
© Chumachenko K., Chumachenko D. Study of snort performance in counteracting port scanning techniques // Ukrainian Scientific Journal of
Information Security, 2017, vol. 23, issue 1, p. 15-18.

DOI: 10.18372/2225-5036.23.11546

STUDY OF SNORT PERFORMANCE IN COUNTERACTING
PORT SCANNING TECHNIQUES

Kateryna Chumachenko1, Dmytro Chumachenko2

1Kharkiv National University of Radioelectronics, Ukraine
2National Aerospace University «Kharkiv Aviation Insitute», Ukraine

CHUMACHENKO Kateryna

Year and place of birth: 1997 year, Kharkiv, Ukraine.
Education: Kharkiv National University of Radioelectronics, 2017 year.
Position: student of Software Engineering Department.
Scientific interests: information security, penetration testing.
Publications: about 10 publications in information security.
E-mail: kateryna.chumachenko@gmail.com

CHUMACHENKO Dmytro

Year and place of birth: 1989 year, Kharkiv, Ukraine.
Education: National Aerospace University, 2011 year.
Position: teaching assistant of Informatics Department.
Scientific interests: multiagent simulation, information security.
Publications: more than 60 publications in simulation and information security.
E-mail: dichumachenko@gmail.com

Abstract. Snort Intrusion Detection System became the de-facto standard among the software-based Intrusion De-
tection Systems because of the high level of customization and the relative ease of use. However, it is essential for an
Intrusion Detection System not only to prevent the known attacks, but also to detect zero-day attacks and their pre-
ceding steps, such as port scans. A lot of companies neglect the security measures, associated with the prevention of
the steps, preceding the attack, such as port scans. This article analyzes the performance of Snort in relation to detect-
ing various port scanning methods and common evasion techniques, as well as the configurations that lead to the best
performance. Port scanning prevention is discussed in the context of the nmap service and all the scanning tech-
niques associated with it. Moreover, a packet defragmentation technique is discussed as the evasion technique, as well
as the ways of the evasion detection. The article includes the recommendations for configuration of the Snort Intru-
sion Detection System for effective detection of the port scanning attacks.

Key words: Snort, port scanning, attack detection, zero-day attack, evasion, information security.

Introduction

Network Security plays a crucial role in the
operation of the enterprise and various measures are
used to protect the company’s assets. In addition to
firewalls, one of the used methods are Intrusion Detec-
tion and Intrusion Prevention Systems (IDS/IPS) [1].
They are explicitly used to detect zero-day attacks, for
which signatures have not been released yet. They are
also good in the detection of attacks, that employ some
anomalies, e.g. anomalies of traffic amount in Denial of
Service (DoS) attacks. The aim of this research is to eval-
uate the performance of the de-facto standard on the
market of Network-based IDSs, Snort, in relation to port
scanning attacks. In this paper, it will be described how
and which port scans are identified well, which evasion

techniques are successful and how Snort performance
can be improved.

An important goal of any IDS is to prevent not
only attacks, but also their preceding activities, such as
port scanning. However, most studies of prevention of
attacks, neglect these actions and explore the attack only.
This paper offers a new perspective on the detection and
prevention of attacks, focusing on Snort capabilities to
detect and prevent the port scanning.

Snort IDS. Snort is an open-source and free In-
trusion Detection System. The ease of rule creation and
personalization for specific needs of business made it a

de-facto standard in intrusion detection and prevention.
Snort uses rule-based detection approach and can be
installed in 3 ways: as a simple packet sniffer, packet

http://dx.doi.org/10.18372/2225-5036.23.11546
https://vk.com/write?email=kateryna.chumachenko@gmail.com
mailto:dichumachenko@gmail.com

ISSN2225-5036(Print),ISSN2411-071X(Online)
http://infosecurity.nau.edu.ua;http://jrnl.nau.edu.ua/index.php/Infosecurity

logger and as a Network-based Intrusion Detection
System (NIDS) [2]. NIDS is the most complicated and
configurable mode and this mode is described in this
paper. When running as NIDS, Snort is capable to ana-
lyze the traffic and making decisions on whether it is
malicious based on rules. Snort is also capable of taking
proactive actions. Snort architecture can be defined in
the following way: packet decoder, preprocessors,
detection engine, logging and alerting system, output
modules. Packet decoder is the first stage where traffic
enters the IDS. Its goal is to prepare the packets to be
preprocessed or to be sent to the detection engine. The
second stage is the preprocessors They are responsible
for packet defragmentation. Also, some simple pre-
analysis can be done here. It includes finding anomalies
in packet headers, decoding HTTP URI, re-assembling
TCP streams. Detection Engine compares the traffic to
the rules and tries to find any matches. In the first re-
leases of Snort there was a problem that when some rule
was matched, the search for another matches was not
performed. Because of that, there was a possibility to
create an alert of lowest criticality, although there might
be something more severe. In later versions of Snort, this
problem was solved. Different rules have different prior-
ities. If several matches are found, the highest priority
rule is selected to generate the alert. After the Detection
Engine has made the decision on whether to generate
the alert, the logging and alerting system is responsible
for sending alerts and logging packets. After all, the
processing is done and alerts are generated, these mod-
ules define the types of output to be generated (simply
save it to a file, MySQL database, Syslog, etc.).

Decisions are made upon Snort rules. Snort rules
contain two logical parts [3]. The first part is called the
rule header and the second one is the rule option. The
header consists of the destination and source IP address-
es, rule action, protocols and the ports. The rule option
part determines the alert messages that will be sent as
well as the information about the inspection ways – e.g.
threshold values for the whole traffic or packet segments
to be inspected to determine if the rule action should be
invoked.

Port scanning. Port scanning is one of the first
steps of any network-based attack. It can reveal the open
ports, services running on them as well as operating
system and other attributes of the scanned ports. The
most common service used for port scanning is nmap
scanner. It is an open source and free tool that will be
used as well in this research. For better understanding of
the process, it is important to take a look at the different
port scans [4].

TCP SYNscan is the default scan for nmap. It is
fast, relatively unobtrusive and stealthy. During this
scan, a SYN packet is sent as if a real connection was
going to be opened. The response is then checked. If it is
a SYN/ACK packet – the port is open, while RST indi-
cates that it is closed. If no response was received, the
port is marked as filtered. Additionally, the port is
marked filtered if an ICMP unreachable error was re-
ceived. During this scan full connection is never estab-
lished and sometimes it is referred to as half-open scan-
ning. TCP connect scan is a good choice when TCP
SYNscan is not possible, for example when the user does

not have raw packet privileges. During this scan, nmap
asks the operating system to establish a connection using
the connect system call – it is the same system call that is
used by web browsers and P2P applications. However,
nmap has less control over high-level calls than with
raw packets, so this type of port scan is usually less
efficient than TCP SYNscan. During this type of scan a
full connection is opened to the target port. This results
in bigger delays and packet amounts to be sent as well
as in high probability of detection.

UDP scan targets UDP services. Such scanning is
generally slower and harder to implement than TCP, so
it is often neglected. This is not a right thing to do as
UDP services are also often exploitable. UDP scan works
by sending a UDP packet for each port. If ICMP un-
reachable is received, the port is categorized as closed.
Other errors mark the port as filtered. If a response UDP
packet is received, the port is considered to be opened. If
no response was received at all, theport is categorized as
open or filtered, meaning that it can be either of them.
UDP is very slow comparing to other port scans, since
before the port can be identified as open, closed or fil-
tered, nmap waits for the response packet, times out and
has to retransmit the packet to that port. If a port is
closed and an ICMP unreachable error is expected, huge
delays are possible – a lot of systems put limitations on
theamount of ICMP packets sent per amount of time,
e.g. in Linux 2.4.20 this limitation is one per second. This
results in the scan of all 65,536 packets taking more than
18 hours.

TCP NULL, TCP FIN, TCP Xmas scans exploit the
RFC793 specification, that states that an incoming seg-
ment not containing a RST, causes a RST to be sent in
response. So, any packet not containing SYN, RST or
ACK will result in a returned RST if the port is closed
and no response at all if the port is open. Null scan –
does not set any bits at all. FIN scan – Sets only the TCP
FIN bit. Xmas scan – Sets the FIN, PSH, URG flag. These
scans result in a same behavior - if a RST packet is re-
ceived, the port is considered closed, while no response
means it is open or filtered. The port is marked filtered if
an ICMP unreachable error is received. The main ad-
vantage of these scans is that they are very unlikely to be
detected unless specific configurations are made. They
are also a little bit stealthier. One of disadvantages is
that it cannot distinguish open ports from open or fil-
tered.

TCP ACK scan never determines open ports. It is
used to map out firewall rulesets. The TCP ACK scan
has only the ACK flag set. When scanning unfiltered
systems, open and closed ports will both return a RST
packet. Nmap then labels them as unfiltered, meaning
that they are reachable by the ACK packet, but whether
they are open or closed is undetermined. Ports that don't
respond are labeled filtered.

TCP Maimon scan is named after Uriel Maimon,
who developed it. The technique is the same as
NULL/FIN/Xmas, except that the probe is FIN/ACK. It
is already known that RST packet should be generated
in response to such a probe whether the port is open or
closed. However, in this scan, it was noticed that many
BSD-derived systems simply drop the packet if the port
is open.

http://infosecurity.nau.edu.ua/
http://jrnl.nau.edu.ua/index.php/Infosecurity

© Chumachenko K., Chumachenko D. Study of snort performance in counteracting port scanning techniques // Ukrainian Scientific Journal of
Information Security, 2017, vol. 23, issue 1, p. 15-18.

IP protocol scan allows determining those sup-

ported by the machine. Technically, it is not a port scan.
It works similarly to the UDP port scan – it sends IP
packet headers and iterated through the 8-bit protocol
field. Nmap sends packets and waits for ICMP protocol
unreachable messages. Any response means that proto-
col is open. An ICMP protocol unreachable means that
protocol is closed. Other ICMP unreachable mark the
protocol as filtered.

Evasion techniques. Port scanning would be
quite useless if it was easy to detect and prevent it.
That’s why there are certain anti-detection techniques.
The most common and successful evasion technique is
packet fragmentation. Using fragmented scans option
results in using tiny fragmented IP packets. The idea
behind this evasion technique is to split up the TCP
header over multiple packets and, thus, make it harder
for firewalls and IDSs to understand what is happening.
Packets are split up into 8 bytes. The custom offset size
can be specified by using the –MTU option (it should be
a multiple of 8). This feature is obviously only supported
with raw packets (not supported for TCP connect).

Another common evasion technique is using de-
coys. For this scan, several decoy hosts have to be identi-
fied. For the target machine, it will appear that scans are
happening for several different IP addresses, but IDS
won’t know which IP was actually scanning. Obviously,
all hosts that are specified as decoys have to be up at the
moment of the scan, since if they are down, it is very
easy to determine which IP address was actually per-
forming the scan. This can be easily defeated but is gen-
erally an effective technique to hide your IP address.
Decoys won’t work with version detection or TCP con-

nect scan. It is also important that decoys can slow down
the scan.

The question of timing and performance is essen-
tial, especially in relation to the IDS systems. At first,
knowing that UDP and IP protocol scans take a lot of
time it should be ensured that they are processed quick-
ly enough while not missing any ports and protocols. It
should be confirmed that IDS detects it. There are vari-
ous timing options, but this research only focuses on 6
timing templates. Using timing templates with nmap is a
simple approach, offering 6 options: paranoid, sneaky,
polite, normal, aggressive, insane. They are specified as
an option after –T attribute (0-5). The paranoid and
sneaky approach can be considered as another IDS eva-
sion techniques. Polite mode is usually used to use fewer
resources of the target machine. Normal is default. Ag-
gressive and insane scans assume that your network is
very fast and you want to sacrifice some accuracy for
speed. In this research, it will be tested how different
configurations affect the result of detection. But first, it is
important to understand which modification to Snort
can be made. sfPortscan is a package that is related to
the detection of port scans. It is essential to enable it
before putting Snort into real life operation. Before ena-
bling this package, not a single port scan was detected.
Frag3 preprocessor is another factor important in our
research. It is responsible for packet defragmentation.

Experiments. During the experiments, several
evasion techniques, preprocessor configurations and
port scanning methods were used. Different timing
options were also tested. The main results can be seen on
the table 1.

Main results of the experiment Table 1

Port scan type No fragmenta-
tion, without
preprocessing

(default)

Fragmentation, without prepro-
cessing (default)

No fragmenta-
tion, prepro-
cessing ena-

bled

Fragmentation, preprocessing
enabled

TCP SYN + + + + (recognized as attempt of DoS)

TCP connect + n/a + n/a

UDP + + (recognized as attempt of DoS) + + (recognized as attempt of DoS)

TCP NULL - + (recognized as attempt of DoS) + + (recognized as attempt of DoS)

FIN - + (recognized as attempt of DoS) + + (recognized as attempt of DoS)

Xmas - + (recognized as attempt of DoS) + + (recognized as attempt of DoS)

TCP ACK +/- + (recognized as attempt of DoS) + + (recognized as attempt of DoS)

TCP Maimon +/- - - + (recognized as attempt of DoS)

IP protocol + + + + (recognized as attempt of DoS)

The first thing to do was testing the simple de-
fault scans without any additional preprocessors and
preprocessor rules (frag3 is the most essential preproces-
sor at this point). Different kinds of tests performed
differently, as it can be seen. More advanced and com-
plicated scans like TCP NULL, FIN, XMAS were not
detected. TCP ACK and TCP Maimon scans were de-
tected several times, however, 70% of scans of TCP ACK
were undetected, so they will be treated as undetected.
Around 80% of TCP Maimon were detected, so they will
be treated correspondingly. Next step was to test the
detection of port scan using fragmentation. Fragmenta-
tion is one of the most common IDS and firewall evasion
techniques, so it is important to test how IDS detects it.
Surprisingly, it still detects SYN and UDP scans. Addi-
tionally, now it detects FIN, Xmas and ACK scan. How-
ever, port scans are not detected as port scans: tiny

fragments make an IDS think that there is an attempt of
DoS attack. It is important to understand that TCP con-
nect scan cannot be fragmented since it relies on high-
level system calls. Then the testing of how the
defragmentation preprocessor affects the detection of the
port scans should be performed. In this experiment, the
unfragmented nmap scans are sent. The result is ex-
pected not to be changed from the default one since no
fragmentation occurred and frag3 should not affect the
detection in any way. Indeed, the result is the same.
Probably, the only difference is related to the disappear-
ance of uncertainties related to TCP ACK and TCP Mai-
mon scans.

Finally, the Snort detection of fragmented packets
when frag3 is used is tested. As it can be seen from the
previous experiments, all successful scans were identi-
fied as an attempt of DoS attacks, while IP scan was

ISSN2225-5036(Print),ISSN2411-071X(Online)
http://infosecurity.nau.edu.ua;http://jrnl.nau.edu.ua/index.php/Infosecurity

identified successfully and Maimon scan was not identi-
fied at all. Now the result is slightly different: any port
scan is identified as being an attempt of a DoS attack. Of
course, it can be said that port scans are detected, but
since they are not classified correctly, a network admin-
istrator might be easily fooled, thus, this evasion
techniques can be considered successful. Experiments
with timing options in relation to port scanning detec-
tion resulted in quite interesting conclusions. As de-
scribed above, nmap offers 6 timing options: paranoid,
sneaky, polite, normal, aggressive, insane. They are
specified as an option after –T attribute (0-5). –T 5 and –
T 4 are the fastest options. They were always detected
but were not always accurate. The results of the port
scan were also insufficient in most cases. –T 0 and –T 1
were too slow and were also undetected with IDS –
using these timing options is a common evasion tech-
nique. The best option in relation to the time of waiting
and the performance was the – T 2 option. Such scans
were detected according to my expectations and did not
take a lot of time. Unexpectedly, using decoys resulted
in certain mess in Snort analysis as well. Decoys allow
hiding your host inside the other hosts IP addresses. It
can be used as: decoy [IP1], [IP2], [IP3] etc. The target
machine will see port scans coming from all the IP ad-
dresses that were specified as decoys. When port scans
were performed with decoys, they were recognized
randomly – it was hard for Snort to track if the port
scanning actually occurred because of multiple IP ad-
dresses. Therefore, port scans were not always detected.

Conclusion

This research showed that the default configura-
tions are not appropriate for enterprise solutions and
some advanced configurations have to be made. The
baselines for threshold values should be identified care-
fully and Snort modes should be also configured. Pre-
processor requirements should be fulfilled depending on
the requirements of your network. Rules should be care-
fully written. It is also advised to review some prewrit-
ten community packages, as they often contain rules
against situations that you might have forgotten. In
general, it can be concluded that Snort is a good solution
if appropriate configurations are made. Its advantages
are that it is the free and open source and so – highly
customizable. As a future work, more research can be
done in relation to evasion techniques and ways of de-
tection of fragmented packets correctly.

References

[1] Stallings W. Computer Security: Principles
and Practices / W. Stallings, L. Brown. – Harlow, UK:
Pearson Education Limited, 2012. – 816 p.

[2] Lyon G.F. Nmap Network Scanning: The Official
Nmap Project Guide to Network Discovery and Security
Scanning / G.F. Lyon. – Nmap Project, 2009. – 468 p.

[3] Roesch M. Snort Users Manual 2.9.8.2. /
M. Roesch. – Cisco, 2016. – 267 p.

[4] Rehman U.R. Intrusion Detection Systems
with Snort: Advanced IDS Techniques Using Snort,
Apache, MySQL, PHP, and ACID / U.R. Rehman. –
New Jersey, USA: Prentice Hall PTR, 2003. – 275 p.

UDC 004.457 (045)

Чумаченко К.І., Чумаченко Д.І. Дослідження ефективності Snort в протидії методам сканування портів
Анотація. Система виявлення вторгнень Snort стала де-факто стандартом серед систем виявлення вторгнень на основі
програмного забезпечення через високий рівень настроюваності і відносну простоту конфігурації. Тим не менш, вона є
виключно важливою системою виявлення вторгнень не тільки для запобігання відомих атак, але і для виявлення атак ну-
льового дня і попередніх їм дій, таких як сканування портів. Проте, як компанії, так і дослідження часто нехтують захо-
дами безпеки, необхідними для запобігання попередніх дій, таких як сканування портів. У даній статті досліджуються
ефективність Snort щодо виявлення різних методів сканування портів і популярних технік обходу, а також конфігурації,
які призводять до кращої продуктивності. Запобігання сканування портів розглянуто в контексті стандартного сервісу
nmap і всіх методів сканування, доступних в даному продукті. Так само розглянуто такий метод запобігання виявлення
як дефрагментація пакета, а також шляхи блокування цього методу обходу виявлення. Стаття включає в себе рекоменда-
ції по конфігурації системи Snort для ефективного виявлення атак сканування портів.
Ключові слова: Snort, сканування порту, виявлення атаки, атака нульового дня, техніка обходу, інформаційна безпека.

Чумаченко К.И., Чумаченко Д.И. Исследование эффективности Snort в противодействии методам сканирова-
ния портов
Аннотация. Система обнаружения вторжений Snort стала де-факто стандартом среди систем обнаружения вторжений
на основе программного обеспечения из-за высокого уровня настраиваемости и относительной простоты конфигурации.
Тем не менее, она является исключительно важной системой обнаружения вторжений не только для предотвращения
известных атак, но и для обнаружения атак нулевого дня и предшествующих им действий, таких как сканирование пор-
тов. Тем не менее, как компании, так и исследования часто пренебрегают мерами безопасности, необходимыми для
предотвращения предшествующих действий, таких как сканирование портов. В данной статье исследуются эффектив-
ность Snort в отношении обнаружения различных методов сканирования портов и популярных техник обхода, а также
конфигурации, которые приводят к лучшей производительности. Предотвращение сканирования портов рассмотрено в
контексте стандартного сервиса nmap и всех методов сканирования, доступных в данном продукте. Также рассмотрен
такой метод предотвращения обнаружения как дефрагментация пакета, а также пути блокировки данного метода обхода
обнаружения. Статья включает в себя рекомендации по конфигурации системы Snort для эффективного обнаружения
атак сканирования портов.
Ключевые слова: Snort, сканирование порта, выявление атаки, атака нулевого дня, техника обхода, информационная
безопасность.

Отримано 15 листопада 2016 року, затверджено редколегією 1 березня 2017 року

http://infosecurity.nau.edu.ua/
http://jrnl.nau.edu.ua/index.php/Infosecurity

