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Abstract—This paper investigates feature-based methods for satellite image stitching under a unified
evaluation framework. Four algorithms — SIFT, SURF, ORB and BRISK - are examined with respect to
keypoint detection, descriptor formation, correspondence generation and geometric alignment. A
standardized MATLAB workflow is employed: grayscale detection and description, nearest-neighbour
matching with a ratio test, robust outlier rejection via RANSAC with model escalation and mask-based
blending with content cropping. Approximately fifty image sets spanning diverse landforms are
processed; a Sahara Desert example illustrates the protocol. The study’s aim is to characterize the
accuracy-efficiency trade-offs of vector (SIFT, SURF) and binary (ORB, BRISK) descriptors in realistic
orbital conditions and to provide a transparent basis for method selection in remote-sensing workflows.

Keywords—Satellite image stitching; remote sensing; image registration; local feature detection; SIFT;
SURF; ORB; BRISK; vector descriptors; binary descriptors; feature matching.

I. INTRODUCTION

Satellite images are behind all the current
mapping, environmental monitoring,  disaster
response and defense planning. These data generate
mostly from the unaligned frames due to acquisition
at different times, view angles and illumination [1].
The reliable image stitching, thus, is the one that can
convert such streams into seamless mosaics so that
rivers kind of form lines, roads sort of merge and
boundaries are definitely sharp. The quality of that
stitching controls what further analyses can use and
measure.

Stitching in the remote-sensing setting is harder
than in ground photography. Terrain relief, off-nadir
viewing, radiometric drift, seasonal change and
atmospheric haze all distort appearance. Overlap can
be small or irregular and man-made patterns such as
rooftops or field grids introduce repeated textures
that confuse naive matchers [2]. Any practical
method must therefore find features that survive
scale changes, rotations and modest brightness
shifts, then reject outliers before estimating the
geometric warp.

This study examines stitching principles built on
local feature detectors and descriptors. Two families
are compared. Scale-Invariant Feature Transform
(SIFT) and Speeded-Up Robust Features (SURF)
produce descriptors with rich gradient statistics.

Oriented FAST and Rotated BRIEF (ORB) and
Binary Robust Invariant Scalable Keypoints
(BRISK) yield compact binary descriptors optimized
for speed and memory. All four algorithms widely
used design points: high-dimension vectors versus
lightweight binary codes [3].

To make the comparison fair, the surrounding is
kept constant. Keypoints are detected across scale,
descriptors are extracted, putative matches are
formed with a ratio test and outliers are removed by
Random Sample Consensus (RANSAC). Warps are
estimated in an escalating model class — similarity,
affine and, if required, projective — to accommodate
viewpoint and relief [4].

Evaluation focuses on alignment accuracy and
efficiency that matter in practice. Reported measures
include match count, inlier count and inlier ratio
after RANSAC, match density per unit overlap and
repeatability under controlled rotations and
brightness shifts. All experiments are run in
MATLAB using the same pre-processing and
blending stages, so that differences can be attributed
to the detector — descriptor choice.

The goal is a clear, evidence-based view of when
vector descriptors justify their cost and when binary
descriptors are sufficient at scale. By grounding the
analysis in satellite scenes with realistic variation,
the paper aims to inform method selection for
mapping, change detection and large-area
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mosaicking where both accuracy and throughput are
basic principles of satellite images stitching.

II. STRENGTHS AND LIMITATIONS OF FEATURE-
BASED REGISTRATION FOR SATELLITE
MOSAICKING

Satellite image stitching sits at a crossroads
between two active lines of research: classical,
feature-based registration and newer, learned (deep)
matchers. In operational mosaicking stitching is still
framed as a sequence of registration, seamline
selection, tone normalization and blending — each step
sensitive to side-looking geometry, relief, seasonal
change and radiometric drift that are common in
orbital data. Recent remote-sensing papers continue to
refine every stage, from robust registration to seam
generation for large orthoimage mosaics and time-
series products [5].

Feature-based  stitching remains attractive
because it is transparent, lightweight and easy to
adapt across sensors. Local keypoints are detected
over scale, described, matched with a ratio test and
filtered with RANSAC before estimating similarity /
affine / projective warps; the approach scales well
and gives explicit geometric guarantees. Its main
liabilities are brittle matching under low texture,
repetitive patterns, large viewpoint or illumination
changes and cross-modal pairs [6]. Survey articles in
remote sensing echo these trade-offs and report
steady, incremental progress on  detectors,
descriptors and robust estimators [7].

The deep-learning track pushes in the opposite
direction: learn detectors, descriptors and even
correspondence maps end-to-end. Methods based on
SuperPoint / LightGlue, SuperGlue, LoFTR and
newer transformer variants lift performance under
appearance change and wide baselines and are
spreading to aerial/satellite regimes; however, they
demand more compute, large training sets and often
benefit from domain-specific fine-tuning [8]. Recent
reviews document the shift from detector-based to
detector-free matchers and their gains, while satellite-
focused studies show practical approaches that
combine learned features with careful batching and
radiometric pre-processing [9].

In this study, the emphasis is on four workhorses:
SIFT (Scale-Invariant Feature Transform), SURF
(Speeded-Up Robust Features), ORB (Oriented FAST
and Rotated BRIEF) and BRISK (Binary Robust
Invariant Scalable Keypoints). These methods remain
attractive in remote sensing because they expose
every decision — keypoint detection, descriptor
formation, matching and outlier removal — and they
run reliably across sensors and scenes without large
training sets.

SIFT and SURF represent the vector descriptor
family. They encode gradients in floating-point
histograms that are robust to scale and rotation and
reasonably tolerant to illumination drift. In stitching,
that extra distinctiveness pays off when overlaps are
small, terrain relief introduces parallax or seasonal
change alters appearance. The trade-off is cost: larger
descriptors, heavier memory traffic and longer
matching times. With ratio tests and RANSAC,
SIFT / SURF matches often yield higher inlier counts
and more stable transforms, which reduces seam
artifacts and deformation in the final mosaic.

ORB and BRISK sit in the binary descriptor camp.
They create compact bit strings using intensity
comparisons, then match with Hamming distance.
The benefits are clear for large scenes and long strips:
far lower memory use, fast nearest-neighbour search
and easy batching. ORB couples FAST keypoints
with oriented, rotated BRIEF (rBRIEF), while BRISK
adds a scale-space detector and a learned sampling
pattern to improve rotation and scale tolerance. In
wide-area stitching, these designs deliver high
throughput and competitive coverage; the cost is
reduced distinctiveness under severe viewpoint
changes, repetitive textures (e.g., roofs or crop grids)
or strong radiometric shifts. Careful thresholding,
cross-checks and geometric verification help close
that gap [10], [11].

Across these four methods, the intent of using
local features is consistent: obtain reliable, spatially
well-distributed tie points that survive downsampling,
rotation and moderate illumination change; filter
mismatches with a ratio test and RANSAC; then
estimate the simplest warp that explains the inliers
(similarity — affine — projective). For evaluation,
the community converges on practical indicators:
total matches, inlier count and inlier ratio after
RANSAC, match density per overlap area and
repeatability under controlled rotations/brightness
changes [12].

III. THE OPERATIONAL ALGORITHMS
OF SIFT/SURF AND BRISK/ORB METHODS

Accurate geometric registration across scenes
taken at various times, viewing angles and
radiometric circumstances is essential for satellite
picture stitching. The very first actions in a feasible
image stitching process are identification of
prominent and well-localized points that can survive
through scale and rotation, encoding of their
surrounding areas into robust yet peculiar
descriptors and reliable correspondence of points in
different images for the purpose of estimating a
global warp [13]. This chapter describes the
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algorithmic workings of four popular approaches:
ORB, BRISK, SURF and SIFT. BRISK and ORB
generate compact binary descriptors based on
intensity comparisons, while SIFT and SURF
generate floating-point (vector) descriptors based on
image gradients and Haar replies.

SIFT established the modern template for
invariant local features. Its design targets three
properties critical for satellite mosaicking: stability
under scale change, consistent orientation in the
presence of rotations and descriptive power in
textured yet repetitive scenes. Because satellite
datasets often mix resolutions and view angles,
SIFT’s explicit scale space, orientation normalization
and high-dimensional gradient statistics make it a
strong baseline for reliable points.

SIFT constructs a Gaussian scale space by

convolving the image /(x,y) with filters of

increasing standard deviation G':

L(x,y,cs)zG(x,y,cs)I(x,y), (1)

G(x,y,c) = Py e @ 2)

Keypoints are located as extrema of the
Difference-of-Gaussians (DoG):

DoG(x,y,G) =L(x,y,k0)—L(x,y,G), 3)

where each sample compared to its 26 neighbours in a
3x3x3 neighbourhood across (x,y,c).

Candidate locations are refined by a second-order
Taylor expansion of D around the discrete extremum.
Low-contrast points and edge-like responses
(identified via the Hessian’s eigenvalue ratio) are
rejected to improve repeatability on satellite
textures.

Rotation invariance is achieved by building a 36-
bin histogram of gradient directions within a circular,
scale-proportional window around the keypoint. For
each pixel, compute:

m=,|L.-L, 9=atan2(Ly,Lx), 4)

and add m to the bin at 0, with additional Gaussian
spatial weighting. Secondary peaks that reach at
least 0.8 of the main peak yield duplicate keypoints
with multiple orientations, improving robustness in
complex neighborhoods.

Gradients are sampled in a patch aligned to the
dominant orientation and partitioned into a 4x4 grid;
each cell contributes an 8-bin histogram, forming a
128-D vector. The descriptor is normalized, clamped
and renormalized to reduce contrast sensitivity.

Descriptors are compared by Euclidean distance.
The ratio test (nearest vs. second-nearest) rejects

ambiguous matches before robust geometric
estimation on remaining pairs.
SURF follows SIFT’s structure but was

engineered to cut computation for large images —
exactly the need in orbital mapping. By replacing
continuous Gaussian derivatives with box-filter
approximations evaluated through integral images,
SURF preserves much of SIFT’s invariance while
improving throughput on wide scenes and long strips.

SURF detects interest points using the Hessian
matrix of the scale space:

L _(x,0) L (x,0
H(x,(j):’r xx( ) «y( )—" (5)
L,(x,0) L, (x,0)

Second-order derivatives are approximated with
rectangular box filters evaluated via integral images.
Let L.,L,,L, be the corresponding box-filter

xx? Ty
responses; SURF scores saliency by a weighted
determinant:

det(H)=L,L, (LY. (6)

xxyy

Then seeks 3D extrema in a 3x3x3 neighbourhood
across (x,y,0).

Rather than downsampling the image, SURF
increases filter sizes to traverse scale, which preserves
localization at native resolution — useful when ground
sampling distance varies across scenes. Orientation is
derived from Haar-wavelet responses (d ,d,) in a

circular window proportional to c. A sliding angular
sector accumulates the vector sum (de,Zdy); the

sector with the largest norm defines the dominant
angle.

In a patch aligned to the dominant orientation,
SURF aggregates Haar responses over a 4x4 grid.
Each cell contributes a short vector (e.g.,

(3d..>d,.Y|d |, Y |d,|) yielding a 64-D or 128-

D descriptor depending on variant. Matching
proceeds with Euclidean distance and the ratio test,
followed by robust model fitting [15].

ORB was designed for real-time vision on
constrained hardware. In satellite stitching, where
scenes can span hundreds of megapixels, the ability to
detect and match features quickly with modest
memory is a practical advantage. ORB achieves this
by combining a fast corner detector with an efficient,
rotation-aware binary descriptor.

ORB begins with FAST detection over a multi-
level pyramid (parameters such as scale factor and
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number of levels govern the scale range). Because
FAST does not score “cornerness,” ORB ranks
candidates with a Harris-type response derived from
the second-moment matrix:

[z s
g s e

R =det(m)—k- (trace(M))2 , (8)

with k € [0.04, 0.06]. Points with high R are retained
to improve stability on patterns common in satellite
scenes. ORB computes geometric moments within a
scale-proportional window and employs a rotation-
aware BRIEF. Each bit compares two Gaussian-
smoothed samples at rotated offsets:

Lif I(p+x)<I(p+y),
T(p;x,y)={0 else )

where p is the keypoint coordinates; x and y is the
offset within the selected window. The pair set is
learned to maximize bit variance and minimize inter-
bit correlation, yielding a 256-bit descriptor with
strong speed - accuracy balance.

Descriptors are compared by Hamming distance.
In practice, k-nearest neighbours with a Hamming-
ratio test provides robust candidate pairs prior to
geometric verification.

BRISK extends the binary-descriptor idea to better
handle scale changes and rotations found in aerial and
orbital imagery. It pairs a multiscale corner detector
with a carefully arranged sampling pattern, separating
long-range comparisons for orientation from short-
range comparisons for the descriptor itself.

BRISK detects candidates with FAST across a
scale pyramid and refines them to subpixel and
subscale precision by quadratic interpolation of the
detector response in:

(10)

where H and g are the first- and second-order
derivatives of the response. This improves
repeatability under downsampling and oblique
viewing.

Around each keypoint, BRISK places sampling
points on concentric circles. “Long-range” pairs
estimate orientation via a smoothed intensity
differential which defines the canonical rotation for
the descriptor.

“Short-range” pairs produce the descriptor bits by
simple intensity tests at the rotation-aligned locations.
A common configuration yields 512 bits, matched
efficiently with Hamming distance.

x=-H"'-g,

As with ORB, nearest-neighbour search under
Hamming distance supplies putative correspondences.
A ratio test and cross-check reduce ambiguities before
robust model estimation [16].

IV. METHODS COMPARISON AND EVALUATION

This section assesses four methods based on local
features such as SIFT, SURF, ORB and BRISK for
the stitching of satellite images through a single
workflow that combines registration and blending.
The comparison is decided on the basis of the
implementation: every method operates in the same
MATLAB The Image Processing Toolbox
environment with exactly the same pre- and post-
processing steps. Each pair or group of overlapping
images is first turned to grayscale for the detection
and description, whereas the original RGB data is
used for visualization. Putative matches are created
by means of a ratio test, then filtered through robust
estimation and finally are used to determine a
geometric warp. To avoid bias toward any single
model, the transform escalates from similarity to
affine and, when necessary, to projective, with
RANSAC controlling inlier selection and outlier
rejection. The stitched mosaic is created through
mask-based compositing and then cut to its content
support, which enables the quantitative measurements
to represent only the areas that have data overlap.

Across approximately fifty experimental runs on
diverse satellite scenes — urban cores, suburban
blocks, agricultural parcels, coastal strips and
mountainous terrain — the identical stitching
workflow was applied and the same metrics were
recorded. Parameter settings, model escalation and
blending were held constant to isolate the effect of
the detector—descriptor choice. For the sake of
keeping the presentation on point, one case that
represents the whole is shown below; it illustrates
the entire procedure and the method of calculating
the metrics. Aggregate results across the full set are
consistent with the trends observed in this example.

The dataset with four Sahara satellite images
(Figs 1 — 4) was used for example as it combines
large homogeneous areas with highly structured
landforms. Broad sand sheets and playa surfaces
impose low local contrast, which stresses detector
repeatability. At the same time, dune fields, basalt
outcrops, escarpments supply sharp, high-frequency
edges and corners that reward truly distinctive
descriptors.

Because all four methods (SIFT, SURF, ORB,
BRISK) produced visually consistent mosaics on the
Sahara set — comparable seam placement, minimal
residual parallax and similar inlier ratios within a
narrow margin — for brevity, the Fig. 5 presents a
single representative stitch.
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Fig. 3. Sahara Desert satellite image #3
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Fig. 5. Result of Sahara Desert satellite images stitching

Figure 6 shows raw match density. This graph
defines the total number of feature matches divided
by the total number of overlap pixels across the
stitched area. This normalization removes scale and
crop effects, so methods can be compared on a per-
pixel basis even when images differ in size or
overlap.
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Fig. 6. Match density per method

Numerically, ORB attains the highest density
(= 0.0375), followed by BRISK (= 0.0168), with
SIFT (= 0.0073) and SURF (= 0.0053) lower by a
substantial margin. This pattern is consistent with
descriptor design: binary descriptors (ORB, BRISK)
generate more candidates per unit area because
Hamming matching is inexpensive and the codes are
compact, whereas vector descriptors (SIFT, SURF)
are more selective and computationally heavier.

V. CONCLUSIONS

In a controlled stitching workflow applied to
roughly fifty satellite image pairs, all four methods -
SIFT, SURF, ORB and BRISK - produced reliable
mosaics when overlap and scene structure were
adequate. The methods differed, however, in how
they reached that result. ORB and BRISK delivered
the highest raw match density per overlap pixel and
the fastest runtimes, reflecting the efficiency of binary
descriptors and Hamming search. SIFT and SURF
yielded lower match densities but consistently
stronger inlier ratios. On the Sahara example, where
all four aligned well, a single stitched image sufficed
to illustrate the workflow; method-level counts still
showed the same accuracy.

For large-area mapping where speed and memory
dominate, start with ORB or BRISK to harvest many
candidates ties quickly. For challenging geometry or
radiometry — small overlaps, repetitive urban grids,
low-contrast expanses, seasonal drift - prefer SIFT or
SURF, which buy distinctiveness and higher inlier
reliability at greater computational cost.
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A. B. Psaoko, B. 1O. I'pimnenko. ITopiBHsIJIbHUI aHAJIi3 MeTOAIB 3IIMBAHHS CYMYTHHKOBHUX 300pakeHb HA OCHOBI
BHSIBJIEHHSI JIOKAJIBLHHX 03HAK

Y poboTi JOCTiIKEHO METONW 3IIMBaHHS CYIYTHHKOBHUX 300pakeHh Ha OCHOBI JIOKAIBHUX O3HAK y MeXax €IHHOI
o1iHOYHOI CTpYKTYypH. Posrisayto yotnpu anroputmu — SIFT, SURF, ORB ta BRISK — 3 norusiay BUSBIIEHHS KITFOYOBHX
TOYOK, (POpMyBaHHSI JECKPHIITOPIB, I'€HEPYBaHHS BiANOBIAHOCTE Ta IeOMETPUYHOrO BHUPIBHIOBaHHA. BHKoOpHcTaHO
cTaHnapTu3oBaHuii pobounii npouec y MATLAB: BusiBIICHHS Ta OIKC Y BIATIHKax Ciporo, HOIIYK HaHOMMKIMX CyciiB i3
MIEPEBIPKOIO CIIBBITHOIICHHS, HAIMHE BiIXWUICHHS BUKHUIIB 3a nornoMorord RANSAC i3 eckanamiero MoJeni Ta 3JIUTTS
300pa’keHb 13 BUKOPHCTAHHSAM MacoK i 00pi3aHHsIM KOHTEHTY. byio 06po0ieHo 61amu3bKko 1’sTaecsTi HabopiB 300pakeHs,
0 OXOIUIIOIOTH PI3HOMaHITHI THNHN JaHAWAaQTiB; npukiaxn i3 mycreni Caxapa UTIOCTpye 3arpoNOHOBaHUM MPOTOKOIL
MeToro JOCTIDKEHHS € 0XapaKTepu3yBaTh KOMIIPOMIC MiX TouHIcTIO Ta edextuBHicTiO uist BekTopHHX (SIFT, SURF) i
6inapanx (ORB, BRISK) neckpunTopiB y peamicTUYHUX OpOITaThbHHX YMOBaX Ta 3a0€3MeUHTH TPO30pY OCHOBY IS
BHOOPY METOJIIB y MPOIecax TUCTAHIIIHOTO 30HAyBaHHS.

Kui04oBi cjioBa: 31MBaHHS CYITyTHUKOBUX 300pakeHb; TUCTAHIIIHE 30HIyBaHHI; peecTpaiis 300pakeHb; BUSBICHHS
nokanbaux o3Hak; SIFT; SURF; ORB; BRISK; BekTopHi aeckpurntopu; 6iHapHI JECKPUNITOPH; CIIIBCTABICHHS O3HAK.
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