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Abstract—This article represents the features of creating the mathematical model and carrying out 

modelling of the gimballed inertial navigation system assigned for operation on marine moving vehicles. 

To increase the accuracy of the system, some modes of operation are introduced. Features of correction 

for every mode are described. The characteristic of the integral correction is given. The control moments 

for levelling and gyrocompassing modes are represented. The expressions for projections of the gyro-

stabilized platform angular rates are created. The simulation results of stabilization and navigation 

processes are represented. The advantages of the integral correction are shown. The obtained results can 

be useful for the high-precision navigation systems and gyroscopic stabilization systems with payload. 

The proposed approaches can be applied for moving objects of the wide class. 
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I. INTRODUCTION AND PROBLEM STATEMENT 

There are two independently developing 
directions in modern ways to create inertial 
navigation systems. The first direction deals with 
strapdown inertial navigation systems. The second 
direction deals with gimballed ones. Nowadays, 
strapdown inertial navigation systems are widespread 
in most applications despite some disadvantages. The 
basic disadvantage is the presence of errors caused 
by inaccuracy in the initial alignment of a system. 
Nevertheless, the high-precision autonomous 
navigation of different moving vehicles can be 
realized using only gimballed inertial navigation 
systems. To ensure the high precision of gimballed 
inertial navigation systems, it is possible using 
correction or special operating modes, which allow 
us to take into consideration maximally the drifts of 
the gyrostabilized platform. 

The current stage of transportation development 

is characterized by increasing traffic intensity and 

requires improved approaches to creating navigation 

systems for various classes of mobile objects. 

Heading determination is of great importance for the 

navigation of mobile objects. Recently, with the 

advent of high-precision miniature navigation 

sensors and high-speed computing equipment, there 

has been a trend toward the development of Attitude 

and Heading Reference Systems (AHRS). These 

systems are similar in their capabilities to inertial 

navigation systems, but are simpler and less 

expensive. Typically, such systems include a vertical 

gyro and a heading gyroscope, as well as 

accelerometers that provide correction for the 

gyroscopic instruments and obtain information about 

the linear velocity and distance travelled by a 

moving object.  

It is widely recognized that in marine navigation, 

significant attention is given to gimballed inertial 

navigation systems, where angular position and 

linear acceleration sensors are installed on a gyro-

stabilized platform. These systems offer the 

advantage of simplified navigation data processing, 

as the gyro-stabilized platform provides more 

favourable operating conditions. 

This article aims to analyse the process of 

mathematically modelling and describing a 

platform-type course determination system. The 

purpose of the research is to examine the 

characteristics involved in developing a 

mathematical model and description for a platform-

type course determination system. 

II. REVIEW OF PUBLICATIONS 

The process of developing and modelling 
gimballed stabilization systems has been extensively 
discussed in the scientific literature [1] – [4]. Basics 
of mathematical description of a gimballed 
navigation system are given in the publications [5], 
[6]. Nevertheless, this study overlooks an important 
feature of modern heading determination systems – 
the existence of numerous operating modes that 
differ in sensor configurations and, consequently, in 
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the mathematical formulations and modelling 
approaches required. General approaches to the 
development of complex engineering systems are 
represented in textbooks [7] – [9]. Information about 
gyroscopic devices, as important constituents of the 
gimballed inertial navigation systems, is presented in 
[10] – [12]. The full mathematical description of the 
precision dynamically tuned gyroscopes is 
represented in [11]. The detailed description of 
approaches to the correction of gyroscopic devices 
used for the measurement of angles, which define a 
position of the moving object in the inertial space, is 
given in [12]. This textbook also includes the 
description of the integral correction that makes the 
gyroscopic device mounted on the gyro-stabilized 
platform into a non-disturbed gyro vertical. Features 
of studying stochastic gimballed stabilization 
systems are represented in the paper [13]. The very 
useful information about the possibility of carrying 
out modelling of complex engineering systems in 
MATLAB is described in [14], [15]. 

III. FEATURES OF MATHEMATICAL MODELLING 

Features of creating a mathematical model are 
considered on the example of a gimballed inertial 
navigation system assigned for operation on a 
marine moving object. We will study the above-
mentioned AHRS systems. The studied system uses 
such precision inertial navigation instruments as 
dynamically tuned gyroscopes and pendulum 
accelerometers. To ensure high navigation accuracy, 
the multi-mode approach was applied. This allows 
us to form corrections, which eliminate the influence 
of the parametric and coordinate disturbances and 
also the measuring noise [1]. 

The modelling characteristics of a gyroscopic 
system designed to determine the heading of a 
moving object are analyzed using a platform-based 
system as an example. This system includes 
dynamically adjustable gyroscopes functioning as a 
vertical gyro and a heading gyro, along with 
accelerometers that provide data on the object’s 
linear velocity and distance travelled. The chosen 
combination of sensors enables the determination of 
key navigation parameters, including: the heading 
relative to the geographic meridian in gyrocompass 
mode or the angular deviation from a specified 
direction in gyro-azimuth mode; platform tilt angles 
relative to the horizontal plane; as well as linear 
accelerations, velocities, and travelled distance. 

The heading determination system operates in 

several modes that differ in their functions, sensor 

configurations, and corresponding types of 

correction moments. The primary modes include 

preliminary levelling, precise levelling, gyro-

compassing, and operation in either gyroscopic 

compass or gyro-azimuth mode. 

Key factors influencing the choice of model type 

are the presence of integral correction and a 

computing device. The first main modelling 

direction involves selecting the parameters of the 

integral correction, which requires simulating the 

system’s operation over extended periods. This type 

of model primarily focuses on the development of 

control laws. 

The second modelling direction examines how 

the discreteness of information processing affects 

the system’s accuracy in steady-state conditions and 

the quality of transient responses. In this case, a 

detailed mathematical representation of the heading 

determination system is used, incorporating models 

of electronic components, which substantially 

increases simulation time. 

The heading determination system operates in 

several modes that differ in their functions, sensor 

configurations, and corresponding types of 

correction moments. The primary modes include 

preliminary levelling, precise leveling, gyro 

compassing, and operation in either gyroscopic 

compass or gyro azimuth mode [4]. 

Key factors influencing the choice of model type 

are the presence of integral correction and a 

computing device. The first main modelling 

direction involves selecting the parameters of the 

integral correction, which requires simulating the 

system’s operation over extended periods. This type 

of model primarily focuses on the development of 

control laws. 

The second modelling direction examines how 

the discreteness of information processing affects 

the system’s accuracy in steady-state conditions and 

the quality of transient responses. In this case, a 

detailed mathematical representation of the heading 

determination system is used, incorporating models 

of electronic components, which substantially 

increases simulation time. 

The heading determination system in question is 

distinguished by its separation of control functions. 

Platform stabilization is achieved through 

stabilization motors installed along the axes of the 

platform’s gimbal mount, with control commands 

computed from the signals of the vertical gyro angle 

sensors. Meanwhile, corrective inputs applied to the 

vertical gyro torque sensors are derived from 

accelerometer and log data. Division of controls 

enables high stabilization precision [1]. 
Correction torques are produced using a complex 

algorithm. To maintain system stability, integral 
correction based on accelerometer signals is 
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employed. Additionally, damping – implemented 
using information about the object’s relative velocity 
obtained from the log – enhances control 
performance. 

A key feature of this system is the use of 
dynamically tuned gyroscopes, which considerably 
increase the complexity of the system model. The 
equations of motion for a dynamically tuned 
gyroscope, functioning as a vertical gyro, are [11]. 
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(1) 

here H is the kinetic moment of the gyroscope’s 
rotor; c is the gimbals’ residuary stiffness; d is the 
damping factor; T is the gyroscopic precession time 

factor; 1 (1 );H H s   310 ;s   ,x y   are 

projections of the platform’s horizontal rate; ,g g   

are angles defining the space position of the 
platform with payload relative to the Resal axes; 

g

corxM , 
g

coryM  are moments for the correction. 

The following equations describe the motion of a 
dynamically tuned gyroscope functioning as a 
course gyroscope [11] 
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(2) 

here A  is an angle, which defines an arrangement of 

the course gyroscope relative to the meridian; 
A

  is 

an angle, which defines an arrangement of the course 

gyroscope relative to the horizon plane; ,A

corxM  A

corzM  

are moments, which implement correction. 
However, it is essential to note that developing a 

detailed mathematical model of a dynamically tuned 
gyroscope is crucial for designing a precision 
gyroscope. The developers of the heading 
determination system require such a model to 
evaluate the overall system errors and to optimize 
the control parameters. 

To simplify the system’s mathematical models 

(1), (2), it can be assumed that, apart from the 

stabilization system errors and drift, the equations of 

motion of dynamically tuned gyroscopes coincide 

with those of the platform. In other words, the 

stabilization system is considered ideal [1]. 
Under this assumption, the mathematical model 

for determining the heading and angular position in 
precise leveling mode can be formulated based on 

equation (1), which describes the angular motion of 
the vertical gyroscope, and the second equation of 
system (2), which represents the motion of the 
system in azimuth 
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                  (3) 

A mathematical model of the system used to 

determine heading and angular position in 

gyroscopic compass mode can be developed based 

on equations (2), which describe the angular motion 

of the heading gyroscope, and the second equation 

of system (1), which defines the angular deviation of 

the system from the horizontal plane 
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                (4) 

The position of the gimballed system for 
determining the course and position of a moving 
object is determined in the coordinate system 

1 1 1,O    arranged according to the geographical 

reference frame O  on the angle 0A . 

At the initial instant of time, the angle between 
the diametrical plane and the platform’s longitudinal 

axis is equal to 0 0( )k A , here 0k  is a heading of the 

marine moving object; 0A  is the platform’s azimuth. 

The location of the reference frame p p pOx y z  

connected with a platform relative to the reference 

frame 1 1 1O    can be determined by rotations of 

small angles , , .    In this case, it is assumed that, 

in the initial position, the platform’s axes are aligned 
with the sensitivity axes of the accelerometers 
mounted on it. The platform levelling accuracy is 
determined by the angular deviations   and .  The 

deviation of the platform from the meridian plane or 

initial platform azimuth ( 0A ) is defined by an angle 

  taking into consideration the smallness of angles 

  and  . Projections of the platform’s angular rates 

onto proper axes for small angles , ,    become 
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here 
11 1, ,      represent projections of the 

platform’s angular rates on the axes of the reference 
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frame 1 1 1.O    Projections of angular rates 

11 1, ,      can be determined by angular rates in 

the geographical reference frame O  as follows  

1

1 0 0

0 0 1
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(6) 

By substituting expressions (6) into relations (5) 

and assuming the angles , ,    are small, the 

projections of the platform’s angular velocities onto 

its coordinate axes can be expressed as follows 
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Expressions (3), (4), and (7) represent the 

mathematical description of the gimballed inertial 

navigation system. 

To meet the accuracy requirements for the 

inertial navigation system operating in precision 

leveling mode, integral control grounded on 

accelerometer data and damping grounded on log 

data can be applied. The integral correction 

moments applied to the gimballed platform axes are 

defined by the relationships 
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here nVɺ  is the northern constituent of the system’s 

acceleration; yW  is a correction value taking into 

consideration translation and Coriolis accelerations; 

W  is a correction value taking into consideration a 

vertical constituent on the vertical acceleration; ya  

is the accelerometer’s error. 
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here eVɺ  is the eastern constituent of the acceleration; 

xW  is a correction value on translation 

acceleration, Coriolis acceleration and the earth non-

sphericity; W  is a correction value on the vertical 

acceleration; xa  is the accelerometer’s error. 

The corrections applied for translational and 

Coriolis accelerations, Earth's non-sphericity, and 

the vertical constituent of acceleration are as follows
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here 
e

Vɺ  is the eastern acceleration constituent; 
x

W  

is a correction value on translational acceleration, 
Coriolis acceleration, and the Earth’s non-sphericity; 

W  is a correction value on the vertical 

acceleration; 
x

a  id the accelerometer’s error.  

Corrections are applied for translational and 

Coriolis accelerations, Earth’s non-sphericity, and 

vertical acceleration components as follows
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(11) 

The corrective damping moments based on the 

information from the lag are determined by the 

expressions 
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Expressions (8) – (13) represent control moments. 
Namely, such an approach to creating the gimballed 
inertial navigation systems ensures its high precision. 

The model of the heading and attitude 
determination system operating in gyroscopic 
compass mode is characterized by the following 
main features: 

1) In contrast to other modes, the system’s 
kinematics are governed by the primary device for 
this mode – the heading gyroscope. 

2) The control torques are implemented 
according to the conventional design of a corrected 
gyrocompass [12]. 

In this mode, the platform of the heading and 

attitude determination system is controlled using 

accelerometer signals, which are employed to 

generate the following torques: 
1) A compensating torque that offsets the 

apparent deviation of the platform from the meridian 
plane caused by arbitrary azimuthal displacement. 

2) A damping torque that suppresses platform 
oscillations, derived from a filtered (attenuated) 
accelerometer signal. 

3) A correction torque proportional to the 
velocity of the geographic coordinate system, acting 
on the outer ring of the dynamically tuned 
gyroscope. 

4) A correction torque proportional to the 
velocity of the geographic coordinate system, acting 
on the inner ring of the dynamically tuned 
gyroscope. 

5) An integral correction torque that maintains 
the system’s invariance to external accelerations. 

To establish the kinematic relationships for the 

model of the heading and angular position 

determination system operating in gyroscopic 

compass mode, the coordinate system 1 1 1O    

arranged relative the geographical reference frame 

O  on the angle 0A  is taken as the initial 

reference frame. 

For the chosen coordinate axes, the expressions 

used to determine the platform’s angular velocities 

can be written as follows 
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After substitution expressions (6) defining values 

of angular rates 
1 1 1
, ,      in the expression (14), 

taking into consideration the smallness of angles 

,   and elimination of small terms, we will obtain 

the following expressions for determining 

projections of the platform’s angular rates  
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With the selected coordinate axes, the 

expressions for calculating the platform’s angular 

velocities based on expressions (15) can be 

formulated as follows 
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(16) 

The mathematical model, which incorporates the 

expressions for the platform’s angular velocities (16) 

during an arbitrary azimuthal turn and the corrective 

and control moments, can be represented as follows 
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 (17) 

here 
Ak  is the accelerometer’s transfer factor; 

Gk  is 

the transfer factor of the pre-amplifier; 
PWMk  is the 

transfer factor of the pulse-width-modulator; 
TMk  is 

the transfer factor of the torque motor; 
Ik  is the 

transfer factor of the integral correction. 

IV. MODELLING RESULTS 

The simulation of the studied system is based on 

the model (7). The processes of platform stabilization 

by the angles of the roll () and pitch () are 

represented in Figs 1 and 2. Figures 3 and 4 show 

the effect caused by the integral correction, which 

involves forming correcting signals using data 

entered from accelerometers. Such an approach 

ensures the resistance of the studied AHRS to 

disturbing accelerations that sufficiently improve the 

accuracy of stabilizing the platform with inertial 

navigation instruments and, correspondingly, 

navigation. 

 

Fig. 1. The process of stabilization by the angle of roll () 
in conditions of weak sea regular waves 

 

Fig. 2. The process of stabilization by the angle of pitch 

() in conditions of strong sea regular waves 

Graphical dependencies represented in Figs 3 and 

4 prove the efficiency of the integral correction. The 

simulation results of the course and spatial position 

determination system are shown in Figs 5 and 6. 

 

Fig. 3. Control using accelerometers without the integral 

correction (for demonstration of the efficiency of the 

integral correction) 

 
Fig. 4. The control by accelerometers with the integral 

correction 
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Fig. 5. The transient process on the azimuth  with the 

initial value   for 
0

10A  
 

 
Fig. 6. The transient process on pitch   for initial 

azimuth 
0

10A    

V. CONCLUSIONS 

The full mathematical model of a gimbaled 

system for determination of a heading and attitude is 

proposed, emphasizing the analysis of the system’s 

control loops and navigational accuracy. Distinct 

models are created for the leveling and gyroscopic 

compass modes. 

The approach to the representation of the 

mathematical model in two different modes is 

proposed. 

Expressions for the determination of the 

platform’s angular rates and control moments are 

specific to both modes of the system. 

Simulation results demonstrate the efficiency of 

the proposed approach, including high precision of 

stabilization and navigation processes. 

The novelty of the study lies in the development 

of correction moments directed to the improvement 

of the accuracy of the gimballed inertial navigation 

system. 

The obtained results can be useful for developing 

high-precision gyroscopic stabilization systems. 
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О. А. Сущенко, Ю. В. Мельник. Особливості математичного моделювання платформної інерціальної 

навігаційної системи для морського рухомого об’єкту 
У статті представлено особливості створення математичної моделі та проведення моделювання інерціальної 
навігаційної системи з карданним підвісом, призначеної для роботи на морських рухомих об’єктах. Для 
підвищення точності системи введено деякі режими роботи. Описано особливості корекції для кожного 
режиму. Наведено характеристику інтегральної корекції. Представлено керуючі моменти для режимів 
горизонтування та гірокомпасування. Створено вирази для проекцій кутових швидкостей гіростабілізованої 
платформи. Представлено результати моделювання процесів стабілізації та навігації. Показано переваги 
інтегральної корекції. Отримані результати можуть бути корисними для високоточних навігаційних систем та 
гіроскопічних систем стабілізації з корисним навантаженням. Запропоновані підходи можуть бути застосовані 
для рухомих об’єктів широкого класу. 
Ключові слова: інерціальна навігаційна система з карданним підвісом; гіроскопічна стабілізація; гіроскопічні 
пристрої; інтегральна корекція; математичне моделювання; багато-режимна система. 
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