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This article reviews method of calibration of
COCOMO software cost estimation model by
reduction of the main equation as well as
scientific and mathematical method that lied
foundations for it.
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Introduction

With the significant growth of software com-
plexity methods for software cost estimation be-
came necessary condition of the success of any
software project. But over the years of software
cost estimation models’ improvement still most of
the models are not generalized and that is the rea-
son for the appearance of various calibration tech-
nigues and methods aiming to improve the quality
of software cost estimation results of a given
model for a specific company domain.

This article presents the results of scientific re-
search in the field of software cost estimation
model calibration and proposes the special method
of calibration of COCOMO model via reduction of
the main equation of the model.

The mathematical model

In this method, a number of ideas are taken
from the relevance of features that were discussed
in [1], and the evaluation criteria for prediction
models in [2], [3] and [4]. This method aims to
find the optimal feature subset that enables higher
accuracy and lower variability of results than the
general model with the full feature set. Therefore it
is important to build the mathematical model and
define corresponding terminology. For example,
the relevance of features is defined to show
whether the feature subset is relevant to the model
or not. The optimal feature subset not always
includes all relevant feature subsets but generally it
shouldn’t include the irrelevant feature subset.

PM = ax(KSLOC") « (TIEM;) (Eq. 1)

B cmamve paccmampusaemcs memoo xanu6-
DOBKU MOOENU OYEHKU CMOUMOCMU NPOSPAM-
mHoeo obecnevenuss COCOMO nymem pedyk-
Yulu OCHOBHO20 YPABHEHUS, A MAKJICe HAYYHbLE
u Mamemamuyeckue Memoobl, Komopwle Jie2nu
6 €20 0CHOBY.

where

PM — person months;

EM — effort Multipliers shown in Table2.4;

KSLOC - size as thousand lines of code, is
estimated or converted from a function point met-
ric;

a and
ters/constants.

PM = A (KSLOCP+1OVEL1SFi) ¢

(IT}Z1 EM;) (Eq. 2)

where

A — baseline multiplicative constant;

B — baseline exponential constant;

Size — Size of the software project measured in
terms of KSLOC (thousand of source lines of
code) or function points related to programming
language;

SF — scale factor;

EM — effort multiplier;

Definition 1. Model. These models are the
same as the ordinary COCOMO 81 model shown
in Equation 1 or the COCOMO Il model shown in
equation 2 except that it uses fewer model
parameters (calibration features, e.g. effort
multipliers).

Definition 2. Feature. A feature, sometimes
called a parameter, an attribute, a factor, or a cost
driver, describes some characteristics of a project
instance.

Definition 3. Feature Subset. A feature subset
includes one or more than one but not all
parameters of the model.

b - domain-specific parame-
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Definition 4. Full Feature Set. A full feature
set includes all parameters of the model.

Definition 5.  Accuracy. COCOMO’s
performance is often measured in terms of
PRED(30). PRED(N) is calculated from the
relative error, or RE (shown in equation 3), which
is the relative size of the difference between the
actual and estimated value. Given a data set of size
D, a Training set of size (Train=|Train|) <D, and a
test set of size T=D- |Train|, then the mean
magnitude of the relative error, or MMRE (the
mean magnitude of relative error, shown in
equation 5), is the percentage of the absolute
values of the relative errors, or MRE (the
magnitude of relative error shown in equation 4),
averaged over the T items in the test set. PRED(N)
for each hold-out experiment is calculated with
equation 6.

estimate ;—actual ;

RE; = actual ; (Eq. 3)
MMRE = =2 3_, MRE, (Eq. 5)
. N
PRED(N), =251, {1 if MRE; < 755 (gq
0 otherwise

6)

In this approach, Hold-out experiments are
conducted; the accuracy of the model is defined in
equation 7 as the mean of PRED(N) in all hold-out
experiments in the same calibration dataset:

PRED(N) = -¥"; PRED(N);,  (Eq.7)

PRED(N) = P

30% of the actual the actual value

Figure 1. An Example for PRED(30)=50

An example is shown in Figure 1, a
PRED(30)=50% means that half the estimates are
within 30% of the actual results. The results are
reported in terms of PRED(N), not MMRE. This is
a pragmatic decision as PRED(N) is easier
understood by business users than MMRE. Also,
there are more PRED(N) in reports in the literature

than MMRE, possibly due to the influence of the
COCOMO researchers who reported their 1999
study using PRED(N) [5].

Definition 6. Variability. PRED(N) is
calculated for different “holdout” samplings of the
calibration data. Holdout samplings use
randomized subsamples of the data to calibrate
PRED value and the unsampled data to calculate
PRED value. Different samplings produce different
PRED(N) values. M shown in equation 8 is
denoted as the mean of PRED(N) from all hold-out
experiments. Variability of the estimation in the
model, denoted as V in equation 9, shows how
much spread is in the estimation. Standard
deviation ¢ in Equation 10 is used to measure the
variability of the accuracy of the model in this
approach:

() =38 x, (Eq. 8)
) =3, x; (Eq. 9)
o=V (Eq. 10)

A smaller ¢ provides more “confidence” in
using PRED(N)=p than larger ¢ since all the
values are closer to p . Small ¢ indicates small
variability in estimations while large ¢ indicates
large variability in estimation.

Definition 7. Better feature subset. Given an
learner L, a training dataset and a test dataset with
the feature subsets X; , X, ..., X, , & better feature
subset, Xy, is the feature subset X' that provides
higher accuracy without increasing variability than
those of the full feature set X of the general the
model: _ _

Accuracy(X' ) > Accuracy(X ) i Variability(X'
)<Variability(X)

For any 1<j<n (Eq. 12)

Definition 8. The best accuracy feature subset.
Given a learner L, a training dataset and a test set
with the better feature subsets X et, XZoet s «er X bet »
the best accuracy feature subset, Xac, is the better
subset X',; that maximizes the accuracy among the
better feature subsets:

Accuracy (Xégr)ﬂcm’"m}’[x;ar)For any
I<j<n

(Eqg. 13)

Definition 9. The least variability feature
subset. Given a learner L, a training dataset and a
test set with the better feature subsets X per, X2pet
s X'bet , the least variability feature subset, X, is
the better subset X'y that minimizes the SD
(standard deviation) among the better feature
subsets:

SD(X;,.) = SD(X;,.)

Forany 1<j<n (Eq. 14)

Definition 10. The optimal feature subset.
Given a learner L, a training dataset and a test set
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with the better feature subsets Xoet, X%oet , oor Xhet
an optimal feature subset, Xy, is the better subset
X'ver that maximizes the accuracy among the better
feature subsets:

Accw"ac}r(X;Bt)Accurac}r(Xiﬂ)

For any 1<j<n (Eq. 15)

Definition 11. The relevance of a feature. If
adding a feature X; into any feature subset that does
not include X; , or removing X; from any feature
subset that includes X; will change the accuracy of
the model, the feature X; is strongly relevant to the
model. If a feature X; is not strongly relevant and
there exists such a feature subset, adding X; into
the feature subset that does not include X; or
removing X; from the feature subset that

includes X; will change the accuracy of the
model, the feature X; is weakly relevant to the
model. If a feature X; is strongly relevant or weakly
relevant, X; is relevant to the model. If a feature X;
is neither strongly relevant nor weakly relevant, X;
is irrelevant to the model. This approach apply the
Wrapper — feature subset selection implementation
method with k-fold cross validation to evaluate the
features of the model and N is the number of how
many times a feature X; is selected in the k-fold
cross validation experiments:

1) X; is strongly relevant if and only if N = k
(such as Size);

Linearized Data from Organization

2) X; is weakly relevant if ISN <k ;

3) Xjisrelevant if I< N <Kk ;

4) X; is irrelevant if and only if N = Q.
(Eqg. 16)

Normally, removing the irrelevant features
results in improvement of the performance of the
model. The strong relevant features should always
be kept in the model and removing any strong
feature will degrade the performance of the model.

The next section will show how this model is
implemented with the machine learning methods
and statistical methods.

Methods Applied in the Approach. Machine
Learning is defined as the study of computer
algorithms that improves automatically through
experience [6]. Applications with machine learning
techniques learn when they change their behavior
in a way that makes them perform better in the
future [7]. A number of research applied machine
learning and statistical methods in software cost
estimation [8], [9], [10], [11], [5], [12], [13], [14],
and [15]. The most successful approach is [5],
which has been used to calibrate COCOMO I
from 1998. In this research approach shown in
Figure 2 for software cost estimation, machine
learning techniques are used to formulate the
process and build the model from the training data,
and statistical methods are used to test, validate
and evaluate the process and the model built by
machine learning on the test set.

Selection

Parameter Ranking

Heuristic Forward

Selection Search

Feature Evaluating

subset Accuracy

Evaluation Mode;
10-fold Cross Validation

Regression
Tree

eature Subset

i (€Y [Feld model Tree

Target Learner f Evaluator

Data, Projects and Features
Clustering and Analysis

Evaluation & Validation

Feature Hold-out Experiments

Learning Approach

Statistical Analysis

Selected Feature Subsets

Reduced-Parameter Models

Figure 2. The integration of different techniques and methods in the approach
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Linearization

Ordinary least squares regression and M5
model tree are linear models. It is known that in
case when linear model is applied to a non-linear
relationship, the performance of the model will be
decreased. COCOMO 81 shown in Equation 17
and COCOMO Il shown in Equation 18 are
exponential models, with the assumption that the
changes of effort valu grow faster than the changes
of size value. The logarithmic transformation were
used to transform COCOMO 81 and COCOMO I
into linear models.

Linearized COCOMO 81 model:

In(PM) = By + By * In(Size) + B, *

(Eq.17)

Linearized COCOMO Il model:

In(PM) = By + B1 *In(Size) + B, * 0.01 *
SF; *In(EM3) + -+ + ¢ * 0.01 * SF5 *

In(Size) + B7 * In(EM;) + -+ + B3 * Ini(EM; ;)
(Eq. 18)

All these transformations create a new
parameters that are full mathematical equivalents
to the original parameters, but are expressed in
different measurement.

Clustering and Analyzing Project Features

In this approach, the most promising features
in a given dataset are identified with learning
algorithm - FSS (Feature subset selection). As the
data sets may contain several extraneous features
which can reduce the efficiency of the model, this
approach helps us identify the important attributes
and remove redundant ones.

If only the most relevant features were to be
selected and given to the learning algorithm they
can produce smaller models. This enhances the
understanding of the dataset or domain under
consideration. Dimensionality reduction also
speeds up the learning process.

In this study, the WRAPPER FSS method is
applied, which is a FSS method evaluating
parameter sets by using a learning scheme and
statistical re-sampling technique such as cross
validation to estimate the accuracy of the learning
scheme for a set of attributes, and implemented in
WEKA [7] (which is a data mining toolkit, free,
open source, well documented, compatible on
many platforms, and easy to install). When using
WRAPPER, a target learner is augmented with a
preprocessor that used a heuristic forward select
search to grow subsets of the available features. At
each step in the growth, the target learner is called
to determine the performance of the model learned
from the current subset. Subset growth is stopped
when the growth is stale; i.e. after a MAX STALE

number of times, adding attributes has not
improved the performance.

For example, suppose the set of attributes were
{AB,C,D,EF,...Z} and MAX STALE was 2.
WRAPPER starts by selecting one attribute at
random (e.g. C) and score its performance.

Selected = {C} Score = 30 Stale =0

Next, another randomly selected attribute (e.g.
B) is added and scored:

Selected = {C,B} Score = 50 Stale =0

Note that the addition of B is not a stale
addition since it improves the score.

However, the addition of the next randomly
selected attribute (e.g. E) does not improve the
score, thus is stale increments:

Selected = {C,B,E} Score =40 Stale =1

Similarly, adding D also fails to improve the
score beyond just using {C,B} thus is scale
increments again.

Selected = {C,B,E,D} Score = 42 Stale = 2

Since. MAX STALE has been reached,
WRAPPER would remove from the selected set all
the attributes implicated in the stale growth
({E,D}). The search would then continue, using
other attributes.

Figure 3 shows Wrapper is applied in RPM
approach. First, the data is divided into 10 equal-
size subset randomly. For each time, one leave-
one-out data is used. The feature list - FL is the
input of the best first search. In the first round, the
search sends each feature in the feature list to the
target learner, then the target learner learn the
model with that feature plus the features from the
selected list - SL, and the evaluation function is
applied. After the first round, the search adds the
feature that makes the model perform best into the
selected list and remove it from the feature list.
Then it checks whether it should stop or not. Then
the following is the second round, the third round
... and so on.

In RPM, minimizing the root mean-square
error (RMSE) is used as the evaluation function.
The “Stop criteria” is that if the RMSE is increased
each time in the last 5 expansions, the search stops.
If it does reach the stop criteria, it output the
selected feature subset that yields the best
performance in the model.

There are 10 leave-one-out data, so 10 selected
feature subsets are obtained.

Then RPM uses how often the feature is
selected as its ranking. Note that, SIZE is always
selected and it gets the highest ranking.

The core technology used in this study is
FSS (feature subset selection) and FSS is an
efficient heuristic search through subsets of the
available attributes. The goal of this search is
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to find a subset that gives similar, if not
superior, performance than using all the

10-fold cross validation

attributes. Equation 1 demonstrates how large
that space can be.
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Figure 3. The Wrapper in RPM

There are 15 parameters except for SIZE (total
16 parameters in COCOMO 81). An exhaustive
search through all possible subsets would have to
explore the 32768 sets as shown in Equation 19. It
is assumed that only 6 most promising feature
subsets are identified with the method, and 20
seconds are needed for each hold-out experiment
(training set and test set are separated) for each
PRED of PRED(25, 30) on 60 project instances in
that domain, the number of total seconds as shown
in equation 20, indicates that 1.25 years are needed
to build the model shown in equation 21.
FeatureSubset = Y12, Cis = 32768
Holdout = 0.5 x 30 * 32768 x 2 = 983040
(Eq. 20)
Day = 983040/60/60/24 = 11.38
(Eq. 21)

Seconds =0.5+%30*6+2 =18 (Eq.22)

Fortunately, this study did not take 11.38 days.
The FSS methods used in this research is so
efficient that these experiments required only the
180 seconds as shown in Eq. 22.

One of the major advantages of the
WRAPPER approach is that, if some target learner
is already implemented, then the WRAPPER is
simple to implement. Also, in their comparative
evaluation of feature subset selection techniques
[16], Hall and Holmes conclude that WRAPPER is
the best FSS mechanism, if the data set is not too
large. At each step in the heuristic search,
WRAPPER makes another (Eajliationth@) target
learner. Hence, it may be too slow for large data
sets. The data sets used in this study are small
(maximum size: 200 instances) and hence are
amenable for WRAPPER.

© Banenko /1.B., 2011
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Table 1
Wrapper Results for the COCOMO 81 Data
COCOMO 81 data with LSR Approach: 63 Instances
Parame- 60 Folds 50 40 30 20 10 Folds
VEXP 100 100 100 100 100 100
LEXP 100 98 100 100 100 100
TIME 95 98 93 100 100 100
LOC 100 100 100 100 100 100
RELY 93 98 93 100 100 90
PCAP 72 82 73 63 70 60
AEXP 82 76 68 73 70 50
TURN 80 86 78 63 75 50
ACAP 47 48 50 50 55 50
SCED 75 80 73 53 75 40
DATA 15 12 18 13 10 30
STOR 15 12 18 13 10 30
MODP 18 24 25 20 20 20
CPLX 15 12 25 23 20 20
VIRT 12 8 18 13 10 10
TOOL 13 6 8 3 25 0
Table 2
Wrapper Results for the NASA 60 Project Data
NASA 60 data with LSR Approach: 60 Instances
Parame- 60 50 40 30 20 10 Folds
TURN 100 98 100 100 100 100
ACAP 100 100 100 97 100 100
TIME 100 100 100 100 100 100
LOC 100 100 100 100 100 100
STOR 95 92 93 87 90 80
VEXP 60 60 65 67 70 70
DATA 23 14 20 20 20 40
AEXP 8 2 5 3 0 20
PCAP 5 10 5 7 0 10
MODP 0 14 3 3 5 10
VIRT 0 0 8 3 20 10
RELY 3 2 5 7 0 0
TOOL 0 0 0 3 10 0
CPLX 3 10 5 7 5 0
LEXP 2 10 0 0 5 0
SCED 5 4 3 3 0 0

Wrapper uses k-fold cross validation in
Wrapper. It is applied with LSR approach on
COCOMO 81 and NASA 60 project data from 10

folds to 60 folds to chose the right number of folds
needed. As shown in Table 2 and 3.2, there is no
evidence that conducting more than 10-way cross
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values alters the conclusions that could be found in
a 10-fold. A similar pattern was observed by

Wrapper with another approach M5 model
tree. There is another interesting result:
COCOMOS81 data are much more diverse than
NASA data as the significance of different
parameters in COCOMO 81 are more effective
than those in NASA. The parameters are more
correlated in the projects that could have similar
nature from an organization than in those projects
crossing different organizations. Removing such
correlated features will increase the performance of
the model.

Best First forward selection Search Used in
Wrapper

Best first forward selection search is an Al
search strategy and more robust than hill-climbing.
Best first forward selection search will select the
most promising feature, which mostly improves
the accuracy of the model from the features
generated so far and not expanded. If the path
being explored begins to appear less promising, it
can back-track to a more promising previous
subset and continue the search from there. To
avoid searching the entire search space, the
following stop criterion for best first forward
selection search is used: if it can not find a feature
that improve the estimation accuracy of the model
in the last n expansions, it will stop and return the
best solution so far (n in these experiments is set to
5 as it is the default value in WEKA [7]).

Ordinary Least Squares Regression

Ordinary Least Squares regression (LSR)
method is the classical statistical approach of
general linear regression modeling using least
squares. It has been widely known and discussed
extensively. LSR is the statistical procedure to
estimate the linear relationship between the
dependent variable Y (the prediction of the model)
and the independent variables 1 X , .., i X, ..n X
(the parameters of the model). LSR minimizes
squared error with equation 23. | B is calculated
with mathematical matrix algorithms with equation
24.

Yi=Bo+B1X1i+ B2X2i + -+ BiXii + &

NASA effort data used in this study are
available on-line at the PROMOSE repository of
public domain software engineering data set:
http://promise.site.uottawa.ca/SERepository/datase
ts/cocomonasa.arff. For example, if LSR is applied
LSR into COCOMO 81 linear model with the
NASA 60 projects without eliminating the co-
linear parameters and selecting attribute method,

here is the linear regression model with 10-fold
cross-validation:

ACT_EFFORT =

-1.1554 * AEXP +

2.7992 * DATA +

-0.1527 * PCAP +

-6.2363 * VEXP +

-1.5573 * MODP +

-1.1246 * RELY +

0.1986 * TOOL +

1.1126 * TURN +

0.8644 * CPLX +

2.4129 * LEXP +

1.3613 * SCED +

-0.6794 * VIRT +

3.2141 * ACAP +

77

-0.745* STOR +

2.8783 * TIME +

1.0712 * LOC +

1.3462

Correlation coefficient is 0.9825. Mean
absolute error is 0.1896. Root mean squared error
is 0.2579. Relative absolute error is 16.0925 %.
Root relative squared error is 18.3653 %. The
accuracy for this linear regression model of
COCOMO 81 are PRED(25)=70 and
PRED(30)=75.

Summary

Presented mathematical model for the calibra-
tion of COCOMO model via reduction of it’s main
equation increases the accuracy of the model for
specific company domain, but decreseas the accu-
racy of the model for the generalized case. The
accuracy of calibration depends on the amount of
historical data in the company that is used to cali-
brate the model. Some variation in calibrated
model results may appear if the company changes
the specifics of the software projects being devel-
oped. This may require recalibration of the model
to accont for new specifics, or otherwise accuracy
may be even worse than for the generalized CO-
COMO model.
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