = (𝑦 ≫ 1). This 
means that (6), for a random 32-bit number from 𝑍, makes 
it possible to obtain each subsequent number in the se-
quence 𝑦𝑇, 𝑦𝑇2, 𝑦𝑇3, … Thus, to obtain the maximum pe-
riod, matrices that implement the three types of shifts de-
scribed above 𝑦 ^ = 𝑦 ≪ 13 ;  𝑦 ^ = 𝑦 ≪ 17 ;  𝑦 ^ = 𝑦 <

5 .. 
The implementation of the described algorithm in 

the C language may look like this: 

  x = 123456789 
  y = 362436069 
  z = 521288629 
  w = 88675123 
 
  t = x ^ ((x << 11) & 0xFFFFFFFF); 
  x = y; 
  y = z; 

  z = w; 
  w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); 

After starting the generator, the initial numbers 
𝑥, 𝑦, 𝑧 and 𝑤 are set, which determine the internal state of 
the generator. Each subsequent number 𝑤 = {𝑁0,  𝑁1,
… ,  𝑁31} is formed as a combination of bits of 𝑥 and the 
previous value of 𝑤 as shown in the following code snip-
pet. After that, the 𝑦 → 𝑥, 𝑧 → 𝑦 and 𝑤 → 𝑧 are shifted. 

According to Marsaglia, it is precisely these shifts that in-
crease the "randomness" of lower order numbers. He sub-
stantiated in detail the choice of three numbers 
[𝑎, 𝑏, 𝑐], 𝑎 < 𝑐 for which the binary matrix of type (6) has 

the period [232 − 1], and also listed combinations of num-
bers [𝑎, 𝑏, 𝑐], which are the best, with from the point of 
view of minimal use of computing resources. Thus, its 
generator, Xorshift, due to its simplicity and unpreten-
tiousness to resource costs, can be considered as one of 
the main candidates for use as a source of randomness in 
computer simulations. 

The main problem of modeling is that regardless of 
the method of formation of the model of the original sto-
chastic process, the unevenness of the numbers at the out-
put of the PRN generator, which is a source of random-
ness, is completely transferred to the process, which is the 
goal of modeling. Although the requirements for the ac-
curacy of modeling in comparison with the real process 
do not exceed 5÷10 percent, the latest modification of the 
generator proposed by Marsaglia does not meet such re-
quirements (fig. 2). 

 

Fig. 2. Histogram of the distribution of  
PRN obtained using the function Xorshift128 

It should be noted here that we are not talking about 
a binary output stream, but about a stream converted to a 
sequence of integers or real numbers. So, Figure 1 shows 
a 16-segment histogram of a sequence of 1000 positive 
random 4-byte numbers at the output of the Xorshift128 
generator. 

Studies conducted using the χ2-Pearson test [14] 
show that the uniformity index, taking into account 15% 
accuracy, usually significantly exceeds the critical per-
missible value. 

In favor of the Xorshift128 generator, the fact that 
due to the use of logical and bit operations provides 
"whitening" and "mixing" of the higher and lower digits 
of the generated numbers, just as it is done in crypto-
graphic generators. 

Despite the positive properties described above, the 
Xorshift generator in its known modifications requires 
additional post-processing. Applying the number selec-
tion method described in [15], [16] to the sequence of 
numbers at its output, the shift in their distribution uni-
formity can be reduced. The essence of this method is 
that, given the type of distribution, the sample size 𝑁, and 
the number of intervals 𝑘, the number of numbers falling 
into each interval of the histogram is calculated. For uni-
form distribution, these values must coincide and be 
equal to the value of 𝑁𝑖/𝑘. The mathematical expectation 
of the value 𝑚𝑖falling into each segment of the histogram 
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𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 < 𝑥𝑚𝑎𝑥 is equal to the value 𝑚𝑖 = (𝑥𝑚𝑖𝑛 +
𝑥𝑚𝑎𝑥)/2, and the sum of the numbers 𝑆𝑖, which should fall 
into the i-th interval, will be approximately equal to the 
value of 𝑆𝑖

∗ = 𝑁𝑖
∗𝑚𝑖. If the sum of the numbers that actu-

ally fell into the i-th segment of the histogram 𝑆𝑖, it will 
differ from the expected value 𝑆𝑖

∗ every time. Thus, the 
"extra" numbers that fall into each i-th segment of the his-
togram will be filtered out, and the displacement of the 
distribution of the output flow will decrease, which is 
confirmed by tests, as can it be seen (fig. 3) 

 

Fig. 3. Histogram of the distribution  
of numbers from the output of  

the Xorshift128 generator after post-processing 

Tests of the described generators and their post-pro-
cessing method using the 𝜒2-criterion show that in most 
cases, without additional post-processing, the 𝜒2 indica-
tor exceeds the critical value (𝜒2 < 𝜒кр

2 ). At the same time, 

performing additional processing of the original numeri-
cal stream provides a source of randomness suitable for 
modeling stochastic processes. 

Conclusions. The problem of computer modeling is 
that even a sufficiently acceptable bit sequence, from the 
point of view of distribution uniformity, does not pre-
serve this uniformity when transformed into a numerical 
stream of integers or real numbers. Because of this, it is 
necessary to look for ways of such an additional transfor-
mation of numerical sequences that would take into ac-
count exactly this aspect of the problem. 

The analysis of known simple arithmetic generators 
of pseudo-random numbers has shown that, if good post-
processing methods are applied to them, they can be suc-
cessfully used to simulate stochastic processes, and are an 
alternative to generators built into most known program-
ming environments. Today, developers’ efforts to create 
modern post-processing methods are focused on their 
wide use in various scientific fields, including crypto-
graphic algorithms. Given that the requirements for the 
uniformity of the distribution in the numerical sequences 
intended for the needs of modeling differ from the re-
quirements for the sequences obtained at the output of 
cryptographic generators, economic PVC generators and 
post-processing methods based on a simple extraction of 
"the most random" part of the original numerical stream. 
This problem is best solved at the level of the numerical 
flow, which is directly used in the simulation process. 
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УДК 621.391.25 

Щербина Ю., Казакова Н., Фразе-Фразенко О., Домаскін О. Методи вибору генератора випадкових 
чисел для моделювання стохастичних процесів 
Анотація. Сучасне комп'ютерне моделювання – це важливий етап проектування систем управління розпо-
діленням інформаційних потоків в обчислювальних мережах та у сучасних системах управління складними 
технологічних процесами. Ядром будь-якої комп’ютерної моделі є джерело випадковості, яке повинно форму-
вати рівномірно розподілений потік випадкових цілих або дійсних чисел. Крім рівномірності розподілення, 
таке джерело повинно задовольняти вимогам економічного використання ресурсів обчислювальної системи. 
Наведено аналіз простих арифметичних генераторів і, на його основі, показано, що у якості генератора для 
потреб моделювання стохастичних процесів підходять такі генератори, як генератор послідовності Фібо-
наччі з запізненням та запропонований Дж. Марсальєю генератор Xorshift, які є альтернативою генераторам 
випадкових чисел, вбудованих в існуючі середовища програмування. На основі проведених досліджень зроблено 
висновок про те, що будь-яка нерівномірність чисел на виході генератора, обраного у якості джерела випадко-
вості, суттєво впливає на якість процесу, який підлягає моделюванню, і, через це, числові потоки від таких 
генераторів мають бути додатково оброблені методами екстракції тої їх частини, яка забезпечує максима-
льну випадковість. Наведено методику виконання такої екстракції шляхом “проріжування” вхідного потоку, 
критерії, які при цьому використовуються, та результати його експериментального дослідження для генера-
тора Xorshift128. Зроблено висновок про переваги використання простих і економічних генераторів в купі з 
процедурами постоброблення, що виконується на рівні цілих або дійсних чисел. Наведено результати оцінки 
роботи Xorshift генератора з урахування описаних в роботі методик та зроблено висновок про доцільність 
його використання для потреб моделювання стохастичних процесів. 

Ключові слова: моделювання, лінійний конгруентний генератор, генератор Вихор Мерсенна, Xorshift генера-
тор, метод зворотної функції,  метод Монте-Карло, критерій хі-квадрат Пірсона, постоброблення числового 
потоку, алгоритм, метод, персональні дані, особиста інформація, фазовий портрет, нелінійна система, стій-
кість, запізнення, конфіденційність, прогнозування, інформаційні технології. 
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