[H)KEHEPLS [IPOTPAMHOTO 3ABE3IIEUEHHS
Ne2 (18)2014

AKICTDb ITPOI'PAMHOI'O 3ABE3IIEYHEHHSA

UDC 004.055 + 004.5

Guchenko L.V The article is devoted to the issue of relationship between
e usability and software architecture. Architectural solutions that
National Aviation University have influence on overall software usability through concrete

properties and attributesare analyzed using the concept of
U SABI LITY usability patterns. The last one is appliedto the earlier

developed author’s usability management method considering
the usability model based on the latest standards. Conclusion is

made that usability improvement in the context of the method of
M AN AG E M E NT sofiware usability management should be started from the
design stage of the software lifecycle. Design solutions which

have positive effect on particular usability property are defined.
I N TH E Cmamms npucésvena NUMAHHIO — 38'A3KY 3PYUHOCH
BUKOPUCTAHHA — NPOSPAMHO20 — 3a0e3neyeHHs — ma 1020
apximexmypu. ApximexmypHi piuwienHs, wo Mawomv GNIUE HaA
c O N T EXT o F 3a2abHY 3PYUHICIb GUKOPUCIIAHHI NPOZPAMHO20 3A0e3NneueHHs,

uepe3 KOHKpemHi — XAapakmepucmuku md — G1acmugocmi,
npoananizoeani Ha OCHOBI KOHYenyii wabnioHie 3pyUHOCMI
So FTw ARE euxopucmanns. Konyenyin — 3acmocosana 0o paniute

PO3pOOIEHO20 A8MOPOM — MEmOOdy VAPABNIHHA 3PYUHICHIIO
BUKOPUCTAHHA — NPOSPAMHO20 — 3a0e3neyeHHs, — 8paxosyrouu

MoOenb, 3ACHOBAHY HA OCMAHHIX CIMAHOApmMax OaHiti 0o1acmi.
ARc H IT E CT U RE 3pobneno 6uUCHOBOK, WO NONINUWEHHS 3PYUHOCT BUKOPUCTIAHHS
6 KOHMEKCMI 32a0aH020 Memody CAi0 noYuHamu 3 emany
NPOEKMYBAHHA — NpOoPamMHO20 3abesneuenns. Busnaueno
apximekmypHi piuileHHs, SAKI NO3UMUBHO 6NIUBAIOMb HA

KOHKpemHi eracmueocmi 3pyunocmi BUKOPUCMAHHSL
npoSpamHozo 3a6e3neueHHs.

Cmamus noceswena 6onpocy cea3uy00bcmea UCNONb308AHUSL NPOSPAMMHO20 0OeCheyeHus U €20 apXumeKnmypbl.
ApxumexmypHvle peuienus, umerowue 61usHUe Ha 00wee YOOOCMBO UCNONIbI0BAHUS NPOSPAMMHO20 06eCneueHUs yepe3 KOHKpEnHble
XAPAKMEPUCMUKY UCBOUCMBA, NPOAHATUSUPOBAHBIHA OCHO8e KOHYenyuu wabioHos y0o6cmea uchoivb3osanus. Kowyenyus
npUMeHeHa K pauee paspabOMAHHOMY d6MOPOM Memody YNpasieHus yOO6CmeoM UCHOAb308AHUS NPOSPAMMHO20 obecneuenus,
Yuumvleas Mooeib, OCHOBAHHYIO HA NOCAeOHUX cmandapmax 6 oannou obracmu. Coenan 6vi800, Ymo yayuuieHue y0oocmea
UCNONb306AHUSL 6 KOHMEKCHE YNOMAHYMO20 Memooda Cledyem HAYUHAme ¢ IMand npoekmupo8anus nposPamMmMHo20 obecnederus.
Onpedenenvl apxumexkmypHole pewienis, NO3UMUEHO IUAIOUUEHAKOHKPEMHble C80UCMBAY006CMEa UCHOIb308AHUSL NPOSDAMMHOZ0
obecneuenus.

Keywords: softwareusability, usability model, usability patterns, usability management, usability
improvement, software architecture, software design, architectural solutions.

Introduction only during testing and deployment rather than

Achieving better usability through software during design and implementation. These high
architecture is not a new goal. In 1980 sandearly costs prevent developers from meeting all the
1990s there was an assumption that usability is a usability requirements, resulting in systems with
property of presentation of information. Thus, less than optimal usability. Explicit evaluation of
separating presentation from application made it usability during architectural design may reduce
easier to modify presentation after achieving user the risk of building a system that fails to meet its
feedback. Such assumption was wrong for usability requirements. Also high cost of adaptive
developing usable systems. In later 1990s getting maintenance can be prevented. From this
the correct functionality as well as presentation perspective it is important to establish
for good usability became the new emphasis. architectural solutions that have influence on
Nevertheless, evenin that case system usability overall software wusability through concrete
can be greatly compromised if the underlying properties and attributes.
architecture does not support human concerns Literature analysis
beyond modifiability. Still nowadays, many In existing scientific works relationship
software products suffer from usability issues that between usability and software architecture is
cannot be repaired without major changes to the connected with the concept of a usability pattern.
software architecture. A large amount of Usability pattern is a technique or mechanism that
maintenance costs are spent on dealing with can be applied to the design of the architecture of
usability problems [1], which are usually detected a software system in order to address a need

13

ITHXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYEHH S

Ne2 (18)2014

identified by a wusability property at the
requirements stage [2].

The collection of twenty usability patterns
has been defined in [3]. The important aspects of
the patterns are derived from the representing
usability as three-layered model. The highest level
— ISO 9126 subcharacteristics of usability. The
next level contains a number of usage indicators
which are indicators of the usability level that can
actually be observed in practice when users are at
work. Each of this indicators contributes to the
abstract subcharacteristics of the higher level. The
lower level is the level of means which are used in
heuristics for improving one or more of the usage
indicators. It is said that usability pattern should
state the impact on the user indicators. The
structure of a pattern is the following: problem,
usability principle, context, forces, solution,
rationale, example, known uses and related
patterns. The patterns are task related and
categorized according to the kind of usage
problems they address: visibility, affordance,
natural mapping, constraints, conceptual models,
feedback, safety, flexibility.

Folmer and Bosch [1] also used a top
down approach from the usability definition to
usability patterns. The usability framework
consists of attributes, properties and patterns.
There is not one-to-one mapping between the
usability patterns and the usability properties that
they affect. The research is on the ground of four
most commonly used by different authors
usability attributes: learnability, efficiency,
reliability and satisfaction. The corresponding
properties are: providing feedback, error
management, consistency, guidance, minimize
cognitive load, natural mapping and accessibility.
The patterns collection is different from the
Welie’s because the authors only considered
fifteen patterns which should be applied during
the design of a system’s software architecture,
rather than during the detailed design stage.

In [4] the relationship between the
usability and software architecture has been
investigated through the definition of a 26
scenarios which are in some way equivalent to
properties and patterns in [2]. Usability scenariois
defined as description of an interaction that some
stakeholder has with the system under
consideration from a usability point of view. An
architectural pattern for each of the general
usability scenarios has graphical representation
and verbal components’ description.

Grounding
Previous author’s works are devoted to the
development of the method and the tool of

software product usability management [5].It
supports usability management based on the
automated evaluation of users’ feedback.The
principalfeatureofthismethodisthatnotonlyusability
evaluation, butalso usability management is
considered in theprocessofsoftware creating. It is
achievedbytheautomatedconstructionof variant of
providing a givenusability level during next
iteration.The optimalwayof such providing is
basedon mathematical models of software product
usabilityevaluation and assurance,which are
focused on usage of customers’ feedback.

There are important questions about the
stages if software lifecycle, where the
recommendations if usability = properties
improvement should be implemented, and about
impact of such recommendations on
workproducts. Usability properties are
relatedtosoftware architecture and can be
considered within the concept if usability patterns
when applying the proposed method.

Described above usability patterns
receaches are out of date in the sense of used
usability definitions and subcharacteristics as they
are grounded on the old standards.

The aim of the present article is to apply
usability patterns concept to the author’s usability
management method considering the latest
information about usability, particularly from ISO
/ TEC 25010:2011 (updated ISO / IEC 9126-
1:2001) [6].

Case study

In many studies attempts to determine the
usability are made, but often they are in consistent
[1]. Therefore, we will use the definition given in
the standards ISO 9241-11 [7] and ISO / IEC
25010:2011 (updated ISO / IEC 9126-1:2001) [6]:

Usability — degree to which a product can
be used by specified users to achieve specified
goals with effectiveness, efficiency and
satisfaction in a specified context of use.

The method of software usability
management is based on the iterative evaluation
of the current usability level during software
creation and on the formation of optimal variant
of achieving the established usability level, which
is set by the developer at the beginning. Iterative
usability estimation,while using the method in
iterative development methodology,should be
understood as being performed at each iteration,
i.e., the completed cycle of development that leads
to product release or version. For non-iterative
development methodologiesiterative usability
evaluation means its occurrence (repetition) in the
management process.

ITHXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYEHH S

Ne2 (18)2014

The solution of the usability management
problem according to the process approach [8]
contains the following steps:

1. Construction of the wusability
hierarchical structure by experts. Includes
development of metrics by top-down structural
method [9] and contains the following levels:

a) top level - usability
subcharacteristics. Choosing of the
subcharacteristics is performed on the basis of the
existing usability requirements using industry
standards, own base of historical data about
usability of the earlier created software products
and on the ground of information about users’
expectations. Priorities and interconnections
between attributes and requirements are
establishing. Also allowable ranges for numeric
attribute values should be set with the help of
managers and / or customer;

b) middle level — usability

properties. Decomposition of usability
subcharacteristics in calculated properties is
performed;

c) lower level — usability measures.

Decomposition of usability properties in measures
is performed.Measures can be directly estimated
in numerical form by users while using software
product.

2. Calculation of usability
properties’ valueson the basis of metrics’ values
derived from users’ estimates.

3. Construction of the mathematical
model for usability evaluation, which allows,
according to the hierarchical model, to reduce the
individual values of usability properties derived
from users’ ratings and experts’ rankings into a
single numerical value. If the obtainedusability
level is equal or more than specified, the report is
formed, otherwise it is necessary to go to p. 4.

4. Construction of the mathematical
modelfor usability assurance. The mathematical
model of usability evaluation is supplementedby
function of labor ofusability properties changing,
thus the model of optimal assurance of established
usability level is obtained.

5. Formation of the optimal
variantof providing a given usability level. The
result is represented as a set of properties that
need improvement (including the change value for
each indicator). To determine the effect of
changing parameters on the software product
usabilityit is proposed to establish the existence
and the form of relation between pairs of
properties under consideration.

6. Implementation of the obtained
variant of properties’ changes and control of

achieving the established usability level during the
next iteration, if necessary — correction of the
models.

Implementation of changes for improving
usability can be started from the design stage
using usability patterns. It is important to define
the usability model. In the method above the
hierarchical structure was chosen.To clarify this
model the latest information about usability
subcharacteristicswas used.

In ISO / IEC 25010:2011 [6], which
belongs to a series if standards SQuaRE(ISO /
IEC 25000 - ISO / IEC 25099), usability is
considered in two models: directly — i the product
quality model; indirectly — i quality i use model.
According to the first model usability has six
subcharacteristics: appropriateness
recognisability, learnability, operability, user error
protection, user interfaces esthetics and
accessibility. They form the basis for the
specification of usability requirements and its
evaluation. Sets of software properties correspond
to subcharacteristics. List if properties was
developed using QUIM model [11]. These
properties match measures [8]. With regard to the
measures that are calculated for each usability
property, the corresponding list is presented in [8].
Measures are calculated using formulas for simple
calculations on the ground of users’ feedback
(ratings).

Using Folmer and Bosh approach [1, 2]
the usability framework was developed. It consists
of subcharacteristics, properties and patterns.
There is not one-to-one mapping between the
usability patterns and the usability properties that
they affect. There are twenty usability properties
in the author’s usability model [8]. List of the
patterns and their relations with the usability
properties is grounded on the Folmer and Welie
works. Graphical representation of the framefork
is on the fig. Explanations are given below.

There is not necessary only one method to
implement the solution presented in usability
pattern. Patterns don’t specify implementation
details in terms of classes and objects. The main
fields in describing patterns are problem, usability
context, rationale and solution (or architectural
implications). Solutions presented in usability
pattern can be realized with different architectural
and design patterns. For example, Undo may be
implemented by Memento design pattern and
Multiple views — by MVC architectural pattern
etc. It is important to remember that pattern
optimizes several usability properties while other
properties become worse.

Time behavior, Attractiveness and Likeability

ITHXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYEHH S
Ne 2 (18) 2014

have no analogical usability properties in related
works [1-4], but in [3] the rationale for each
Subcharacteristics

__________________ ' ,Feedback
1
1
Operability

User error protection

1
1
1
1
1
User interface aesthetics |
1
1
|
1
1
|

I
:Likeabiliw’

Learnability |

I
'Accuracy

Readability

Accessibility

:Contmlability

|Consistency

+ User interfa
« Functional

[.
|Minimal actiong

Properties

:User guidance

I
IFault-tolerance
1

|» Fault correction
I Fault prevention

Time behavior'

Atlra ctiveness’

pattern is created considering such usability
aspects as Performance speed and Satisfaction.
Patterns

Hlstory logging

Cancel

Undo

'Form or field validation
|

:Emulalion

I
|Multiple views
:(MVC}

|
Workflow model

:User profiles

/'4' Scripting
|
»iPreferences

/Ag/\h Favontes

IMinimal memory loa
1

o4

/

:Self—Descriptiveness =

Focus

|
|

piAuto-hide menu-items
|
|

&,

Unamb|gu0us format

Grid layout

i, pa—

-

“"""‘-—-__

"

I
Analogy

“'Command area

Guide, Demonstrations, He

Context—sensitive help

|
Wizard

avigating between spaces

Appropriateness recognizability

Familiarity

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 1
I | Flexibility
I 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

|
|
|
1
|
I
|
I
I
1
1
I
1
INavigabilit
|
1
I
I
|
I
1
|
1
1
|
|

Container navigation
List browser

Continuous filter

Fig. Connection between usability and software architecture'

' Connections between properties Time behavior, Attractiveness, Likeability and usability patterns are explained
within the body of the article. Relations between usability subcharacteristics and properties are presented in the Annex

A.

16

ITHXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYEHH S

Ne2 (18)2014

After patterns [3] analysis it was defined
that Time behavior property is affected positively
by the following usability patterns:

- Grid layout: arranging all objects
in a grid using the minimal number of rows and
columns, making the cells as large as possible. As
a result, the time needed to read the information
and task completition time are reduced;

- Preferences: providing choices
(for example, in a form of dialog box) for the user
which will become the default. Tweaking the
application for the particular purposes increases
possible performance;

- Focus (object the user is working
on): determines the context of the available
functionality. Windows containing relevant
functionality are activated when the focus
changes. This reduces time of function execution
because less actions are needed;

- Navigating between spaces:
grouping of elements in separate labelled spaces
and allowing the user to select only one space in a
time. Reduces time for searching an element;

- Analogy: using real world
metaphors;

- Favorites: searching time 1is
reduced by using favorites menu;

- List browser: allows the user to
navigate directly from one item to the next and
back. User does not need to go back to the index
and reduces task time;

- Continuous filter: component
allows user filter in real time only the items that
are of his interest. User gets immediate result
corresponding the search term.

Attractiveness and Likeability also are
supported by the patterns listed above. Additional
usability patterns which increases these properties
are: Progress and Status indication, Context-
sensitive help, Unumbiguous format (allows user
to enter data in the correct syntax) and Command
area.

Relations between software usability and
architecture show that usability improvement in
the context of the method of software usability
management should be started from the design
stage of the software lifecycle. Architecture
updating obviously affects the work products of
the following stages. Also it can lead to necessity
of requirements redefining, thus introduction of
changes to the initial stage -
requirementsanalysis. In this case, the cost of
work performed to achieve a given usability level
will be the greatest.

Conclusions

Designing usable software products is
difficult and developers need effective methods.
Earlier author’s works were devoted to the
creating of the method of sodtware usability
management during development. Current
research shows that usability properties are related
to software architecture and can be
consideredwithin the concept of usability patterns
when applying the proposed method.Existing
usability patterns researches are out of date in the
sense of wused wusability definitions and
subcharacteristics as they are grounded on the old
standards thus old usability models are used. In
the article usability patterns concept is applied to
the author’s wusability management method
considering the latest information about usability,
particularly from ISO / IEC 25010:2011 (updated
ISO /IEC 9126-1:2001). As a result the method is
clarified in the sense of ways of changes’
implementationforimprovingusabilityat the design
stage. Design solutions for each particular
usability property are defined. The future work
will be devoted to the analysis of concrete design
and architectural patterns which have a positive
effect on the usability.

References

1. Folmer E. Experiences with
Software Architecture Analysis of Usability / E.
Folmer, J. Bosch // International Journal of
Information Technology and Web Engineering. —
2008. - Vol. 3(4).—P. 1 -29.

2. Folmer E.
UsabilityPatternsinSoftwareArchitecture / E.
Folmer, J. Bosch // HCII'2003: proceedings. —
2003.—-P.93-97.

3. Welie M. Interaction Patterns in
User Interfaces / M. Welie, H. Traetteberg //
PloP’2000: proceedings. — 2000. — P. 113 — 138.

4, Bass L. Achieving Usability
Through Software Architecture / Bass L., John B.,
Kates J. — Pittsburg, PA: Carnegie Mellon SEI,

2001.—103 p.

5. I'yaenxko I[.B. Metox i 3aci0
yIIpaBITiHHS 3pY4HICTIO BUKOPHCTAHHS
OPOrpaMHUX MHPOAYKTIB: JIHC. KaHAWaaTa

texHiuanx Hayk: 01.05.03 / TI'yuenko ImHa
Bonomumupisna. — K., 2012. — 124 c.

6. Systems and software
engineering, Systems and software Quality
Requirements and Evaluation (SQuaRE), System
and software quality models: ISO/IEC
25010:2011. — Geneva: International Organization
for Standardization /International Electrotechnical
Commission, 2011. — 34p.

ITHXXEHEPIS ITPOI'PAMHOTI'O 3ABE3ITEYEHH S

Ne2 (18) 2014

7. Ergonomic Requirements for 9. IEEE Standard for a Software
Office Work with Visual Display Terminals Quality Metrics Metodology: IEEE Std. 1061 —
(VDTs), Part 11: Guidance on Usability: ISO 1998. — N.Y.: The Institute of Electrical and
9241-11. — Geneva: International Organization Electronics Engineers, 1998. — 38 p.
for Standardization, 1998. — 22p. 10. Padda Harkirat K. QUIM: A

8. PykoBoAcCTBO K CBOIYy 3HAHMM IO Model for Usability/Quality in use Measurement
yIIpaBiIeHHIO TpoekTamu (pykoBoacTBo PMBOK); / Harkirat K. Padda. — Colne: Lambert Academic
nep. caHria. — [4-eusn] — Pennsylvania: Project Publishing, 2010. — 124 p.
Management Institute, 2010. — 463 c.

Information about author:

Guchenko Inna Volodymyrivna — PhD, Associated Professor of the Software
Engineering Department of the National Aviation University. Scientific interests:
software engineering.

E-mail: Inna.Guchenko@livenau.net

18

