
ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

5

УДОСКОНАЛЕННЯ ПРОЦЕСІВ ЖИТТЄВОГО ЦИКЛУ ПРОГРАМНОГО

ЗАБЕЗПЕЧЕННЯ

УДК 004.4:004.738.5(045)

Chebanyuk O.V., Povaliaiev D.

National Aviation University

SOFTWARE

ARCHITECTURE

VERIFICATION

APPROACH

Verification is very important part of

software architecture designing. In AGILE

approach, architectural solutions are

represented as static software models, namely

UML diagrams.
Analytical foundations of class

diagram verification, based on predicate

logic, were proposed in paper. This research

continues here, by proposing LINQ queries to

define interconnection between class diagram

elements.

The approach, proposed in this paper,

is based on the automatic parsing of class

diagram XMI file using suggested LINQ

queries for every SOLID design principle.

Keywords: Abstract Syntax Tree (AST), Software Architecture, SOLID Design Principles, Class

Diagram, XML Metadata Interchange (XMI), Object Constraint Language (OCL), LINQ query.

Introduction

The most widespread approach of
software development lifecycle management

nowadays is Agile. In Agile every operation in

software development lifecycle management is

performed by means of software model
processing. Software models are represented

as UML diagrams.

When customer changes software
requirements all software models are changed

too. Static software models, that reflect

software architecture, are changed too.

According UML 2.5 standard static software
models are class, component, and package

diagrams.

Following Model-Driven Engineering

principles, an important step proposing
architecture solutions is their verification. It

requires many facts that are complex to be

formalized. In some companies this step is

usually missed, therefore leading to mistakes
in design and higher overall project cost. The

lack of tools, which allows performing class

diagram verification in automatic mode,
becomes a motivation for authors to propose

considering approach. It is proposed to use it

in Design phase of software development life-

cycle (SDLC).

Fig. 1. Structure of a general SDLC

Nowadays there are a lot of tools for

automating many operations within software
development lifecycle, but they still pay not

enough attention to keeping track of

architectural solutions verification. In fact

there are no tools that can grant SOLID design
principles consistency.

But, using an advanced modeling

environments like Rational Software Architect
[IBM, 2015] or Eclipse plugin modeling

software, for example Papyrus [Eclipse, 2015],

class diagram may include constraints to
precise requirements of application domain.

The most widespread Object Constraint

Language (OCL) [OCL, 2014] performs check

class diagram components for accordance
requirements of application domain.

Theoretically OCL may be used for checking

whether class diagram corresponds to SOLID

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

6

design principles. But such operation should
be performed manually.

For example let us consider the

procedure of checking whether class conforms
to single responsibility design principle by

method, proposed in [Chebanyuk, 2016]. Idea

to do this, proposed by authors is to define the
number of public methods in class. Using

OCL it is necessary to type

context class_name : OCL_expression

for every class in class diagram. To observe

class diagram for checking such feature of all
its classes will take less time in comparison

with composing OCL expression for every

class.
Lack of automatized tools for class

diagram verification becomes a precondition

for formulating task of research. Research,

performed in this article, was started in
[Chebanyuk, 2016]. It was proposed to verify

class diagram in accordance to SOLID design

principles by means of predicate expressions.
But rising of effectiveness of architecture

verification process requires software to

automate this operation.

Goal of the article

Propose LINQ queries which verify all

the SOLID design principles, namely:

― Single Responsibility;

― Open-Closed;
― Liskov Substitution;

― Interface Segregation;

― Dependency Inversion

Principles.

Single Responsibility design principle is
applied for analyzing every class diagram

entity separately. Other SOLID design

principles are analyzed considering some

interconnection between class diagram entities
[Chebanyuk, 2016].

Related standards
Abstract syntax tree helps to design

XMI schemas. XMI schemas have hierarchical

structure and tree serve to represent

hierarchical structure of class diagram. Every
XMI schema consists of the following

declarations:

1. An XML version processing
instruction.

2. An optional encoding

declaration that specifies the character set,

which follows the ISO-10646 (also called
extended Unicode) standard.

3. Any other valid XML

processing instructions.
4. A schema XML element.

5. An import XML element for

the XMI namespace.
6. Declarations for a specific

model. Every XMI document consists of the

following declarations, unless the XMI is

embedded in another XML document:
7. An XML version processing

instruction [XMI, 2015].

Class diagram are stored in XMI format.
XMI schema is composed using hieratical

structure of XML tags.

Such representation corresponds to
theoretical approach Abstract Syntax Tree

(AST). An AST is a formal representation of

the syntactical structure of software that is

more amenable to formal analysis techniques
than is the concrete or surface syntax of

software. Construction of ASTs typically

involves the use of parsing technologies. AST
model structures permit the expression of

compositional relationships to other language

constructs and provide a means of expressing a

set of direct and derived properties associated
with each such language construct [ASTM™,

2011].

For UML, the abstract syntax is defined
as a MOF metamodel. The UML specification

also defines additional constraints that the

metamodel representation of a valid UML
model is required to meet. These constraints

are the equivalent of the static semantics of

UML.

However, since these constraints can all
be checked statically, they are not part of the

execution semantics of UML. Indeed, any

model that violates one or more of these
additional constraints is not actually well

formed. Such an ill-formed model cannot

really be assigned any meaning at all.
In functional UML, static semantics are

not considered to be part of the execution

semantics to be specified. That is, any well-

formed model is already presumed to have met
all the constraints imposed on the abstract

syntax as defined in the UML Specification.

Semantic meaning will only be defined for
models that are well formed in this sense.

The Action Language for Foundational

UML (or “Alf”) is a textual surface

representation for UML modeling elements
[ALF™, 2017]. The execution semantics for

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

7

Alf are given by mapping the Alf concrete
syntax to the abstract syntax of the standard

Foundational Subset for Executable UML

Models (known as “fUML”). The result of
executing an Alf input text is thus given by the

semantics of the fUML model to which it is

mapped, as defined in the fUML specification.
A primary goal of an action language is

to act as the surface notation for specifying

executable behaviors within a wider model

that is primarily represented using the usual
graphical notations of UML. For example, this

might include methods on the operations of

classes or transition effect behaviors on state
machines.

However, Alf also provides an extended

notation that may be used to represent
structural modeling elements. Therefore, it is

possible to represent a UML model entirely

using Alf, though Alf syntax only directly

covers the limited subset of UML structural
modeling available in the fUML subset

[ALF™, 2017].

Review of software engineering
standards shows that information about class

diagrams stored in XMI format is represented

as text organized as tree-like structure. To

verify architectural solutions different
software tools, for example IBM Rational

Software Architect or Eclipce work with

software profiles or problem domain
metamodels. Profiles, represented as class

diagram with constrains, expressed in OCL.

IBM RSA and Eclipse engines proceed with
text representation of class diagram, linking it

with constraints. But OCL constraints are

interconnected with naming of class. For using

tools verifying class diagrams it is necessary to
follow strict naming. From the other side, lack

of tools for analyzing class diagram static

semantic encourages authors to design and
develop software tool for class diagram

analysis.

Proposed approach

Investigation of XMI file regularities

XMI stores the software models in a
tree-like structure where the root element is

“XMI” and its descendants store information

about UML entities such as classes, interfaces,
and relations between them. According to

XMI standard each entity should have a

unique string ID that allows it to be referenced

by the other entities. Self-sufficient, such as
class, interface, or relation, is represented in

the form of “packagedElement” of XML

elements with the corresponding “type”
attribute. Their properties such as name shown

or visibility level are specified with additional

attributes. The embedded entities such as
operations and attributes are represented as

child elements of corresponding class and

interface tags as “ownedOperation” and

“ownedAttribute” respectively.
The generalization is represented in the

form of attribute of the class that is a derived

one (the same scheme is applied to interface
realization). Such links are marked as

“generalization” and “interfaceRealization”

tags. Generalization stores a string ID of the

parent class in its single “general” attribute,
while the interface realization has three of

them: the “supplier” with identifier of the

interface being implemented, the “client” with
ID of the class that implements it, and the

“contract” with ID of the contract specified by

the interface (suitable for contract
programming, stores the same ID as “supplier”

by default).

 LINQ queries to extract information

about class diagram components
Table 1 illustrates the LINQ queries

proposed by authors for processing XMI file in

which class diagrams are stored.

Table 1.

 LINQ queries for defining class diagram elements

SOLID Design
Principle Name

LINQ query for defining SOLID design principle

Single

Responsibility
design

principle

var publicOpsNumber = umlClass.Members.Values.Where(w =>

w.GetType() == typeof(UmlOperation) &&
w.Visibility == UmlVisibility.Public).Count();
return publicOpsNumber >= 3 && publicOpsNumber <= 7;

Open-Closed

design principle
var descendantsNumber = diagram.Stereotypes.Values.Where(w

=> diagram.Relations.Values.Any(a =>
(a.Type == UmlRelationType.Generalization ||
a.Type == UmlRelationType.InterfaceRealization) &&

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

8

SOLID Design
Principle Name

LINQ query for defining SOLID design principle

(a.StartPoint == w || a.EndPoint == w))).Count();
if ((double)descendantsNumber /
(double)diagram.Stereotypes.Values.Count() >= 0.7) {
return true;
}
return false;

Liskov Substitution

design principle
foreach (var umlClass in umlDiagram.Stereotypes.Values)
{
 var ascendantStereotypes =

getUmlClassAscendants(umlDiagram, umlClass);
 if (!ascendantStereotypes.Any())
 {
 continue;
 }
 var ascendantsQueue = new Queue<UmlStereotype>();
 foreach (var stereotype in ascendantStereotypes)
 {
 ascendantsQueue.Enqueue(stereotype);
 }
 var currentClassOps = getOperations(umlClass);
 while (ascendantsQueue.Any())
 {
 var currentAscendant = ascendantsQueue.Dequeue();
 var ascendantOps = getOperations(currentAscendant);
 if (ascendantOps.Any(op =>

!currentClassOps.Contains(op)))
 {
return false;
 }
 if (!umlDiagram.Relations.Any(relation =>

(relation.Value.StartPoint == currentAscendant ||

relation.Value.EndPoint == currentAscendant) &&
relation.Value.Type != UmlRelationType.Generalization &&

relation.Value.Type != UmlRelationType.InterfaceRealization))
 {
return false;
}
 ascendantStereotypes =

getUmlClassAscendants(umlDiagram, umlClass);
 foreach (var stereotype in ascendantStereotypes)
 {
ascendantsQueue.Enqueue(stereotype);
 }
 }
} return true;

Interface Segregation

design principle

var umlInterfaces = umlDiagram.Stereotypes.Values.Where(w =>

w.GetType() == typeof(UmlInterface));
foreach (var umlInterface in umlInterfaces)
{
 var publicOps = getOperations(umlInterface).Where(w =>

w.Visibility == UmlVisibility.Public);
 if (publicOps.Count() > 5)
 {
 return false;

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

9

SOLID Design
Principle Name

LINQ query for defining SOLID design principle

 }
 var descendants =

umlDiagram.Relations.Values.Where(relation => relation.Type ==

UmlRelationType.InterfaceRealization &&
 relation.StartPoint == umlInterface).Select(s =>

s.EndPoint);
 foreach (var descendant in descendants)
 {
 var descendantOps = getOperations(descendant).Where(w

=> w.Visibility == UmlVisibility.Public);
 if (publicOps.Any(op => !descendantOps.Contains(op)))
 {
 return false;
 }
 }
}

Dependency

Inversion design

principle

var lowestHierarchyStereotypes =

umlDiagram.Stereotypes.Values.Where(w =>

umlDiagram.Relations.Values.Any(a => (a.Type ==

UmlRelationType.Generalization || a.Type ==
UmlRelationType.InterfaceRealization) && a.EndPoint == w) &&

!umlDiagram.Relations.Values.Any(a => (a.Type ==

UmlRelationType.Generalization || a.Type ==
UmlRelationType.InterfaceRealization) && a.StartPoint == w));

return !umlDiagram.Relations.Values.Any(a => a.Type !=

UmlRelationType.Generalization && a.Type !=
UmlRelationType.InterfaceRealization &&

lowestHierarchyStereotypes.Any(lhc => a.StartPoint == lhc ||

a.EndPoint == lhc));

Conclusions

In this article, the structure of XMI file,

used to save class diagrams was investigated.
Then LINQ queries for class diagram

verification in accordance to SOLID design

principles were proposed. Software tool for
analyzing class diagrams, based on these

LINQ queries, allows avoiding OCL limits

[OCL, 2014]. Obtained information about
class diagram components allows providing

further flexible analysis in software modeling

environments [Papyrus, 2012], [IBM, 2015],

for example software model transformation
techniques [Chebanyuk, 2017].

Futher researches
Using designed LINQ queries to

propose a technique and a software tool for

estimation class diagram for accordance them

to SOLID design principles. In order to
accomplish this task it is necessary to do the

following:

― Investigate the format of class

diagram storing;

― Ground choice of software

techniques for class diagram verification;

― Propose techniques for class

diagram verification, that is based on
analytical approach, proposed in paper

[Chebanyuk, 2016];

― Represent an algorithm for

software tool working;

― Describe a software
architecture components.

References

1. Architecture-Driven
Modernization (ADM): Abstract Syntax Tree

Metamodel™ (ASTM) [Electronic resource] –

Access mode:
http://www.omg.org/spec/ASTM/1.0

2. Action Language For

Foundational UML, Version 1.1. [Electronic

resource] – Access mode:
http://www.omg.org/spec/ALF/1.1/

3. Chebanyuk E., Markov K. An

Approach to Class Diagrams Verification
According to SOLID Design Principles.

http://www.omg.org/spec/ASTM/1.0
http://www.omg.org/spec/ALF/1.1/

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 2 (30) 2017

10

In Proceedings of the 4th International
Conference on Model-Driven Engineering and

Software Development – Vol. 1:

MODELSWARD. – 2016. – P. 435-441. DOI:
10.5220/0005830104350441 [Electronic

resource] – Access mode:

http://www.scitepress.org/DigitalLibrary/Publi
cationsDetail.aspx?ID=HASwCJGMcXc=&t=

1

4. Chebanyuk E., Shestakov K.

An Approach for Design of Architectural
Solutions Based on Software Model-To-Model

Transformation. // International Journal

«Information Theories and Applications» –
Vol. 24. – 2017. – Р. 60-84.

5. Eclipce desctip IDE

[Electronic resource] – Access mode:
https://eclipse.org/ide/

6. IBM, Rational software
architect designer [Electronic resource] –

Access mode: http://www-

03.ibm.com/software/products/ru/ratsadesigner
7. Object Constraint Language

Version 2.4 OMG standard [Electronic

resource] – Access mode:
http://www.omg.org/spec/OCL/2.4/PDF

8. Papyrus, 2012. [Electronic

resource] – Access mode:

www.papyrusuml.org.
9. Unified Modeling Language

(UML), 2011. [Electronic resource] – Access

mode: http://www.omg.org/spec/UML/2.3/
10. XML Metadata Interchange,

[Electronic resource] – Access mode

http://www.omg.org/spec/XMI/

Information about authors:

Chebanyuk Olena Viktorivna – Associate Professor of Software

Engineering Department of the National Aviation University. Scientific interests:

Model-Driven Architecture, Model-Driven Development, Software architecture,
Software development.

E-mail: chebanyuk.elena@ithea.org

Povaliaiev Dmytro – student of Software Engineering Department of the

National Aviation University, Kyiv, Ukraine. Scientific interests: Software

Architecture, Software Development, Model-Driven Architecture, Model-Driven

Development.
E-mail: dmytro.povaliaiev@gmail.com

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HASwCJGMcXc=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HASwCJGMcXc=&t=1
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HASwCJGMcXc=&t=1
https://eclipse.org/ide/
http://www-03.ibm.com/software/products/ru/ratsadesigner
http://www-03.ibm.com/software/products/ru/ratsadesigner
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/XMI/

