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Abstract—This paper considers the application of computer vision and deep learning methods for
automated aerial reconnaissance using unmanned aerial vehicles under the conditions of modern warfare.
The main classes of reconnaissance objects are analyzed, including military vehicles, fortifications, artillery
positions, and groups of personnel. An approach to building an object detection system based on deep
neural networks is proposed, in particular using YOLO-type detectors and U-Net segmentation models. The
process of data preparation and augmentation with consideration of combat factors (smoke, explosions, low
illumination, image shift, and noise) is described. An experimental evaluation of object detection quality
under different scenarios is performed. It is shown that the use of specially adapted augmentation
significantly increases the robustness of the models to interference. The limitations of the proposed
approach and directions for further research are discussed.
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I. INTRODUCTION

Modern warfare is characterized by high
dynamics, intensive use of technical means, and a
significant volume of information received in real
time. One of the key sources of operational
information has become unmanned aerial vehicles
(UAVs), which provide surveillance,
reconnaissance, fire adjustment, and assessment of
strike results. The volume of video data transmitted
from UAVs is continuously increasing, which leads
to operator overload and increases the risk of
missing important targets.

The traditional working model, in which visual
observation by a human remains the main means of
analysis, has a number of significant limitations.
These include operator fatigue, subjectivity of
assessment, limited ability to simultaneously analyze
multiple video streams, and deterioration of
decision-making quality under stressful conditions.

The development of convolutional neural
networks and deep learning methods has created the
prerequisites for the wide implementation of
automated image analysis systems in real time [12].
Single-stage detectors of the YOLO family have
demonstrated the ability to combine high accuracy
and high processing speed, which is critically
important for application on UAVs [1], [2].

The aim of this work is to study the possibilities
of applying computer vision methods for automated
reconnaissance using UAVs under the conditions of
modern warfare, as well as to develop and

experimentally evaluate an approach to the detection
of military objects in aerial images.

The following research questions are addressed
in this study:

e [s it possible to ensure robust object detection
under complex combat imaging conditions?

e How do flight altitude and illumination affect
detection accuracy?

What trade-off between accuracy and processing
speed is acceptable for practical use on UAVs?

II. REVIEW OF EXISTING SOLUTIONS

The first approaches to automated analysis of

aerial images were based on classical image
processing methods. These included threshold
filtering, contour analysis, feature extraction

methods such as HOG and SIFT, and subsequent
classification using machine learning techniques, in
particular SVM and A&-NN. Such methods
demonstrated limited effectiveness under complex
conditions and with high variability of images.

With the emergence of deep neural networks, the
situation has changed significantly. Modern object
detectors are divided into two main groups: two-stage
detectors (Faster R-CNN) and single-stage detectors
(YOLO, SSD) [1], [2], [4]. Two-stage methods
provide higher accuracy but have significantly lower
processing speed. Single-stage detectors are oriented
toward operation in near real-time mode, which
makes them more suitable for use on UAVs.

A separate class of tasks is image segmentation,
which makes it possible not only to detect an object
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but also to determine its exact shape and position in
the frame. The most widespread architectures are
U-Net, DeeplLab, and their modifications [3].
Segmentation is especially important for the
detection of engineering structures, trenches, and
fortifications that have complex geometric shapes.
Most existing studies in the field of aerial
reconnaissance are based on open civilian datasets
such as DOTA and xView [6], [7]. However, these
datasets usually do not take into account specific
combat factors (smoke, explosions, camouflage,
night imaging, and camera instability). This creates a
gap between laboratory results and the real
effectiveness of systems under combat conditions.

III. PROBLEM STATEMENT

The task of automated reconnaissance is reduced
to the problem of object detection and, when
necessary, object segmentation in a sequence of
frames obtained from a UAV camera.

An image or a video frame of size HXWxC(C is
provided as the input to the system.

At the output, a set of objects is formed, each of
which is characterized by the coordinates of a
bounding box, the object class, and a confidence score.

Mathematically, the problem is formulated as the
search for the parameters of a model f {\theta} that
approximates the conditional distribution P(y|x).

Within this work, the following basic object
classes were considered: armored vehicles (tanks,
IFVs, APCs), artillery positions, cargo and passenger
vehicles, buildings and fortifications, trenches and
engineering structures, and groups of personnel.

For training and testing the models, a combined
dataset was used, which consisted of anonymized
real aerial videos, synthetic images generated in the
AirSim simulation environment [8], and open
civilian datasets such as DOTA and xView [6], [7].
The distribution of objects by classes in the training
dataset is presented in Table I.

TABLE L. DISTRIBUTION OF OBJECTS BY CLASSES
IN THE TRAINING DATASET

Object Class Number of Objects |Share, %
Tanks 840 13.4
IFVs/ APCs 620 9.9
Trucks 910 14.5
Passenger Cars 760 12.1
Artillery Positions 430 6.8
Buildings and 1200 19.1
Fortifications

Trenches 980 15.6
Groups of Personnel | 550 8.7
Total 6290 100

All images were converted to a unified format
and divided into training, validation, and test sets.
The annotation was performed in the YOLO format.

To increase the robustness of the models,
specialized data augmentation was applied,
including the addition of smoke and fog, simulation
of explosion flashes, motion blur, changes in
brightness and contrast, addition of sensor noise, and
minor geometric distortions [11].

Visual examples of the application of specialized
combat-oriented augmentation are shown in Fig. 1.

IV. APPROACH

The core of the system is a single-stage object
detector adapted for processing aerial images based
on the YOLO family [1], [2]. The architecture is
configured for the detection of small objects typical
for high-altitude flights. The input image size was
modified, anchor boxes were optimized, and multi-
scale training was applied. The overall architecture
of the automated UAV-based reconnaissance system
is shown in Fig. 2.

Fig. 1. Example of Combat-Oriented Image Augmentation
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Fig. 2. Overall Architecture of the UAV-based
Reconnaissance System
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For the task of segmentation of engineering
structures, a separate neural network of the U-Net
type was used [3]. This made it possible to obtain
masks of trenches and fortifications that have
complex shapes and weak visual expression.

The processing pipeline includes the following
stages:

e acquisition of the video stream from the UAV;
selection of key frames;
image pre-processing;
object detection;
confidence-based filtering;
aggregation of results within a temporal
window;

e transmission of the results to the operator.

The implementation was carried out using the
PyTorch framework. Embedded systems optimized
for neural network execution in the edge-inference
mode were considered as the hardware platform,
using deep model optimization and computational
compression techniques [9], [10].

V. RESULTS OF MODELING

All experimental results in this work were
obtained using synthetic data generated in a
simulation environment and are used to demonstrate
the feasibility of the proposed approach.

The experiments were conducted under four
scenarios: daytime imaging at low altitude, daytime
imaging at high altitude, imaging under low-light
conditions, and imaging in the presence of smoke
and explosions in the frame.

The evaluation was carried out using the precision,
recall, Fl-score, and mAP@0.5 metrics. The FPS
metric was used to assess the processing speed.

Model optimization for execution on embedded
platforms was performed taking into account
modern approaches to edge inference and neural
network acceleration [9], [10].

A quantitative comparison of detection accuracy
under different imaging conditions is given in
Table 1L

TABLE II. COMPARISON OF DETECTION ACCURACY
(MAP@0.5) UNDER DIFFERENT IMAGING CONDITIONS
Baseline Model with
Imaging Conditions Combat
Model .
Augmentation
Daytime, low altitude 0.68 0.78
Daytime, high altitude 0.59 0.7
Low illumination 0.52 0.63
Smoke / heavy smoke 0.47 0.59

As shown in Fig. 3, the use of combat-oriented
augmentation provides a significant increase in
detection accuracy under all imaging conditions.

= EerzlFs ee == Rage) Wik COTMRISWNIRT T,

LT —
%%
aF =
% L1 o e
% us M‘%*&
I- e Ieaperr [ 2 L Emnaks £
ST, Ui SRR £
T eihele Wb DivmiaT

i
l alas

Fig. 3. Detection Accuracy (mAP@0.5) under Different
Imaging Conditions

The comparison of accuracy and processing
speed for models of different sizes is presented in
Table II1.

TABLEIII.  ACCURACY (MAP@O0.5) AND FPS
FOR MODELS OF DIFFERENT SIZES

Model Size | mAP@0.5 FPS
Small 0.71 42
Medium 0.76 27
Large 0.79 14

The results showed that the use of specialized
combat-oriented augmentation increases the mAP
under difficult conditions by 10-18% compared to
the baseline model without special preparation [11].

The largest decrease in accuracy was observed
during imaging at high altitude and under heavy
smoke conditions. A typical example of the results
of military object detection in an aerial image is
shown in Fig. 4.

artillery position

Fig. 4. Example of Military Object Detection Results in
an Aerial Image
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The trade-off between detection accuracy and
processing speed for models of different sizes is
illustrated in Fig. 5.
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Fig. 5. Trade-off between Accuracy (mAP@0.5) and
Processing Speed (FPS) for Models of Different Sizes

Typical classification errors of objects from
different classes are presented in the form of a
confusion matrix in Fig. 6.
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Fig. 6. Confusion Matrix of Military Object Classification

VI. CONCLUSIONS

This study investigates the possibilities of
applying computer vision methods for automated
reconnaissance using UAVs under the conditions of
modern warfare. An approach to the development of
a system for the detection and segmentation of
military objects with consideration of real combat
factors is proposed. The experimental results
demonstrate the potential of deep neural networks to
reduce operator workload and increase the
effectiveness of reconnaissance. The obtained results
can be used in the development of practical decision
support systems for UAVs.

The obtained results indicate that modern
computer vision methods are capable of effectively
supporting military reconnaissance tasks. Large
objects with clear geometric features are detected
most reliably. The most challenging tasks remain the

detection of small groups of personnel and objects
that are masked against the background of the terrain.

Smoke, explosions, and low illumination have a
strong impact on detection quality. Therefore,
adaptation of the models to real combat conditions is
critically important. The balance between accuracy
and processing speed is also essential, since
excessively complex models are not suitable for
real-time operation.

The main limitations of the proposed approach
include dependence on the quality of training data,
computational resources, and the complexity of
scaling the system to a large number of UAVs.
Issues of safety, ethics, and responsibility in the use
of artificial intelligence in military systems also
require separate consideration.

Further research should be focused on:

e combining detection with multi-frame tracking;

o the use of thermal imaging cameras;

e integration of the results into decision support
systems;

e application of multi-agent analysis using data
from multiple UAVs.
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A. T. Kot. Komm’1otepHuii 3ip s po3Bigku 3 BIIJIA B ymoBax cy4yacHoi BiiiHu

VY crarTi po3TNSHYTO 3aCTOCYBaHHS METOJIB KOMIT FOTEPHOTO 30py Ta IIMOOKOTO HaBYaHHS I aBTOMAaTH30BaHO1
TIOBITPSTHOT PO3BIIKK 3 BUKOPUCTAHHAM OE3MIOTHHX JIITAJHHUX alapaTiB B yMOBax cydacHoi BiliHU. [IpoaHanizoBaHO
OCHOBHI KJlacW 00’€KTiB PO3BiIKH, BKIIOYAIOYM BIHCHKOBY TEXHIKY, YKPITUIEHHS, apTHISPIMCBKI MO3MII Ta TPyHH
JKMBOI CHJIM. 3allpONOHOBAHO MiIXill J0 MOOYIOBH CHCTEMH BHSBICHHS OO0 €KTIB HAa OCHOBI MIMOOKHX HEHPOHHUX
Mepex, 30kpema nerekropiB Tumy YOLO ta cermenrtaniiinunx mopeneir U-Net. OmmcaHo mpoliec MiATOTOBKU Ta
ayrMeHTalil TaHuX 3 ypaxyBaHHAM 00i0BHX (hakTOpiB (AUM, BUOYXH, HU3bKA OCBITJICHICTh, 3CYB 300pa)XEHHS Ta IIYM).
[IpoBeneHO eKCIEPUMEHTANIEHY OIIHKY SKOCTI BUSBICHHS 00’€KTIiB y pi3HUX clieHapisX. [loka3zaHo, 110 BUKOPHUCTAHHS
crHeLjiaJibHO a/1alTOBaHOI ayrMeHTalii 3HAa4yHO IIiABMINYE CTiiKicTh Mozened 10 3aBaa. OOroBOpeHO OOMEKCHHS
3aMPOMOHOBAHOTO MiXOy Ta HAPSIMHU MOAATIBINUX JOCHTIKECHb.

Kuio4oBi cjioBa: 0€3MiIOTHI JTiTaMbHI anmapaty; KOMI' IOTEpHUH 3ip; rITMO0Ke HaBUaHHS; IETEKIlis 00’ €KTIiB; BiiChKOBa
PO3BinKa; HEHPOHHI Mepexi.
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