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Abstract—This paper investigates feature-based methods for satellite image stitching under a unified 

evaluation framework. Four algorithms – SIFT, SURF, ORB and BRISK - are examined with respect to 

keypoint detection, descriptor formation, correspondence generation and geometric alignment. A 

standardized MATLAB workflow is employed: grayscale detection and description, nearest-neighbour 

matching with a ratio test, robust outlier rejection via RANSAC with model escalation and mask-based 

blending with content cropping. Approximately fifty image sets spanning diverse landforms are 

processed; a Sahara Desert example illustrates the protocol. The study’s aim is to characterize the 

accuracy-efficiency trade-offs of vector (SIFT, SURF) and binary (ORB, BRISK) descriptors in realistic 

orbital conditions and to provide a transparent basis for method selection in remote-sensing workflows. 

Keywords—Satellite image stitching; remote sensing; image registration; local feature detection; SIFT; 

SURF; ORB; BRISK; vector descriptors; binary descriptors; feature matching. 

I. INTRODUCTION 

Satellite images are behind all the current 

mapping, environmental monitoring, disaster 

response and defense planning. These data generate 

mostly from the unaligned frames due to acquisition 

at different times, view angles and illumination [1]. 

The reliable image stitching, thus, is the one that can 

convert such streams into seamless mosaics so that 

rivers kind of form lines, roads sort of merge and 

boundaries are definitely sharp. The quality of that 

stitching controls what further analyses can use and 

measure. 

Stitching in the remote-sensing setting is harder 

than in ground photography. Terrain relief, off-nadir 

viewing, radiometric drift, seasonal change and 

atmospheric haze all distort appearance. Overlap can 

be small or irregular and man-made patterns such as 

rooftops or field grids introduce repeated textures 

that confuse naive matchers [2]. Any practical 

method must therefore find features that survive 

scale changes, rotations and modest brightness 

shifts, then reject outliers before estimating the 

geometric warp. 

This study examines stitching principles built on 

local feature detectors and descriptors. Two families 

are compared. Scale-Invariant Feature Transform 

(SIFT) and Speeded-Up Robust Features (SURF) 

produce descriptors with rich gradient statistics. 

Oriented FAST and Rotated BRIEF (ORB) and 

Binary Robust Invariant Scalable Keypoints 

(BRISK) yield compact binary descriptors optimized 

for speed and memory. All four algorithms widely 

used design points: high-dimension vectors versus 

lightweight binary codes [3].  
To make the comparison fair, the surrounding is 

kept constant. Keypoints are detected across scale, 
descriptors are extracted, putative matches are 
formed with a ratio test and outliers are removed by 
Random Sample Consensus (RANSAC). Warps are 
estimated in an escalating model class – similarity, 
affine and, if required, projective – to accommodate 
viewpoint and relief [4].  

Evaluation focuses on alignment accuracy and 
efficiency that matter in practice. Reported measures 
include match count, inlier count and inlier ratio 
after RANSAC, match density per unit overlap and 
repeatability under controlled rotations and 
brightness shifts. All experiments are run in 
MATLAB using the same pre-processing and 
blending stages, so that differences can be attributed 
to the detector – descriptor choice.  

The goal is a clear, evidence-based view of when 

vector descriptors justify their cost and when binary 

descriptors are sufficient at scale. By grounding the 

analysis in satellite scenes with realistic variation, 

the paper aims to inform method selection for 

mapping, change detection and large-area 
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mosaicking where both accuracy and throughput are 

basic principles of satellite images stitching. 

II.  STRENGTHS AND LIMITATIONS OF FEATURE-

BASED REGISTRATION FOR SATELLITE 

MOSAICKING 

Satellite image stitching sits at a crossroads 
between two active lines of research: classical, 
feature-based registration and newer, learned (deep) 
matchers. In operational mosaicking stitching is still 
framed as a sequence of registration, seamline 
selection, tone normalization and blending – each step 
sensitive to side-looking geometry, relief, seasonal 
change and radiometric drift that are common in 
orbital data. Recent remote-sensing papers continue to 
refine every stage, from robust registration to seam 
generation for large orthoimage mosaics and time-
series products [5].  

Feature-based stitching remains attractive 
because it is transparent, lightweight and easy to 
adapt across sensors. Local keypoints are detected 
over scale, described, matched with a ratio test and 
filtered with RANSAC before estimating similarity / 
affine / projective warps; the approach scales well 
and gives explicit geometric guarantees. Its main 
liabilities are brittle matching under low texture, 
repetitive patterns, large viewpoint or illumination 
changes and cross-modal pairs [6]. Survey articles in 
remote sensing echo these trade-offs and report 
steady, incremental progress on detectors, 
descriptors and robust estimators [7].  

The deep-learning track pushes in the opposite 
direction: learn detectors, descriptors and even 
correspondence maps end-to-end. Methods based on 
SuperPoint / LightGlue, SuperGlue, LoFTR and 
newer transformer variants lift performance under 
appearance change and wide baselines and are 
spreading to aerial/satellite regimes; however, they 
demand more compute, large training sets and often 
benefit from domain-specific fine-tuning [8]. Recent 
reviews document the shift from detector-based to 
detector-free matchers and their gains, while satellite-
focused studies show practical approaches that 
combine learned features with careful batching and 
radiometric pre-processing [9].  

In this study, the emphasis is on four workhorses: 
SIFT (Scale-Invariant Feature Transform), SURF 
(Speeded-Up Robust Features), ORB (Oriented FAST 
and Rotated BRIEF) and BRISK (Binary Robust 
Invariant Scalable Keypoints). These methods remain 
attractive in remote sensing because they expose 
every decision – keypoint detection, descriptor 
formation, matching and outlier removal – and they 
run reliably across sensors and scenes without large 
training sets. 

SIFT and SURF represent the vector descriptor 
family. They encode gradients in floating-point 
histograms that are robust to scale and rotation and 
reasonably tolerant to illumination drift. In stitching, 
that extra distinctiveness pays off when overlaps are 
small, terrain relief introduces parallax or seasonal 
change alters appearance. The trade-off is cost: larger 
descriptors, heavier memory traffic and longer 
matching times. With ratio tests and RANSAC, 
SIFT / SURF matches often yield higher inlier counts 
and more stable transforms, which reduces seam 
artifacts and deformation in the final mosaic. 

ORB and BRISK sit in the binary descriptor camp. 

They create compact bit strings using intensity 

comparisons, then match with Hamming distance. 

The benefits are clear for large scenes and long strips: 

far lower memory use, fast nearest-neighbour search 

and easy batching. ORB couples FAST keypoints 

with oriented, rotated BRIEF (rBRIEF), while BRISK 

adds a scale-space detector and a learned sampling 

pattern to improve rotation and scale tolerance. In 

wide-area stitching, these designs deliver high 

throughput and competitive coverage; the cost is 

reduced distinctiveness under severe viewpoint 

changes, repetitive textures (e.g., roofs or crop grids) 

or strong radiometric shifts. Careful thresholding, 

cross-checks and geometric verification help close 

that gap [10], [11]. 

Across these four methods, the intent of using 

local features is consistent: obtain reliable, spatially 

well-distributed tie points that survive downsampling, 

rotation and moderate illumination change; filter 

mismatches with a ratio test and RANSAC; then 

estimate the simplest warp that explains the inliers 

(similarity → affine → projective). For evaluation, 

the community converges on practical indicators: 

total matches, inlier count and inlier ratio after 

RANSAC, match density per overlap area and 

repeatability under controlled rotations/brightness 

changes [12].  

III. THE OPERATIONAL ALGORITHMS 

OF SIFT/SURF AND BRISK/ORB METHODS  

Accurate geometric registration across scenes 
taken at various times, viewing angles and 
radiometric circumstances is essential for satellite 
picture stitching. The very first actions in a feasible 
image stitching process are identification of 
prominent and well-localized points that can survive 
through scale and rotation, encoding of their 
surrounding areas into robust yet peculiar 
descriptors and reliable correspondence of points in 
different images for the purpose of estimating a 
global warp [13]. This chapter describes the 
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algorithmic workings of four popular approaches: 
ORB, BRISK, SURF and SIFT. BRISK and ORB 
generate compact binary descriptors based on 
intensity comparisons, while SIFT and SURF 
generate floating-point (vector) descriptors based on 
image gradients and Haar replies. 

SIFT established the modern template for 
invariant local features. Its design targets three 
properties critical for satellite mosaicking: stability 
under scale change, consistent orientation in the 
presence of rotations and descriptive power in 
textured yet repetitive scenes. Because satellite 
datasets often mix resolutions and view angles, 
SIFT’s explicit scale space, orientation normalization 
and high-dimensional gradient statistics make it a 
strong baseline for reliable points. 

SIFT constructs a Gaussian scale space by 

convolving the image  ,I x y with filters of 

increasing standard deviation :  

     , , , , , ,L x y G x y I x y              (1) 

 
2 2

2

( )

2
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x y

G x y e
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           (2) 

Keypoints are located as extrema of the 
Difference-of-Gaussians (DoG): 

     , , , , , , ,DoG x y L x y k L x y                (3) 

where each sample compared to its 26 neighbours in a 

3×3×3 neighbourhood across  , ,x y  . 

Candidate locations are refined by a second-order 
Taylor expansion of D around the discrete extremum. 

Low-contrast points and edge-like responses 
(identified via the Hessian’s eigenvalue ratio) are 
rejected to improve repeatability on satellite 
textures. 

Rotation invariance is achieved by building a 36-
bin histogram of gradient directions within a circular, 
scale-proportional window around the keypoint. For 
each pixel, compute: 

 2 2 , atan 2 , ,x y y xm L L L L               (4) 

and add m to the bin at θ, with additional Gaussian 
spatial weighting. Secondary peaks that reach at 
least 0.8 of the main peak yield duplicate keypoints 
with multiple orientations, improving robustness in 
complex neighborhoods. 

Gradients are sampled in a patch aligned to the 
dominant orientation and partitioned into a 4×4 grid; 
each cell contributes an 8-bin histogram, forming a 
128-D vector. The descriptor is normalized, clamped 
and renormalized to reduce contrast sensitivity. 

Descriptors are compared by Euclidean distance. 
The ratio test (nearest vs. second-nearest) rejects 

ambiguous matches before robust geometric 
estimation on remaining pairs. 

SURF follows SIFT’s structure but was 
engineered to cut computation for large images – 
exactly the need in orbital mapping. By replacing 

continuous Gaussian derivatives with box-filter 
approximations evaluated through integral images, 
SURF preserves much of SIFT’s invariance while 
improving throughput on wide scenes and long strips. 

SURF detects interest points using the Hessian 

matrix of the scale space: 

 
( , ) ( , )
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( , ) ( , )
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L x L x
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L x L x

  
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           (5) 

Second-order derivatives are approximated with 
rectangular box filters evaluated via integral images. 

Let , ,xx yy xyL L L  be the corresponding box-filter 

responses; SURF scores saliency by a weighted 
determinant: 

   2

det .xx yy xyH L L L                  (6) 

Then seeks 3D extrema in a 3×3×3 neighbourhood 

across  , , .x y   

Rather than downsampling the image, SURF 
increases filter sizes to traverse scale, which preserves 

localization at native resolution – useful when ground 
sampling distance varies across scenes. Orientation is 

derived from Haar-wavelet responses ( , )
x y

d d  in a 

circular window proportional to . A sliding angular 

sector accumulates the vector sum  , ;
x y

d d   the 

sector with the largest norm defines the dominant 
angle. 

In a patch aligned to the dominant orientation, 
SURF aggregates Haar responses over a 4×4 grid. 
Each cell contributes a short vector (e.g., 

 ,, ,
x y x y

d d d d     yielding a 64-D or 128-

D descriptor depending on variant. Matching 
proceeds with Euclidean distance and the ratio test, 
followed by robust model fitting [15].  

ORB was designed for real-time vision on 

constrained hardware. In satellite stitching, where 
scenes can span hundreds of megapixels, the ability to 
detect and match features quickly with modest 
memory is a practical advantage. ORB achieves this 
by combining a fast corner detector with an efficient, 

rotation-aware binary descriptor. 
ORB begins with FAST detection over a multi-

level pyramid (parameters such as scale factor and 
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number of levels govern the scale range). Because 
FAST does not score “cornerness,” ORB ranks 

candidates with a Harris-type response derived from 
the second-moment matrix: 

2

2
,

x x y

x y y

I I I
M

I I I

 
  
  

 
 

                   (7) 

    2

det ,R m k trace M              (8) 

with �  [0.04, 0.06]. Points with high R are retained 
to improve stability on patterns common in satellite 
scenes. ORB computes geometric moments within a 
scale-proportional window and employs a rotation-
aware BRIEF. Each bit compares two Gaussian-
smoothed samples at rotated offsets: 

1,  if  ( ) ( ),
( ; , )

0,  else.

I p x I p y
p x y

  
  


           (9) 

where p is the keypoint coordinates; x and y is the 
offset within the selected window. The pair set is 
learned to maximize bit variance and minimize inter-
bit correlation, yielding a 256-bit descriptor with 
strong speed - accuracy balance. 

Descriptors are compared by Hamming distance. 
In practice, k-nearest neighbours with a Hamming-
ratio test provides robust candidate pairs prior to 
geometric verification. 

BRISK extends the binary-descriptor idea to better 
handle scale changes and rotations found in aerial and 
orbital imagery. It pairs a multiscale corner detector 
with a carefully arranged sampling pattern, separating 
long-range comparisons for orientation from short-
range comparisons for the descriptor itself. 

BRISK detects candidates with FAST across a 
scale pyramid and refines them to subpixel and 
subscale precision by quadratic interpolation of the 
detector response in: 

1ˆ ,x H g                             (10) 

where H and g are the first- and second-order 

derivatives of the response. This improves 

repeatability under downsampling and oblique 

viewing. 

Around each keypoint, BRISK places sampling 

points on concentric circles. “Long-range” pairs 

estimate orientation via a smoothed intensity 

differential which defines the canonical rotation for 

the descriptor. 

“Short-range” pairs produce the descriptor bits by 

simple intensity tests at the rotation-aligned locations. 
A common configuration yields 512 bits, matched 

efficiently with Hamming distance.  

As with ORB, nearest-neighbour search under 
Hamming distance supplies putative correspondences. 
A ratio test and cross-check reduce ambiguities before 
robust model estimation [16]. 

IV. METHODS COMPARISON AND EVALUATION 

This section assesses four methods based on local 
features such as SIFT, SURF, ORB and BRISK for 
the stitching of satellite images through a single 
workflow that combines registration and blending. 
The comparison is decided on the basis of the 
implementation: every method operates in the same 
MATLAB The Image Processing Toolbox 
environment with exactly the same pre- and post-
processing steps. Each pair or group of overlapping 
images is first turned to grayscale for the detection 
and description, whereas the original RGB data is 
used for visualization. Putative matches are created 
by means of a ratio test, then filtered through robust 
estimation and finally are used to determine a 
geometric warp. To avoid bias toward any single 
model, the transform escalates from similarity to 
affine and, when necessary, to projective, with 
RANSAC controlling inlier selection and outlier 
rejection. The stitched mosaic is created through 
mask-based compositing and then cut to its content 
support, which enables the quantitative measurements 
to represent only the areas that have data overlap. 

Across approximately fifty experimental runs on 
diverse satellite scenes – urban cores, suburban 
blocks, agricultural parcels, coastal strips and 
mountainous terrain – the identical stitching 
workflow was applied and the same metrics were 
recorded. Parameter settings, model escalation and 
blending were held constant to isolate the effect of 
the detector–descriptor choice. For the sake of 
keeping the presentation on point, one case that 
represents the whole is shown below; it illustrates 
the entire procedure and the method of calculating 
the metrics. Aggregate results across the full set are 
consistent with the trends observed in this example. 

The dataset with four Sahara satellite images 
(Figs 1 – 4) was used for example as it combines 
large homogeneous areas with highly structured 
landforms. Broad sand sheets and playa surfaces 
impose low local contrast, which stresses detector 
repeatability. At the same time, dune fields, basalt 
outcrops, escarpments supply sharp, high-frequency 
edges and corners that reward truly distinctive 
descriptors. 

Because all four methods (SIFT, SURF, ORB, 
BRISK) produced visually consistent mosaics on the 
Sahara set – comparable seam placement, minimal 
residual parallax and similar inlier ratios within a 
narrow margin – for brevity, the Fig. 5 presents a 
single representative stitch. 
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Fig. 1. Sahara Desert satellite image

Fig. 2. Sahara Desert satellite image

Fig. 3. Sahara Desert satellite image

Fig. 4. Sahara Desert satellite image

Fig. 5. Result of Sahara Desert satellite 
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satellite image #1 

 

satellite image #2 

 

satellite image #3 

 

satellite image #4 

 

satellite images stitching 

Figure 6 shows raw match density
defines the total number of feature matches divided 
by the total number of overlap pixels across the 
stitched area. This normalization removes scale and 
crop effects, so methods can be compared on a per
pixel basis even when images differ in size or 
overlap. 

Fig. 6. Match density

Numerically, ORB attains the highest density 
(≈ 0.0375), followed by BRISK (
SIFT (≈ 0.0073) and SURF (
substantial margin. This pattern is consistent with 
descriptor design: binary descri
generate more candidates per unit area because 
Hamming matching is inexpensive and the codes are 
compact, whereas vector descriptors (SIFT, SURF) 
are more selective and computationally heavier.

V. CONCLUSIONS

In a controlled stitching 

roughly fifty satellite image pairs, all four methods

SIFT, SURF, ORB and BRISK

mosaics when overlap and scene structure were 

adequate. The methods differed, however, in how 

they reached that result. ORB and BRISK d

the highest raw match density per overlap pixel and 

the fastest runtimes, reflecting the efficiency of binary 

descriptors and Hamming search. SIFT and SURF 

yielded lower match densities but consistently 

stronger inlier ratios. On the Sahara exampl

all four aligned well, a single stitched image sufficed 

to illustrate the workflow; method

showed the same accuracy. 
For large-area mapping where speed and memory 

dominate, start with ORB or BRISK to harvest many 
candidates ties quickly. For challenging geometry or 
radiometry – small overlaps, repetitive urban grids, 
low-contrast expanses, seasonal drift
SURF, which buy distinctiveness and higher inlier 
reliability at greater computational cost. 
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raw match density. This graph 
the total number of feature matches divided 

by the total number of overlap pixels across the 
stitched area. This normalization removes scale and 
crop effects, so methods can be compared on a per-
pixel basis even when images differ in size or 

 
atch density per method 

Numerically, ORB attains the highest density 
0.0375), followed by BRISK (≈ 0.0168), with 

0.0073) and SURF (≈ 0.0053) lower by a 
This pattern is consistent with 

descriptor design: binary descriptors (ORB, BRISK) 
generate more candidates per unit area because 
Hamming matching is inexpensive and the codes are 
compact, whereas vector descriptors (SIFT, SURF) 
are more selective and computationally heavier. 

ONCLUSIONS 

In a controlled stitching workflow applied to 

roughly fifty satellite image pairs, all four methods -

SIFT, SURF, ORB and BRISK – produced reliable 

mosaics when overlap and scene structure were 

adequate. The methods differed, however, in how 

they reached that result. ORB and BRISK delivered 

the highest raw match density per overlap pixel and 

the fastest runtimes, reflecting the efficiency of binary 

descriptors and Hamming search. SIFT and SURF 

yielded lower match densities but consistently 

On the Sahara example, where 

all four aligned well, a single stitched image sufficed 

to illustrate the workflow; method-level counts still 

area mapping where speed and memory 
dominate, start with ORB or BRISK to harvest many 

quickly. For challenging geometry or 
small overlaps, repetitive urban grids, 

contrast expanses, seasonal drift - prefer SIFT or 
SURF, which buy distinctiveness and higher inlier 
reliability at greater computational cost.  
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А. В. Рябко, В. Ю. Грішненко. Порівняльний аналіз методів зшивання супутникових зображень на основі 

виявлення локальних ознак 
У роботі досліджено методи зшивання супутникових зображень на основі локальних ознак у межах єдиної 
оціночної структури. Розглянуто чотири алгоритми – SIFT, SURF, ORB та BRISK – з погляду виявлення ключових 
точок, формування дескрипторів, генерування відповідностей та геометричного вирівнювання. Використано 
стандартизований робочий процес у MATLAB: виявлення та опис у відтінках сірого, пошук найближчих сусідів із 
перевіркою співвідношення, надійне відхилення викидів за допомогою RANSAC із ескалацією моделі та злиття 
зображень із використанням масок і обрізанням контенту. Було оброблено близько п’ятдесяти наборів зображень, 
що охоплюють різноманітні типи ландшафтів; приклад із пустелі Сахара ілюструє запропонований протокол. 
Метою дослідження є охарактеризувати компроміс між точністю та ефективністю для векторних (SIFT, SURF) і 
бінарних (ORB, BRISK) дескрипторів у реалістичних орбітальних умовах та забезпечити прозору основу для 
вибору методів у процесах дистанційного зондування. 
Ключові слова: зшивання супутникових зображень; дистанційне зондування; реєстрація зображень; виявлення 
локальних ознак; SIFT; SURF; ORB; BRISK; векторні дескриптори; бінарні дескриптори; співставлення ознак. 
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