IH)KEHEPLS [TPOTPAMHOI'O 3ABE3IIEYEHHS
Ne 3 (19) 2014

BA3U JAHUX, BA3U 3HAHD TA IH)KEHEPIA ITPOI'PAMHOI'O 3ABE3IIEYEHHSA
V1K 004.773:614.29(045)

Meinyk V.M., Zhygarevich O.K., Melnyk K.V.
Lutsk National Technical University

HIGH PRODUCTION
OF JAVA SOCKETS
FOR HEALTH

CLOUDS IN SCIENCE | it

effectively uses the Java socket realization for high-performance inner-process communications. With single-copy protocol, re-
usability of the thread and communication overhead reduction, HPJS can use the message exchange in two times quickly to
conventional buffered communication libraries.

Computer clouds are using in health science
for its data collections, manipulations and
providing security needs in communications
to exchange. The clouds distribution data
character is using in science applications
created to evaluate the data of the health-
care. The science programs like medical
visualization, genetic and protein
conclusions, map-drag therapy and clinical
decisions systems of support (CDSS) require
high performance messaging libraries with
minimum computer and communication
spends and the effective utilization of the
resources. The high-performance Java
sockets (HPJS) encapsulate the needs of

Komn tomepni Hacpomaosicenusi 0aHUX SUKOPUCOBYIOMbCA 6 00Aacmi OXOPOHU 300p08’st Ol 30epicanHsi O0anux oci6, ix
Mmauninynayii i 3abe3neuennss nompebd 6esneunozco ob6miny. Xapaxmep po3noodiny NOOIOHUX HASPOMAONCEHb OAHUX Modice Oymu
PO3po6NeHUll 015 3ACMOCYBAHHS 8 HAYKOBUX 000AMKAX, KL po3poOieHi 015 hopmy6anHs OYiHKU OAHUX OXOPOHU 300pog 5. Taxi
HAYKOBI Npocpamu 1K MeOudHa Gi3yanizayis, 2eHemuyHi i NPOMeiHO8l 3aKIO4eH s, TKYSWIbHO-NPOQDIIAKMUYHA mepanis ma KiiHiuHi
cucmemu niompumku nputinsimms piwens (CDSS) eumacaiomv 6ibniomex wuoko2o 00Mily NOGIOOMACHHAMU 3 MIHIMATbHUMU
KOMN TOMEPHUMU | KOMYHIKAYIUHUMU 3ampamamu ma eghekmusHuM po3ulapyeantsim pecypcis. Bucokonpodykmueni Java-coxemu
(HPJS) inxancynoroms nompedu GUCOKONPOOYKMUBHO20 OOMIHY NOBIOOMAECHHAMU MIXC HAYKOSUMU ododamkamu O cloud-
niam@popm ma eghekmugHo uxkopucmosyloms Java-coxemuy peanizayilo Oisi YMEOPEHHs. BUCOKOCHEKMUBHO20 36 S3KY MIdC
npoyecamu. 3 €OUHOI KONIEI NPOMOKOLY NPU NOBMOPHOMY SUKOPUCMAHHI HUMOK MA 3MEHWIeHHI HAKAAOHUX GUMPAM 38 3KY
BUCOKONPOOYKMueHi Java-cokemu MOJICYMb GUKOHY8AMU OOMIH NOGIOOMACHHAMU 6 084 pasu wieuouie I3 36UYAUHUMU
6yghepuzosanumu 6ibriomexamu 36 's3Ky.

Komnviomepnvle naxonnenus OAHHbIX UCNOLL3VIOMCSL 8 30PAGOXPAHEHUU OISl COXPAHEHUs OAHHBIX OMOENbHbIX JUYHOCME, UX
Mauunyaayuu u obecneueruss Heooxoo0UMocmu 6e30nacHo2o0 o0bmeHa. Xapaxkmep pacnpeoeienus MaKux HaKONAeHUll OAHHbIX MOXNCEm
Ovimb paspaboman O1A UCHONb308AHUA 8 HAYYHBIX NPULONCEHUAX, KOmopbvle paspabomarvl 01 GOpMUPOSAHUs OYeHKU OAHHbIX
30pasoxpanenust. Takue HaAyyHble NPOSPAMMBL SIK MEOUYUHCKASL BU3YAIU3AYUS], 2CHEMUYECKUe U NPOMeUHO8ble 3aKIOUeHUs, 1e4eOHO-
npogunakmuyeckas mepanus ma KIUHUYeCKue cucmemvl noodepoicku npunsmus peuwenui (CDSS) mpebyiom 6ubiuomex
CKOPOCMHO20 0OMEHA COOOUJeHUAMU ¢ MUHUMATLHLIMU KOMALIOMEPHBIMU | KOMMYHUKAYUOHHBIMU PACX00AMU Ma dpdekmusnbim
pazepanuuenuem pecypcos. Boicokonpodykmusnvie Java-coxemwol (HPJS) unkancynupyrom neobxo0umocmu 8blcOKONPOOYKMUGHO20
0OMEHA COOOUWCHUSAMU MeHCOY HAYUHBIMU NPUNodCceHusimu ons cloud-niamgopm ma s¢pghexmueno ucnonvzyrom Java-coxkemuyio
peanuzayuio 011 00paA306anUs 8bICOKOIPDEKMUGHOU c6a3U MedxHcoy npoyeccamu. 3 eOuHoll Konueu NpomoKoia u HOBMOPHOM
UCNONB308AHUU HUMOK MA YMEHbULEHUU HAKIAOHBIX PACX0008 CE53U 8bICOKONPOOYKMUBHbLE JAva-COKembl MO2YM UCHONHAMb 0OMeH
coobueHuAMU 6 08a pasa Ovicmpee ¢ 0OLIKHOBEHHbIMU O)YpepusuposanHbIMU OUOTUOMEKAMU CEA3U.

Keywords: cloud platform; high-performance Java sockets; health-care; distribution data; decision
systems of support.

Introduction

Last time the cloud computing has emerged as
a computing platform with the main accents of
reliability, ubiquity and availability. Computing
cloud is defined as a service program support
integrated with utility computing conception.
Now, the public, private and hybrid models: all
are creating to collect a data for different aims,
which are equipped additionally with program
software for service. They also have platforms and
infrastructures for the service performance as
utility models [1].

The community of the electron methods
involving into health care the utility provided of
cloud computing models for bio-medical and

health-care data collection, data’s ubiquitous
availability [2], e-Health Services [3], secure and
social health cloud systems [4], where the benefits
of cloud’s distributed infrastructure are obvious.
The cloud computing enriches on the cheaper
commodity-hardware running with wide variety
of available and distributed resources. New
technologies are equipped with commodity-
hardware for better multi-task providing through
the parallel tasks realization. The newer multi-
core commodity microprocessors provide the
possibility for electron systems of the health care
organizations to use a microprocessor parallelism
for the science applications and high performance
necessities in health care and biomedicine areas.

IHXXEHEPIA ITPOI'PAMHOTO 3ABE3IIEYEHHA

Ne 3 (19) 2014

Such programs as medical visualization, gen and
protein annotation, map drag therapy and CDSS
are so good representatives for high-performance
computing [4].

Medical visualization applications process
human body images (CT-scanning and MRI) and
generate the most of data scope. The estimation of
this wide-formed data view takes a significant
time and needs more than one resource of
calculation to achieve the results. In case of high-
performed clusters (HPC), image scientific
applications divide all data to smaller parts and
distribute them over a network to computer. They
are naming nodes. These nodes have a parallel
work and heavily relay on inter-node and intra-
node messaging for a calculated result. HPC’s
divide and conquer approach essentially reduces
the time necessary for health-care and
biomedicine diagnostics between related scientific
applications.

Usually scientific applications need high-
performed clusters to run [5]. These clusters, tied
with more funds and low availability, can be out
of reach for small research laboratories and
individual researchers, but cloud utility-based
model can so help here. With cloud-computing
enabled with high performance to proceed the
information even an individual researcher can run
on an ewer scientific applications and perform the
modeling at any time from his own computer.
Public collecting providers, as Azure Platform
from Microsoft [6] and AWS Amazon [7] are
already providing their infrastructure for scientific
needs. Even so big private cloud platform Open
Nebula [8,9] works with open source code can
serve the limited scale HPC purpose.

In computation platforms appointed for the
research and development, the software has a
significant role in the acceptance. More and more
scientific applications (like Java .Net for
Microsoft) made as program platforms in nearest
generation. Java among the popular programming
languages, were been adopted with few scientific
applications, including medical visualization in
heterogeneous environments, spatial and temporal
modeling for infection illness and support systems
for clinical decisions to make [10-14]. Most of the
high-performed message libraries in production
[15] are basing on a message-passing interface
(MPI). MPI is de-facto HPC-communication
standard, compiled in old languages i.e.
FORTRAN, C and C++ with close to the
minimum support of the cloud computing. Java
now is available on cloud platforms like Microsoft
Azure [16], Amazon AWS and EC2 [17], Google’s
AppEngine [18], OpenNebula [8], and still lacks
HPC support. Isolated attempt to use Java for
HPC made as a result specification in Java MPI
1.2 [19]. However, the deep analysis proves many
opportunity areas catered before attempting HPC

in platform based in Java. Perspective areas
include high-performance inter-node and intra-
node messaging middle-ware based on MPI.

Proposed HPJS is one of the libraries to
perform high-performance communication
between processes by using the implementation of
the Java sockets. In the HPJS connection layer the
single copy protocol implemented for the extra
copy overhead reducing. For asynchronous
communication were introduced cached thread
pools to provide resource re-usability. HPJS
effectively provides the optimization of the
computation, better resource utilization, and
reduces network overhead for cloud platforms
running applications.

Related works review

In HPC area of HPC scientific applications
most of the research tends to focus on the core of
the application. HPC messaging middle-ware may
often be adopting or neglecting as a third-party
implementation. Java-based smart-home
infrastructure was been proposed in [20] for
health-care needs. Several proposed components
of HARE engine, require high-performance
computation for a prior of the activity recognition
to the life-care support services execution and the
analysis for long-term activity. HARE presumes
that the underlying cloud platform is quit
optimized for substantial data optimal processing.
Instead of Java socket-based communication,
remote method invocation (RMI) or XML-based
messaging, HPJS can increase HARE’s
performance by evaluating of the data activity
between a few nodes with the high-performance
messaging.

Effectively captured and implemented idea for
Java-based high-performance messaging
perspective were been realized in [21] as
messaging exchange library named MPJ-Express
(MPJE). MPIJE provides Java’s NIO based
messaging implementation, but N1O depends from
its buffering layer results in computation overhead
by involving additional priority byte-copies in its
corresponding buffer before sending and after
receiving messages. HPJS encounters this
overhead to manipulate the bytes directly between
scientific applications, HPJS components and
sockets following a single copy protocol
providing better computation performance and
utilization of the memory.

Java fast sockets (JFS) [22] provide the same
implementation to HPJS and identified in MPJE
catered issues. However, JFS utilizes its own
functions though JNI to reduce the copying and
implements shared memory protocol for clusters
intra-node communication. From other side, HPJS
is a Java implementation for commodity hardware
HPC over clouds.

IHXXEHEPIA ITPOI'PAMHOTO 3ABE3IIEYEHHA

Ne 3 (19) 2014

| Scientific applications and services |

| High performance Java socket (JHPS) API |

| Peer-to-peer communication environment setup |

¥
Message packing
¥
High performance socket interface
blocking || blocking || non-blocking || non-blocking
send receive send receive
¥
Java runtime
| Input / output streams | | sockets |

¥

| Cloud operating system / Virtualized operating system |
¥

| Cloud hardware infrastructure |

Fig.1. Deployment stack of HPJS

From the looking point of generic high-
performance Java-based communication
perspective, in [23] Apache’s application
framework is accepted as a perspective and
popular implementation. It uses the Java-NIO
implementation for high-performance applications
and network high-scalability applications. The
MINA framework is not tailor-made for MPI-

based implementation but MPI-based
implementation can be hold as MINA supports for
the synchronous and asynchronous

communication.

HPJS architecture

HPJS inherits PaaS-based service model. It has
a multiple-level architecture, which can be
stretching out as virtualized and non-virtualized
environments. Fig. 1 shows the deployment stack
with HPJS over the cloud platform. Science
programs and services communicate through
HPJS API than Peer-to-Peer environment setup
executes pre-messaging scripts to initialize the
process of HPJS with the all other HPJS
information running processes and locations of
them. The message pack level packs and unpacks
income and outcome messages in the byte form
and depending on the communication type. It
invokes blocking and unblocking in the
communication.

HPJS realization and results

Fig. 2 describes a HPJS execution flow. Every
component on the scheme describes its own
inputs, outputs and overall interaction of the
system. For internal HPJS communication,
messages are encapsulating as request objects and
response objects for the reusability and better
abstraction. For setup the environment, HPJS
process is initiating by HPJS-daemon, which
loads the configuration file of the machine to
provide the initial information about all nodes of
the HPS clouds. This information includes cloud-
node IP-addresses, port numbers of HPJS-
processes and their execution ranks. To use the
configuration file all the processes share their
unique identifiers (UUID) as resulting parameters
for creation of socket objects keyed with a
respective identifiers. Every process maintains a
socket table containing UUID-identifiers and
respective object sockets. This socket table is
using for the source identification and the
destination objects identification during sending
and receiving messages are executing.

Science applications are communicating with
HPJS via API, which accepts and returns
messages in the byte form. In case of applications
for medical imaging, these bytes can represent the
partial image or estimation results for the part
image. The knowledge of the data sharing is every
time encapsulated by the application. HPJS has no
knowledge about the data context, takes care for
effective inter-process communication. APl HPJS
de-couples HPJS core realization from the
scientific applications. The developer of the new
science program needs no knowledge of HPJS
internals, all that application requires is
conformance to the HPJS API.

HPIS
Daemon
\ ¥

machme.conf byte]

HPIS API

l UUID
Pp Message Non-blocking
Initializer socket | packager receive
'\ \] 1espOnse
st
Socket tahle fesponse request reque:
NEN B
Messaging
request — !
l_ ! device [PO 1 spawn TEsponse
Blocking t I L\\fnrker thread
response request 1
UUID. send 1
ket
e Blocking || Non-blocking
Teceive send response Thread pool

byte [] I byte []

byte[] byte []

l

Sockets |

Worker thread II

Fig. 2. Execution Flow of HPJS

IHXXEHEPIA ITPOI'PAMHOTO 3ABE3IIEYEHHA

Ne 3 (19) 2014

Instead, to use primitive data types, HPJS
performs manipulations over bytes only running
single copy protocol opposed n distinct operations
of the copy. Single copy protocol copies the array
of bytes in one-go ensuring a near native
accomplishment. Opposite MPI, specifications to
provide the connection between heterogeneous
and non-contiguous data custom objects and
derived data types are not supporting by HPJS
because the sterilization may increase overheads
of the performance. From design prospective of
HPJS, custom objects can increase the
dependency between HPJS core and the science
application. The message packer creates objects of
the respect and response for components of the
HPJS internal interaction. The request and
response objects pack bytes for sending or
receiving by the socket layer and include the
halved actual message: the header and the
payload. The payload part is the byte part taken
for HPJS from science applications. The header
part has a constant size and provides the
information regarding the payload part that has
the dynamic size (depending of the message).

The blocking of the sending and receiving
provides the control of the synchronous
communication of the protocols connection, and
the operation of the sending is not completing
until the messages are all accepted. Non-blocking
send and receive facilitate asynchronous protocols
for the communication and the non-blocking
receive spawns a worker-thread from a cached
threads pool to process response without the
receive hold in the wait. In the cached thread pool,
realization of HPJS re-uses threads and maintains
an optimal threads number in the pool in any
exception time. This model facilitates running
processes to use resources on the cloud node
optimally.

With the resource on the clouding computing
demand model, HPJS process presumes to have
unlimited resources. Instead of the request
availability acknowledgements from the process
of the receive regarding the payload size, the
message has to be sent in one-go. This technique
persuades the inter-process network overhead to
one send for every message. The blocking receive
and non-blocking worker-thread component has to
receive the message with one read. However, it
evaluates the message in two steps i.e., with the
send overhead knowledge or header size, header is
read first. The size and type of the payload has to
be defining from the header bytes, and afterwards
the payload is reading into a byte array.

&
.

0] :
o :
5 33 E ;
o 5 o
030 oy 8T
o : :
D a5 L
E :

15 B ; «.——l—p—J
o 10 : Lo :
E — —& Buffered Sockets. —— HPIS
= : :

0

1 2 4 8 16 32 64 128 256 512 1K 2K
Message Length Bytes.

Fig. 3. Analysis of HPJS Performance

Fig. 3 describes the analysis of the preliminary
performance of HPJS in contrast with
communication device of the buffered socket that
uses Java NIO’s byte buffer [21] instead of the
arrays of bytes. The results show correctly that
HPJS performs twice a quickly from the buffered
device that provides additional data copies from
bytes to the byte buffer. These results were been
estimated on a Fast Ethernet based private cloud
structure constructed with Core 2 commodity
microprocessors and a RAM of 8 GB. The results
shown in fig. 3 provide preliminary HPJS proof-
of-concept. The right scalability and tests over
larger clusters and cloud platforms have to be
performed yet.

Conclusions

The lack of Java-based high-performance
messaging middleware for scientific applications
in health clouds has been the main aim for HPJS.
As most of the HPC-based middle-ware utilizes
outdated languages and platforms, HPJS presents
MPI high-performance inner-process
communication built on Java and compatible with
most of the known cloud platforms. With its
single-copy protocol, cached thread pools and
one-go send and receive of the message, HPJS
effectively provides the high-performance inner-
process ~ communication with optimized
computation, reduced network overhead, better
performance and resource using. The HPJS
evolution includes the better intra-node
communication, performance evaluation on
clusters with large scale and cloud platforms and
integration with different scientific application to
complete the true objective of HPJS for scientific
health clouds based on Java.

References

1. Armbrust M., Fox A., Griffith R., Joseph A.
D., Katz R., Konwinski A., Lee G., Patterson D.,
Rabkin A., Stoica I., Zaharia M. View of Cloud
Computing. Communications of the ACM, 53(4),
pg. 53-58, 2008.

2. Rolim, C.0., Koch F.L., Westphall C.B.,
Werner J., Fracalossi A., Salvador G.S. A Cloud

IHXXEHEPIA ITPOI'PAMHOTO 3ABE3IIEYEHHA

Ne 3 (19) 2014

Computing Solution for Patient’s Data Collection in
Health Care Institutions. eHealth, Telemedicine, and
Social Medicine, ETELEMED, 2010.

3. Fan L., Buchanan W., Thummler C., Lo O.,
Khedim A., Uthmani O., Lawson A., Bell D.
DACAR Platform for eHealth Services Cloud. IEEE
Cloud Computing (CLOUD), 2011.

4, Wooten R., Klink R., Sinek F., Yan B,
Sharma M. Design and Implementation of a Secure
Healthcare Social Cloud System. IEEE / ACM
International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2012.

5. High-Performance Computing Applications.
http://mnww.altera.com/endmarkets/computer-
storage/computer/hpc/applications/cmpapplications.
html.

6. Microsoft offers HPC on Azure. http:/iMmww.
itworld.com/virtualization/128231/microsoft-offers-
hpc-azure.

7. High Performance Computing (HPC) on
AWS. http://faws.amazon.com/hpc-applications.

8. Milojii Dejan Llorente Ignacio M., Montero
Ruben S. OpenNebula: A Cloud Management Tool.
IEEE Internet Computing, March-April 2011.

9. OpenNebula. http://opennebula.org.

10. TIOBE Programming Community Index for
July 2012. http:/Amww.tiobe.com/index.php/
content/paperinfo/tpci/index.html.

11. Fedyukin LV., Reviakin Y.G., Orlov O.l.,
Doarn C.R., Harnett B.M., Merrell R.C. Experience
in the application of Java Technologies in
telemedicine. eHealth International. 2002.

12. Drishti: Volume Exploration and
Presentation Tool. http://sf.anu.edu.au/Vizlab/
drishti.

13. The Spatiotemporal Epidemiological
Modeler (STEM) Project. http://www.eclipse.
org/stem.

Information about authors:

14. Iram Fatima, Muhammad Fahim, Donghai
Guan, Young-Koo Lee, Sungyoung Lee. Socially
Interactive CDSS for u-Life Care. The 5-th ACM
International Conference on Ubiquitous Information
Management and Communication (ACM ICUIMC
2011), Seoul, Korea, February 21-23, 2011.

15. Snir Marc, Otto Steve W., Walker David W.,
Dongarra Jack, Huss-Lederman Steven. MPI: The
Complete Reference. 0262691841, MIT Press,
Cambridge MA, USA, 1995.

16. Windows Azure SDK for Java.
http://Amww.windowsazure.com/enus/develop/java

17. AWS SDK for Java.
http://aws.amazon.com/sdkforjava.

18. App Engine Java Overview.
https://developers.
google.com/appengine/docs/java/overview.

19. Mpijava 12: APl Specification.

http://ww.open-mpi.org/papers/mpijava-spec.

20. Asad Masood Khattak, Phan Tran Ho Truc,
Le Xuan Hung, La The Vinh, Viet-Hung Dang,
Donghai Guan, Zeeshan Pervez, Manhyung Han,
Sungyoung Lee, Young-Koo Lee. Towards Smart
Homes Using Low Level Sensory Data. Journal of
Sensors, 2011.

21. Baker M., Carpenter B., Shafi A. MPJ]
Express: Towards Thread Safe Java HPC. IEEE
International Conference on Cluster Computing,
20086.

22. Guillermo L. Taboada, Juan Tourio, Ramn
Doallo. Java Fast Sockets: Enabling high-speed Java
communications on high performance clusters.
Computer Communications 2008.

23. Apache Mina
http://mina.apache. org.

Framework.

Melnyk Vasyl Mykhaylovych — PhD, Assistant Professor, Assistant Professor
of Computer Engineering Department of Lutsk National Technical University.
Scientific interests: computing, programming and sockets.

E-mail: melnyk_v_m@yahoo.com

Zhyharevych Oksana Kostyantunivna — Assistant Professor of Computer
Engineering Department of Lutsk National Technical University. Scientific
interests: computer programming, simulation-based semantics.

E-mail: oz_lutsk@mail.ru

Melnyk Kateryna Victorivna — PhD, Assistant Professor, Assistant Professor
of Computer Engineering Department of Lutsk National Technical University.
Scientific interests: computational intelligence systems.

E-mail: ekaterinamelnik@gmail.com

40

